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Abstract- -Recent  advances in computer technology have 
spurred new interest in the use of feedback controllers based 
upon on-line minimization for the control of constrained 
linear systems. Still the use of computers in the feedback 
loop has been hampered by the fact that the amount of time 
available for computation in most sampled data systems is 
not enough to achieve a complete solution using conven- 
tional algorithms. Several "ad hoc"  techniques have been 
proposed, but their applicability is restricted by the lack of 
supporting theory. In this paper we present a theoretical 
framework to analyze the stability of the closed-loop system 
resulting from the use of on-line optimization in the feedback 
loop. Using these results we show that a suboptimal 
algorithm, based upon the use of heuristic search techniques, 
yields asymptotically stable systems, provided that enough 
computation power is available to solve at each sampling 
interval an optimization problem considerably simpler than 
the original. The controller presented in this paper is 
valuable for situations where the customary approaches of 
using Pontryagin's minimum principle or storing a family of 
extremal curves are not applicable due to limitations in the 
computational resources available. 

1. INTRODUCTION 

A LARGE CLASS of problems frequently encoun- 
tered in practice involves the control of linear 
time-invariant systems with states and controls 
restricted to closed convex regions of the 
respective spaces. The origin of these constraints 
is diverse. They may represent physical limita- 
tions of the system (limitations of the materials, 
velocity of response of actuators, etc.) or they 
may originate in the process of modeling the 
physical system. The latter can be the case of a 
complex system represented by a piecewise 
linear model with coefficients obtained from 
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measurements performed at different operating 
points. In this case the states are constrained to 
remain in a neighborhood of the nominal 
operation points where the representation is 
sufficiently accurate. As examples of such 
systems we can mention advanced turbofan 
engines (Teren, 1977), hydroelectric reservoirs 
(Gutman, 1986) and robotic arms (Baker, 1987). 

Control engineers have usually dealt with this 
class of problem by designing a controller 
ignoring the constraints and simply saturating 
the input (for a control constraint) or by 
switching on a controller that will attempt to 
steer the system from the boundary (when a 
state constraint is saturated). This approach, 
while appealing in its simplicity, is not easily 
applicable to higher order systems. Further, 
there is generally no guarantee that such an 
approach will yield an acceptable performance 
or even an asymptotically stable system. 
Another classical approach is to use dual mode 
controllers, where high gain feedback is used 
when the system is far from the constraints and 
low gain feedback is used when the system is 
approaching a constraint boundary. In using this 
approach, great care has to be exercised in order 
to avoid undesirable features such as limiting 
cycles. 

There have been several recent attempts to 
design linear and nonlinear controllers for 
constrained systems. Van Til and Schmittendorf 
(1986) considered the controllability of discrete 
time systems with controls constrained to a 
convex set f~, but they proposed an off-line 
numerical algorithm that yields open-loop 
stabilizing control laws. 

Vassilaki et al. (1988) solved the problem of 
stabilizing a linear discrete-time system under 
state and control constraints by using constant 
linear state feedback. Their controller is 
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particularly attractive in its simplicity. However, 
it is clear that only a fraction of the feasible 
constrained problems admits a constant linear 
feedback solution. Hence the domain of 
application of Vassilaki's controller is limited to 
cases where enough control authority is available 
to allow for a stabilizing solution that does not 
require saturation of the control input. More- 
over, optimal performance usually requires the 
control vector to be on a constraint boundary 
most of the time and this evidently requires a 
nonlinear controller capable of saturating. 

Gutman and Hagander (1985) used quadratic 
Lyapunov functions to determine nonlinear 
feedback controllers for constrained systems. 
Their design procedure starts by finding a 
stabilizing linear feedback control law that does 
not violate the control constraints. Then, a 
quadratic Lyapunov function is constructed for 
the closed-loop system and a second control law 
is computed based upon this Lyapunov function. 
Finally, the two control laws are added and 
saturated. The use of a controller capable of 
saturating generally yields better performance 
than in the previous case. However, the 
applicability of this controller, as is the case with 
Vassilaki's controller, is limited by the require- 
ment that a stabilizing constant linear feedback 
that does not violate the control constraints must 
exist. The use of quadratic Lyapunov functions 
further limits the domain of application since it is 
clear that in general non-quadratic functions 
must be used to determine the largest possible 
domain of attraction of the origin that is 
compatible with the constraints. Another serious 
drawback of the method is that it does not 
provide a systematic approach to the design. On 
the contrary, several steps of the design 
procedure involve an extensive trial and error 
process without guarantee of success [example 
5.3 in Gutman and Hagander (1985)] and several 
parameters of the design must be tuned using 
simulations. 

Alternatively, the problem can be stated as an 
optimization problem (Frankena and Sivan, 
1979). Once the problem is cast in the form of an 
optimization problem, mathematical and dyna- 
mic programming techniques can be used to find 
the solution. Zadeh  and Whalen (1962) solved a 
minimum time problem using Linear Program- 
ming. Fegley et al. (1971) explored stochastic 
and deterministic control design using Linear 
and Quadratic Programming. Mayne and Polak 
(1987) solved the problem using a penalty 
function-based algorithm. 

Naturally, optimization approaches are ap- 
pealing because they appear to guarantee an 
acceptable system response. However, in most 

cases the control law generated is an open-loop 
control that has to be recalculated entirely, with 
considerable computational effort, if the system 
is disturbed. Conceivably, the set of open-loop 
control laws could be used to generate a 
closed-loop control law by computing and 
storing a complicated field of extremals. 
However, this alternative is widely regarded as 
both complicated and expensive due to the 
extensive off-line computations and the amount 
of storage required. As a consequence, in most 
applications the optimal control taw is not 
implemented. 

To overcome this difficulty, Dreyfus (1964) 
introduced the concept of Open-Loop Optimal 
Feedback (OLOF).  Given a discrete time 
system, the interval between samples is utilized 
to compute the optimal control law that will 
transfer the system from the present state to the 
desired final state. When this concept was 
introduced, its applicability was severely limited 
by the computing technology available at that 
time. However, recent advances in computing 
technology have reduced significantly the time 
required to compute the control law, spurring a 
new interest in controllers based upon on-line 
optimization. Recently, the OLOF concept has 
been applied successfully by Gutman (1986) to 
develop a Linear Programming-based regulator 
for a reservoir with a sampling time of 5 rain. 

However, in most sampled control systems, 
the amount of time available between samples 
(typically ranging from tens of milliseconds up to 
a few seconds) may not be enough to compute a 
full solution to the problem, even allowing for 
advances in the technology in the foreseeable 
future. All previous implementations of the 
O L O F  idea have dealt with this problem by 
simply using the last partial control law 
computed when they run out of time. As a 
result, we have the fundamental questions of 
whether the resulting closed-loop system is 
stable and whether the partial solution is a 
"sensible" control strategy, i.e. one that will 
steer the system in a convenient direction. To 
the best of our knowledge these questions have 
not been addressed and no theory exists that will 
allow an analysis of the resulting closed-loop 
system. The lack of a theory supporting the use 
of this ad hoc strategy limits the application of 
this class of controllers to cases where it is 
expected that, most of the time, there will be 
enough time available to compute a complete 
solution. 

In this paper we will present a theoretical 
framework to analyze the stability properties of 
the closed-loop system resulting from the use of 
on-line optimization in the feedback loop. In the 
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first portion of the paper we will present 
theoretical results guaranteeing the asymptotic 
stability of the system resulting from the use of a 
general control algorithm based upon an on-line 
minimization. In the second portion we will 
address the effects of the quantization of the 
control space on the controllability and stability 
of the system and we will specialize the results of 
Part 1 for the case of a suboptimal controller 
based upon heuristic search techniques. This 
algorithm has the advantage of providing an easy 
way of incorporating knowledge available about 
the solution into the controller, thus presenting 
the potential for a significant reduction of the 
computation time. Another advantage is that the 
resulting controller is easily generalizable to 
different performance indexes. Finally, examples 
of application of the proposed controller for 
minimum-time and quadratic cost cases will be 
presented. 

2. S T A T E M E N T  O F  T H E  P R O B L E M  

We will consider linear, time-invariant, con- 
trollable discrete time systems modeled by the 
difference equation: 

Xk+I=Axk+Buk,  k = 0 , 1  . . . . .  (1) 

with initial condition Xo, and the constraints 

uk • ~2 c R m, xk • ~d ~_ R" (2) 

where ~2 and ~ are convex regions containing 
the origin in their interior, ~2 is compact and 
where x indicates x is a vector quantity. An 
additional hypothesis on the region ~3, a 
constraint qualification hypothesis, will be 
introduced in a later section when the stability of 
the closed-loop system is analyzed. The objec- 
tive is to find a sequence of admissible controls, 
Uk[Xk], that minimizes a performance index of 
the form: 

N 

J(x, u, N)  = (3) 
k = 0  

with Lk(x ,u) - -0  for all x, u and Lk(O, O)=0. 
The notation Uk[Xk] emphasizes the fact that a 
closed-loop solution is desired. We will call such 
a sequence a "global optimum". This problem 
will be denoted as problem (P). Throughout this 
paper we will assume that (P) is feasible for any 
initial condition in ~g. (In Section 3 we will show 
how this assumption can be checked.) Note that 
the performance index (3) includes as particular 
cases minimum-time problems [when Lk----1 for 
all x, u#:0,  Lk(0, 0)---0 and N is unspecified] 
and Linear Quadratic Regulators [when N--->oo 
and Lk = 0.5 * (xTQx + urRu)]. 

In Sznaier and Damborg (1987,1989) we 

proposed to solve this problem by using a 
feedback controller based upon the solution at 
each sampling interval of a sequence of suitable 
receding horizon type optimization problems, 
and we argued the soundness of the approach 
based on experimental results. In this paper we 
will present theoretical results showing that a 
similar algorithm yields an asymptotically stable 
system even in the face of computing time 
restrictions. 

3. DEFINITIONS AND THEORETICAL RESULTS 
In order to analyze the proposed controller we 

need to introduce the following definitions and 
theoretical results. We begin by formalizing the 
concept of feedback control: 

Definition 1. A feedback control algorithm is a 
mapping M : ~ J x R ~ f 2  defined by a finite 
computational procedure that yields a control 
law in terms of the present state of the system, 
i.e. Uk = M(xg, k). 

The following definitions deal with the 
controllability aspects of the problem and in 
particular, with the effect of a quantization of 
the control space. These definitions will become 
particularly useful in the second part of the 
paper when a particular algorithm based upon a 
partition of the control space is analyzed. 
However, they are also useful outside this 
context, for instance to analyze the effect of 
using a computer with a finite word-length in the 
feedback loop. 

Definition 2. The Null Controllable domain of 
(1) is the set of all points x • ~3~_ R" that can be 
steered to the origin by applying a sequence of 
admissible controls Uk • S') c R m, such that 
Xk • ~, k = 0 ,  1 . . . .  The Null Controllable 
domain of (1) will be denoted as C=. The Null 
Controllable domain in j or fewer steps will be 
denoted as Cj ~_ C~. 

Definition 3. A (uniform) quantization if2 s of a 
given set Q ~_ R m is the set: f2~ = {u • if2 : ui = 
ni/s}, where ui is the ith coordinate of u, ni is 
integer and s is a scaling factor. The quantity 1/s 
will be called the norm of the quantization. 

Definition 4. The system (1) is Quantized Null 
Controllable in a region C =_ ~ if, for any open 
set S ~_ ~ containing the origin in its interior, 
there exist a number so(C, S ) •  R such that for 
all the quantizations ~s of ~2 with s->s0, there 
exists a sequence of admissible quantized 
controls uk • Qs such that the system can be 
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steered from any initial condition x, c C to S 
without violating the state constraints. 

In the next definition we formalize the concept 
of underest imate of the cost-to-go and we 
introduce a set where the constraints are not 
binding. These concepts will be used in Theorem 
1 where we show that a particular sequence of 
approximations,  based upon the use of under- 
estimates, converges to the true cost-to-go. 

Definition 5. Let  O be a convex open set 
containing the origin in its interior and such that, 
for all the optimal trajectories starting out in O, 
the constraints (2) are not effective and let J0(x) 
be the optimal cost-to-go from the state x. A 
function g : R" ~ R such that: 
(1) O < g ( x ) < J o ( x  ) VxE03 
(2) g(x) = J0(x) Vx E O 
will be called an underestimate of the cost-to-go, 
relative to the set O. 

Note that from the definition it follows that 
once an optimal trajectory reaches the set O, it 
never leaves it. Several choices for O and g(.) 
will be discussed later in the paper. 

The following theorems present the basic 
theoretical foundations for the proposed 
algorithms. 

Theorem 1. Let  O be the set introduced in 
Definition 5 and let x~(~) be the (unconstrained) 
optimal trajectory corresponding to the initial 
condition ~ E O. Finally let g(x) : R n---, R be an 
underestimate relative to O. Consider the 
following optimization problems: 

t N / min J ( x ) =  ~', Lk(xk, Uk) (4) 
u k = 0  

min x ) =  Lk(xk, u~) + g(Xm , m < N 
u k = 0 

(5) 

subject to (1), with Uk E f2 C R m and Xk e 03__ R n 
and where u = {Uo, Ul . . . .  }. Then,  an optimal 
trajectory,  x °, k = 1, 2 . . . . .  m which solves (5), 
extended by defining xO= u o Xk(Xm), k = m +  
1 . . .  N, is also a solution of (4) provided that 
x°~ O. 

The proof  of this theorem follows from 
Bellman's dynamic programming theory. 

From Theorem 1 it follows that the solution to 
the optimization problem (4) can be found by 
solving a sequence of optimization problems of 
the form (5) until a number  m and a trajectory 
x(.) such that x,, e O are obtained. This concept 
is exploited in the following algorithm: 

Model algorithm (Algorithm M) 
Begin: 
(1) Let  Xk be the current state of the system, k 

the current time instant and T the sampling 
interval. Then: 

(i) If Xk E O the solution coincides with 
that of the unconstrained problem. 

(ii) If Xk 4: O, solve a sequence of optimiza- 
tion problems of the form (5) until a 
number  m such that Xm E O is found. 
Use as next control law, the first 
e lement  of the control sequence cor- 
responding to this solution. 

(iii) If there is no more computation time 
available for searching and the region O 
has not been reached, use the minimum 
partial cost trajectory that has been 
found. 

(2) Repeat  step 1 until the origin is reached. 
End. 

It should be remarked that the proposed 
controller is a feedback controller and therefore 
can respond to the present condition. We 
successfully employed this algorithm in Sznaier 
and Damborg (1987, 1989) to design optimiza- 
tion based suboptimal controllers for constrained 
systems. However ,  the asymptotic stability of the 
resulting closed loop systems cannot be guar- 
anteed when there is not enough time to reach 
the region where the cost-to-go is known 
(namely the region O), except in cases where the 
system starts out sufficiently close to that region. 
In this paper,  in order  to guarantee asymptotic 
stability, we will need to impose additional 
structure on our problem. However,  to keep our 
problem as general as possible, we would like to 
impose the least amount  of structure necessary. 
At the same time, we would like the domain of 
attraction of the origin to be as close as possible 
to the largest domain of attraction compatible 
with the constraints. These conditions can be 
formulated in the form of a qualification 
condition on the type of constraints allowed in 
(P). Hence,  we will impose a restriction on the 
type of constraints allowed in the problem and 
we will modify Algorithm M suitably. 

Constant qualification hypothesis 
We will consider admissible state regions of 

the form: 03 = {x: G(x) -< y} (6) 

where y E R p, ]/i> 0 and G : R " ~  R p has the 
following properties: 

G(x)i->0,  i = l . . . p V x  

G(x) = 0 ¢::> x = 0 (7) 

G ( x + y ) i  - < G ( x ) i + G ( y ) .  i = l . . . p V x ,  yE03 

G(~.x) = &G(x), 0 < ~. - 1. 
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Define now: 

v(x) = max {G(x)i/Yi}. (8) 
l ~--i~--p 

It is easy to show that, because of the positive 
definiteness of G, v(.) is a norm in the set ~. We 
will denote this norm as II.]lv. Note that v(.) is a 

"normalized distance" that measures the proxi- 
mity of the constraints to saturation. Clearly 
Ilxll~ - 1 for all x e qd and Ilxll~ = 1 for x in the 
boundary of cg, aqd. 

We will consider systems such that: 

min (l lAx + Bull~} < l Vx e a~. (9) 
uEt'2 

Condition (9) implies that for any initial 
condition on the boundary of the admissible 
region there exists a control that brings the 
system to its interior. Since the problem was 
assumed to be feasible in qd, the only effect of 
the additional constraints is to rule out the 
possibility of the system staying on the boundary 
for consecutive sampling instants. This condition 
can be checked using a number of techniques, 
depending on the actual form of ~ and if2. For 
example, if the constraints are of the form: 

G(x) = IGxl with G ~ R p*n and rank (G) = n 

~ =  {u :Wu_<p} with W e R q * m a n d p e R  q 

then they can be reduced to a system of linear 
inequalities and (9) can be checked using linear 
programming. In the case where: 

a ( x )  = (xTax) 1/2 

~'~ = {u: (uTRu) 1/2 --< p}, Q, R positive definite 

then a sufficient condition for the satisfaction of 
constraint (9) can be found based upon the 
singular value decomposition of the matrices Q 
and R, using a technique similar to the one 
employed in Example 3, Section 6. 

Note that (6), (7) and the convexity of f2 
imply that the satisfaction of (9) guarantees the 
feasibility of the problem in cg. 

Theorem 2. Consider problem (P) with the 
additional constraints (6), (7) and (9). Then, 
there exists a control sequence ~ = {u0 . . . . .  }, 
Uk e f~ such that: 

IlXk+lllo< Ilxkll~, k = 0 ,  1--  "VXk~ ~d- O. (10) 

Proof. From (9) it follows that: 

min IIAx + BulIo < Ilxll~ - 1 Vx c a~.  (11) 
u ~ Q  

Since the origin is an interior point of cg by 
hypothesis, it follows from the convexity of ~d 
that for any x e int { q3}, there exist ~., 0 -<- ~. -< 1, 
and y e a ~  such that x = ~.y. Hence from (7), 

(9), and the convexity of ~ we have: 

min {llAx + n u l l o )  -- min {IIZAy + Bully) 
u~Q u ~  

-< min (IIAAy + ZBulI~) 

= 2. min (IIAy + BulI~) < 2. IlYlI~ = Ilxlto. (12) 
u ~  

Therefore u can be selected such that (10) is 
satisfied for all points in q3. ~ .  

Corollary 1. The problem (P')  defined as 
problem (P) with the additional constraints (6), 
(7), (9) and (10) is feasible, i.e. there exists at 
least one control sequence such all the 
constraints are satisfied. 

From Theorem 2 and its corollary, it follows 
that the application of Algorithm M to problem 
(P ')  yields a control law such that the v-norm of 
the state is monotonically decreasing in cg_ O. 
In the next theorem we use this result to show 
the asymptotic stability of the closed-loop 
system. 

Theorem 3. The closed-loop system resulting 
from the application of Algorithm M to problem 
(P')  is asymptotically stable. 

Proof. It is clear that x,, is always bounded for 
all m since xm ~ ~. Hence we only have to show 
that xm ---> 0. 
(a) Consider first the case when Xoe O. By 

definition, the constraints are not binding 
for all the optimal trajectories starting out in 
O and the optimal cost-to-go is known and 
equal to g(x). It follows that g(x) is a 
Lyapunov function for the system and hence 
it is asymptotically stable in O. 

(b) Consider now the case where x0e cg_ O. 
We will show that there exists m0 such that 
x,,, o ~ O. Define: 

g = min Ilxllv 
• ~ao (13) 

6 =  max ( l lxk+l l lv -  Ilxkll~) 
x ~ q d - O  

where Xk+l = AXk + BM(xk). 
Clearly # > 0  and if IlYlI~ </~ then y e O. 
From the definition of (P ' )  and (10) it 
follows that 6 < 0. Hence: 

IIx~llo < Ilxollo + 6 
: (14) 

Ilxn IIv < Ilxollo + n6 

and there exist no such that x,o~ O. Once 
the system reaches the region O, part (a) of 
the proof applies and x,,---->0. This com- 
pletes the proof. 
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Theorems 1 through 3 show that Algorithm M 
applied to the modified problem (P ' )  yields an 
asymptotically stable system. In applying this 
algorithm, we make the implicit assumption that 
there is enough computation time available to 
allow for the computation of a control law 
u = M ( x )  such that all the constraints are 
satisfied. Specifically, we assume that there is at 
least enough time to solve a problem of the form 
(5) with m = 1. 

Note that Algorithm M is a "conceptual"  
algorithm, since it cannot be implemented until a 
finite procedure to perform the optimization 
required by step 1 (ii) is specified. In the next 
section we will present a specific algorithm to 
perform the on-line minimization. 

4. CONTROL ALGORITHM 
In Sznaier and Damborg (1987) we presented 

a suboptimal feedback controller for a class of 
systems based upon the use of Quadratic 
Programming for on-line minimization. In this 
section we investigate the application of 
Heuristically Enhanced Optimal Control as an 
alternative for on-line minimization. In this 
approach, suggested by Guez (1986), the 

f~ 

problem is approximately solved by partitioning 
the control space ~2 into a finite set ffL as shown 
in Fig. 1. The attainable domain from the initial 
condition, using controls in •,, can be 
represented now as a tree with each node 
corresponding to one of the attainable states. 
Hence the original optimal control problem is 
recast as a tree search, with the approximation 
resulting from the control quantization. The 
resulting tree can be scanned efficiently for 
minimum cost paths using heuristic search 
techniques, based upon an underestimate of the 
cost-to-go (Winston, 1984). In order to analyze 
the stability properties of this controller we will 
address the effect of the quantization of the 
control space, making use of the definitions 
introduced in the previous sections. 

The following results show that if (P) is 
feasible, then (P ' )  is also feasible, even when the 
controls are restricted to a quantization ff2~ of f2. 
It follows then that conditions (6), (7) and (9) 
are sufficient conditions to guarantee quantized 
null controllability. 

In the following lemma we introduce a 
quantity (A) that gives a measure of how much 
the set O can be "magnified" before exceeding 

0 

G 
x(0) 

ul . ~  u3 

Estimated cost to go for the trajectory x(o) - x(n): 

n-1 

Jn (x,u) =Z=0 L (x(k),..,u(k)) + g(x(n)) 

actual cost heuristic 
approximation 

FIG. 1. Diagram of Algorithm H (heuristically enhanced optimal control). 
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the constraints. Then, we use this quantity to get 
a lower bound on the maximum amount that the 
norm of the present state of the system (llxlb) 
can be decreased in one stage. 

Lemma 1. Consider the region ~ -  O. Let: 

A=m~no{3.:(lx) eacg }. 

Then: 

rn~no{llxlb-minllZx+Bu][, } 
x ue ~  

> A m i n t  1 - min IIAy + Bull, }. 
yea~3 k u e ~  

05) 

(16) 

Proof. Given any x • ~d- O it can be expressed 
as Aoyo with Yo • 0 q3 and 0 < 3.0 -< 1. Then: 

Ilxlb - min IIAx + Bull,, 
IIE~'2 

= 113.oyolh, - min IIA3.oYo + Bull, 
ueff2 

-> IlZoy01h, - min IIAZ0Yo + BZoulh, 

= 3.0{ Ily0l[. - min IlAyo + Bulb}  

-> min 3 . { t l Y l l . - m i n l l A y + B u l b }  
y e a ~  u ~  

A y e G - O  

- min A{llYl{.-min {lAy+ Bully} 
ye3~ ue ~  

Ay~aO 

-> Amin (1 - min IIAy + Bull, } 
y~a~3 L ue ~  

(17) 

since ItYlI, = 1 for y • 3~g. 
Note that in this theorem we consider a 

"worst-case" type situation by essentially con- 
sidering a ray from the origin to the boundary of 
the constraint set, a~3, and then, in the last 
inequality, decoupling the scale factor (A) from 
the orientation. Note also that A is strictly 
positive. 

In the next theorem we address the feasibility 
of (P ' )  when the controls are restricted to a 
quantization ff2~. 

Theorem 4. Assume that G satisfies the 
conditions (7). Then, there exists a number so 
such that for all quantizations Q, of if2 with 
s-> so, the constraint (10) can be satisfied for all 
Xk • ~d-- O and u restricted to E2~. 

Proof. Consider a quantization £2, of f~ with 
1 

norm - and a point x • q 3 - O .  Let to be an 
S 

element of fls where I IAx+Bul l ,  achieves its 
minimum over all elements in f2s (note that this 
minimization is well defined since f~, is a finite 
set), i.e. 

to = argmin IIAx + Bull,.  (18) 
ue~s 

Then, there exist a 6u, 6ui <- 1/s such that: 

[lAx + Broil. = min [lAx + Bu + B6u[b. (19) 
ue~'2 

From (7) and (8) we have that: 

rain [lAx + Bt[[. = min [lAx + Bu + B6u[[. 
t~f~s u e ~  

-< min IIAx + Bull, + max (20) 
u e ~  l<--i~p L ~/i l"  

From (7), it can be shown that G(6x)--~0 as 
6x---~ 0. Hence,  it follows that s may be chosen 
large enough so that: 

[G(Bbu)i] min t l _  mi n Bulb}  
,m<_ia~<XL ~ 1 < A  IIAy+ 

yeO~ L ue~  

(21) 

since (9) guarantees that the right-hand side of 
(21) is strictly positive. From Lemma 1 we have: 

A min { 1 - m a n  IlAy+ Bull .} 
yEa~3 u ~  

< Ilxll. - min IIAx + Bull.. (22) 
ueff2 

Hence,  from (20), (21) and (22) it follows that: 

rain IIAx + Btll, -< min I{Ax + Bull, 
t~C~s u e ~  

1 + max < Ilxlb. O (23) 
l~--i<--p L ~/i J 

Corollary 2. The system (1) is Quantized Null 
Controllable in ~d. The proof follows from 
Theorem 4 by selecting a set O such that O ~ S, 
where S is an arbitrary open set containing the 
origin in its interior, as required by Definition 4, 
Section 3. 

From Theorem 4 it follows that (P ' )  can be 
solved by using quantized controls in the region 
~ d - O  and switching to non-quantized controls 
inside O. This result is the basis of the following 
feedback control algorithm. 

Algorithm H (Heuristically Enhanced Control) 
Begin: 
(1) Determine the set O and a function 

g(x):Rn">R, 0<--g(x)<--Jo(x ) for all x e  % 
g(x) = Jo(x) for all x • O. The function g(x) 
will be used as an heuristic guideline for 
estimating the cost-to-go in the search for 
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optimal trajectories, hence it should be close 
to J0(x). 

(2) Determine the scaling factor s for the 
quantization of if2. A lower bound of s can 
be determined from Theorem 4, to assure 
that the set O can be reached using the 
quantized controls. The upper bound of s 
depends on the amount  of time available for 
computation.  There  is a trade-off between 
computation time and the proximity of the 
quantized trajectory to the true minimum. 
Note that steps 1 and 2 are performed during 
the controller design state, not during its 
u s e .  

(3) Let  Xk be the current state of the system, k 
the current time instant and T the sampling 
interval. Then: 

(i) If xk e O the solution coincides with 
that of the unconstrained problem. 

(ii) If xk ~ O, generate a tree by considering 
all the possible trajectories starting at 
Xk, with controls uk e ff2s. Nodes that do 
not verify the constraints (2) or (10) are 
not added to the tree. This process 
generates a finite tree since we are 
dealing with a finite set if2,.. Search the 
tree for a minimum cost trajectory to 
the origin using heuristic search algo- 
rithms. Note that once a trajectory 
reaches the region O, then the cost to 
proceed from the first point of the 
trajectory interior to O, x*, to the 
origin is given by g(x*). Therefore,  if 
the sampling time T is long enough to 
allow the algorithm to expand the tree 
until O is reached, the results of 
Theorem 1 imply that the solution 
found is the true optimal solution. 

(iii) If there is no more computation time 
available for searching and the region O 
has not been reached, use the minimum 
partial cost trajectory that has been 
found. Care should be exercised in 
order  to assure that the trajectory is 
selected based upon the last completely 
explored level of the tree. The algo- 
rithm for generating and exploring the 
tree is listed in the Appendix. 

(4) Repeat  step 3 until the origin is reached. 
End. 

Figure 1 shows a diagram of the algorithm. 
From Theorems 3 and 4 it follows that the 
resulting closed-loop system is asymptotically 
stable in ~d, even when there is not enough time 
to completely expand the tree, provided that 
there is enough time to completely expand its 
first level. This provides a lower bound on the 
computational resources necessary to implement 
the algorithm successfully. 

5. APPLICATION TO MINIMUM TIME PROBLEMS 

In this section we investigate the application of 
the proposed controller to minimum time 
problems, i.e. the case when Lk(Xk, Uk) = 1 Vxk, 
U~ 4:0; Lk(0, 0 ) =  0 and N is unspecified. It is 
clear that in this case a lower bound, g(x), of the 
cost-to-go can be obtained by estimating the 
number  of steps necessary to reach the origin, 
taking into account only the control constraints 
(in which case an approximation to the Null 
Controllability regions can be found based upon 
the geometric properties of the set £2 and the 
matrices A and B). It is also clear that inside the 
set O = C ~ N  ~ the constraints (2) are not 
effective (where C7 denotes the Null Controlla- 
bility region in 1 step taking into account only 
the control constraints). 

Let Bk ~_ R" be a ball in state space such that 
C ~ B k  and let x be the present state of the 
system. Then: 
(i) if x e O = C~ N ~g use as the control law the 

solution to the unconstrained problem. 
(ii) if x ~ O find the largest integer m such that 

x 6 B  m and use g ( x ) = m  + 1 as a lower 
bound of the cost. 

Note that the minimum time problem is 
potentially degenerate since there may exist 
more than one control that transfers the system 
from the region Ck+ ! to the region Ck hence 
yielding the same value of the performance 
index. To maintain a well ordered tree, an 
auxiliary cost function to remove degeneracies 
must be provided. For example this auxiliary 
cost could be the energy involved in the 
transition or the distance from the new state to 
the origin. 

Example 1 
Consider the spinning space station with a 

single axis of symmetry problem (Athans and 
Falb, 1966; Van Til and Schmittendorf, 1986). 
The station is controlled by means of a single jet 
placed on the body and allowed to rotate to any 
angle in a plane normal to the symmetry axis. 
Selecting as state variables the angular velocities 
around a pair of axis also perpendicular to the 
symmetry axis, the system can be represented 
by: 

xk+~ =AXk + Bu~ 
with: 

( cos T 
A = k - s i n  T 

sin T~ 

cos T~ 

( sin T (1 - cos T) )  

B = \ (cos  T - 1) sin T 

= {x e R2:Itxl12 ~ Rx) 
Q =  { u e R 2 : l l u l { 2 - <  1} 

where T is the sampling interval. 

(24) 



Feedback control of constrained systems 529 

301i tl 2o i ~ "  

' ~ ' ~ l i ~  l ! ! i t - I "  / , - , " x  . . . .  

i :  . . . . . . .  

iI  ~ i ~ I ~ I }1 i i i i I ~ i " ~ .: "" 

i i i i i i i i i I 
0 5 I0 15 20 25 50 35 40 45  50 

T i m e { s )  

FIG. 2a. States for Example 1. 

Note that in this case A is an orthogonal 
matrix and that B * B r = olZI where ~,2 = 2(1 - 
cos T). The one step controllability region C~ is 
the circle given by: 

C~ = ( - A - 1 B ) Q  = crY. (25) 

Since C~ is rotationally invariant under A it is 
easily shown that the n-step null controllability 
region is the circle given by: 

C," = nC~. (26) 

In this particular case, since the controllability 
regions are circles, the lower bound of the 
cost-to-go reduces to: 

n.)-- r( t ] 
To remove degeneracies, we employed the norm 
of the state as an auxiliary heuristic. Figure 2 
shows the response of the controller for Rx = 30, 
with initial condition x r =  (30, 0), a sampling 
interval of 2.5 s and a quantization Ilull~ <_ 0.04 
determined using Theorem 4. To simulate 
realistic conditions the algorithm was con- 
strained to use a maximum computation time of 
2.0s. The resulting control law coincides with 
the control found by Van Til and Schmittendorf 
(1986) using an off-line numerical algorithm. 

050' 

-050" 

m m 

m 

E 
5 iO 15 20 25 50 55 4O 45 5O 

T i m e  ( s )  

FIG. 2b. Controls for Example 1. 

6. APPLICATION TO LINEAR QUADRATIC 
REGULATORS 

In this section we investigate Linear Quadratic 
Regulators, i.e. the special case of problem (P) 
where N--> o0 and L k = l ( x f f Q X k  + u~'Ruk). Let 
K0 be the optimal feedback gain for the 
unconstrained system and S the solution to the 
associated Algebraic Riccati Equation. Finally, 
let XKo c_ ~ ~_ R" be the region defined as: 
XKo = {X ~ q3: for the optimal trajectory starting 
at x and using the feedback law Uk =--KoXk 
then: 
(1) U k E ~ for every k, 
(2) the states Xk of the closed-loop system never 

leave the region Xro (and hence xk e ~3Vk), 
(3) lim Xk ---- 0}. 

k---~o~ 

Theorems 3.1 and 3.2 in Sznaier and Damborg 
(1989) show that Xro is non-empty and that a 
region Y c_ Xro can be constructed by finding 
points contained in Xro and joining them in a 
convex polyhedron. 

It is clear that gl(x) = lxrSx is a suitable lower 
bound of the cost-to-go, since it gives the 
optimal cost-to-go for the unconstrained prob- 
lem. Therefore the algorithm can be applied 
using gl(x) as heuristic and Xr,, as the set O. 

Example 2 
Consider the test system utilized in Sznaier 

and Damborg (1987, 1989) given by: 

with: 

X k +  1 = A x  k "-~ B u  k 

(1.0 0.2212~ (0.0288] 
A = 0.0 0.7788/ B = \0.2212/ 

G =  0.0 1.0 7 =  0.3 (28) 

1.5 1.0 1.8 

f~= {u ~ R :lul <-0.5} 

q3= {x6 RZ:IGxI-<7} 

and a sampling time of 0.25 s. The objective is to 
drive the system to the origin with unspecified 
final time and with minimum energy, so the 
matrices Q and R are selected to be the identity 
of appropriate dimensions. The unconstrained 
LQ solution is given by: 

u = -Kox ,  Ko = (0.8831 0.8811) (29) 

It is easily verified, by checking the vertices 
(Sznaier and Damborg, 1987), that the region: 

= (x ~ RZ:lGxl <- 0.4358~/} 

is entirely contained in the region XK,,. Hence a 
suitable value for A is 0.4358. Figure 3 shows the 
response of the controller with initial conditions 
(1,0.3), a quantization Ilu11=-<0.0071, and 
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FIG. 3. Closed-loop system response for Example 2. 

computation time restricted to 0.25 s. For this 
system the H .E .O.C .  algorithm is in general 
faster than the On-Line Quadratic Programming 
employed in Sznaier and Damborg (1987), 
allowing for a more accurate solution (i.e. a 
solution that takes more terms into account). 
Note that the conditions of Theorem 4 that 
restrict the norm of the quantization to 0.0071 
are overly conservative. Experimenting with this 
problem we have obtained convergence to the 
region XK,, with quantizations of up to 0.5. 

A different heuristic 
The simple heuristic presented in the previous 

example works well when the system is not very 
far from the unconstrained region and the costs 
on the states and controls are comparable. 
However ,  this heuristic may badly underestimate 
the cost-to-go. When far from the unconstrained 
region, most of the cost for a quadratic regulator 
problem is associated with the states and the 
control cost is essentially constant and negligible. 
Under  these conditions, the heuristic derived 
from the unconstrained linear quadratic problem 
gives a poor  estimate since it assumes that the 
system is going to proceed to the origin with a 
large control effort that invariably exceeds the 
boundary.  As a result, the system remains in the 
high cost region for a longer time than estimated 
by the heuristic. The poor  estimate of the cost 
causes the algorithm to almost completely 
expand one level of the tree before proceeding 
to the next level, thereby rapidly running out of 
resources and resulting in poor  performance. 
This difficulty can be solved by using a lower 
bound of the cost based upon the distance to the 
origin and an estimate of the number of steps 
necessary to reach it. 

Consider the case when the control is 
restricted to the hypersphere Q = {u 
Rm: [lull2_ < r}* and let xk be the present state of 
the system. It is clear that outside the region C, 

* This condition is not overly restrictive since we can 
always find a ball B(0, r) ~ E2. 

the control u that minimizes: 

Ilxk+,ll@ = (Axk + Buk)7(Axk + Bu~) (30) 

is on the boundary of the set ~ .  Therefore:  

[[x,+l[[ 2 = x[ArAx,  + 2x[A'rBuk + u~BTBuk 

>-x~AT"Axk + 2x~ATBuk + (Omin(B)r) 2 (31) 

where O'min(B ) indicates the minimum singular 
value of the matrix B. The value of u~ that 
minimizes (31) is given by: 

- K x k  
u k - - -  r, K=BTA.  (32) 

rlKx~ll2 
Substituting (32) into (31) we get: 

Ilx~+~ll~-> amin(A) 2 IIx~ll@- 2Omax(K)Ilxkll2 

+ (~rmin(B)r) 2 =[G(llxkll2)! z (33) 

where: 

O'min(m ) = minimum singular value of A 

O'max(K ) = maximum singular value of K. 

Let: 
n(llxkll2) -- (max {0, G(llxkll2)}) 2. (34) 

In the region: 

O ' m a x ( g )  ~ ( 3 5 )  
D = x e R n : Ilxll2-> Omin(A ) I 

the operator  H is non-decreasing. Defining: 

Z~ = 0.5(X/+lOXk+ 1 + u[RUk) >-- 0.5x/+lOxk+~ 

(36) 

the cost can be expressed as: 
z¢ 

J(x,  u) = ~] Lf¢ + 0.5(x~axo) -> ~ 0.5q Ilxkll~ 
k =0 k =0 

N--1 N - 1  

-> ~ 0.5q Ilxkll~->0.Sq ~ [G~(llxollz)] 2 
k=0  k=0 

= 0.5qF(l[xol[z) = gz(x) (37) 

where: 

q = minimum eigenvalue of Q 
N = min {N~ = minimum time to get to the 
origin, N2 = instant where the system exits 
the region D}. 

It is clear that this approximation works best in 
the region far from the origin, where the term 
1 T ~Xk+lOXk+ 1 dominates Lk, while the heuristics 
gl(x) =½xTSx works best close to the uncon- 
strained region. 

Example 3 
Consider the design of a Quadratic Regulator 

for the spinning space station problem intro- 
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FIG. 4a. States for Example 3. 

duced earlier. Let Q = R  = I  and T = 2.5s. In 
this case it is clear that outside the region C1 the 
term xrx dominates the cost (since uru  = 1). 
Hence, in that region we expect the heuristics 
introduced in the previous section to yield better 
results than lxrSx. In this particular case we 
have: 

Omin(m ) = 1, Omin(n  ) = Omax(g  ) = ol, q = 1, 

G(llx~ll2) = IIx, l12- c~ 

D = {x ~ R" : Ilxl12-> o~} = C1, 

hence NI = N2 = N and 

N - - I  

/(x) - 0.5 ~ (llXo[I2 - ktr) 2 
k = 0  

= 0.5(N Ilxoll]- N ( N -  1)re Ilxoll 

N ( N -  1)(2N-  1) ) 
+ 6 o~ 2_ (38) 

= g 2 ( x ) .  

Figure 4 shows the response of the controller to 
the initial condition x r =  (30,0) using a com- 
bination of the heuristics gl and g2. At a given 
state, we utilized the heuristics that yielded the 
highest estimate of the cost-to-go. As expected 
this combination provided a better performance 
than using the heuristic gl alone. 
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7. CONCLUSIONS 

Most realistic control problems involve some 
types of constraints. However, to date there are 
no algorithms that allow dealing with constraints 
in a systematic way, except in some restricted 
cases. In the first part of the paper we developed 
a theoretical framework to analyze the stability 
properties of the closed-loop system resulting 
from the use of on-line optimization in the 
feedback loop. Our results show that under 
certain conditions the resulting closed-loop 
system is asymptotically stable in the region of 
interest and that the performance of the 
proposed controller approaches the performance 
of the true optimal controller for a modified 
problem, when the sampling interval is large. 

In the second portion of the paper the results 
are specialized for the case where the on-line 
optimization is performed by casting the 
problem into a tree search form through the 
discretization of the control space. Subsequently, 
heuristic search techniques, based upon an 
under-estimate of the cost, are used to search 
the tree for minimum cost paths. This technique 
has the advantage of incorporating into the 
controller knowledge available about the solu- 
tion, thus providing the potential for significant 
reductions in the computation time. 

We believe that the suboptimal controller that 
we propose may provide significant advantages 
over the controllers available at the present time 
for the control of constrained systems. In 
particular we think that these controllers may be 
valuable for situations where the classical 
approaches of storing a family of extremal curves 
or solving a Hamilton-Jacobi equation in real 
time are not applicable. We expect that for these 
situations our approach will yield a systematic 
design procedure that incorporates optimality 
conditions and knowledge available about the 
system, as opposed to commonly used ad hoc 
techniques. 

There are many open questions which remain 
to be resolved. At this point we are working in 
an estimation of the null controllability regions 
based upon the singular value decomposition of 
the matrix A and the geometric properties of the 
sets Q and C~. 

As we noted in the paper, even though the 
conditions presented that guaranteed asymptotic 
stability for a general algorithm are not very 
restrictive, the results of Lemma 1 and Theorem 
4, used in the implementation of Algorithm H, 
proved to be overly restrictive in some cases. 
[Recall that equation (17) is the result of a 
'worst-case" type analysis.] As the norm of the 
partition gets smaller, the number of nodes of 
the tree that have to be checked increases and 
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the  p r o b l e m  m a y  b e c o m e  i n t r a c t a b l e .  T h i s  

p h e n o m e n o n ,  d u b b e d  " t h e  c u r s e  o f  d i m e n -  

s i o n a l i t y "  by  B e l l m a n  is c o m m o n  in d y n a m i c  

p r o g r a m m i n g  a p p r o a c h e s .  F u r t h e r ,  in e q u a t i o n  

(17) w e  d id  n o t  t a k e  a d v a n t a g e  o f  t he  full  

c a p a b i l i t i e s  o f  A l g o r i t h m  H .  S ince  fo r  s o m e  

p r o b l e m s  it is k n o w n  f r o m  t h e o r e t i c a l  c o n s i d e r a -  

t ions  tha t  t h e  o p t i m a l  c o n t r o l s  l ie  o n  t h e  

b o u n d a r y  o f  t h e  c o n t r o l  se t  f l ,  th is  i n f o r m a t i o n  

s h o u l d  be  i n c o r p o r a t e d  in to  t h e  c o n t r o l l e r  and  

u s e d  to  l imi t  t h e  s ea r ch .  T h i s  t op i c  is t h e  s u b j e c t  

o f  c u r r e n t  r e s e a r c h  a n d  a f u t u r e  a r t ic le  is 

p l a n n e d  to  r e p o r t  t h e  resu l t s .  

F i n a l l y ,  a p p l i c a t i o n  o f  t h e  p r o p o s e d  c o n t r o l l e r  

to  p e r f o r m a n c e  i n d e x e s  d i f f e r e n t  f r o m  t h e  o n e s  

p r e s e n t e d  in t h e  p a p e r  a n d  su i t ab l e  heur i s t i c s  

s h o u l d  be  i n v e s t i g a t e d .  
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APPENDIX 

The tree search algorithm 
The algorithm utilized to expand and scan the tree is a 

modification of Algorithm A* presented by Winston (1984). 
The modification is required to assure that when there is not 
enough computation time available to completely expand the 
tree, the control utilized corresponds to the last completely 
explored level. The algorithm is as follows: 
(1) Form a queue of partial paths, with the initial queue 

consisting of the zero-cost, zero-step path from the root 
node to nowhere. Set the level indicator to 0. 

(2) Until the queue is empty or the goal has been reached 
determine if the first path in the queue reaches the 

first path reaches the goal, do nothing. 
first path does not reach the goal: 
Remove the first path from the queue. If the 
level of the tree corresponding to this path is not 
marked then mark the previous level as 
completed and store the control associated with 
this path as corresponding to the current level 
indicator. Update the level indicator. 

(262) If possible, form new paths by extending the 
removed path one step with all permissible 
controls. 

(2b3) Add the new paths that verify the state 
constraints to the queue. Set the level indicator 
of each path to the current level + 1. 

(264) Sort the queue by the sum of the actual cost 
accumulated so far and a lower bound of the 
cost-to-go, with least-cost paths in front. 

(3) If out of time use the control corresponding to the 
current level indicator -1 .  

(4) If the goal has been reached announce success; otherwise 
announce failure. 

goal. 
(2a) If the 
(2b) If the 

(2bl) 


