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Abstract--The theory of control of continuous-time systems 
with control constraints is extended to the case where the 
controls are of the form ui = nJs,  where n~ is an integer and s 
is a scaling factor. These results permit the analysis of the 
controllability of digital control systems with quantized 
controls. They also provide the theoretical framework for 
recently suggested real-time suboptimal controllers, based on 
the application of artificial intelligence techniques. Such an 
application is presented at the end of the paper. 

1. Introduction 
THE THEORY of control of continuous-time systems with 
control constraints is well known. The original results due to 
Lee and Marcus (1967) have been extended in a number of 
ways to account for different classes of constraints; see for 
example Jacobson et al. (1980). These results, however, have 
not been extended to cases such as digital controllers, where 
it is necessary to account for quantization effects. 

The quantization effects may result from natural 
constraints, such as the presence of a computer with a finite 
word length in the controller. Alternatively, they may be 
artificially imposed as in the case of Heuristically Enhanced 
Optimal Control (Guez, 1986), where the control space is 
partitioned into a finite set to simplify the search for an 
optimal trajectory. 

Traditionally, quantization effects have been treated by 
adding noise sources and non-linear quantizers to the system 
(Kuo, 1980). This type of analysis provides upper bounds on 
the errors due to quantization effects, but it is not suitable 
for extending the results already known for constrained, 
continuous-time linear systems. 

In this paper we present basic results on the controllability 
of constrained discrete time systems using quantized controls 
and an application of these results to optimal control 
problems. It will be shown that, for controllable linear 
systems, there exist regions of the state space containing 
initial conditions which can be steered to a neighborhood of 
the origin. This neighborhood will be characterized in terms 
of the singular values of the controllability matrix of the 
system and the norm of the quantization (to be defined). 

The main motivation for this paper is to provide a 
theoretical framework for recently suggested real-time 
suboptimal controllers (Guez, 1986), but we believe that the 
results presented here are also valuable for the analysis and 
design of digital control systems. For instance they can be 
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used as guidelines to select the appropriate hardware for a 
microprocessor controlled system. 

2. Theoretical results 
In this section we present the basic results on the 

controUabifity of constrained discrete time systems using 
quantized controls. In order to present these results the 
following definitions are introduced. 

Consider the linear time invariant discrete system 

x ( k + l ) = A x ( k ) + B u ( k )  x e R n ,  u e Q c _ R  " (1) 

with x(0) = Xo, k = 0, 1 . . . . .  and f~ convex, containing the 
origin in its interior. 

Definition 2.1. The Origin Attainable domain of (1) is the 
set of all possible end points x(k), x ( k )  ¢ R ~, k = 0, 1 . . . . .  
for trajectories starting at the origin, i.e. Xo=0, with 
u(k) e 0 =_ R" .  

Definition 2.2. The Null Controllable domain of (1) is the set 
of all points x ¢ R n that can be steered to the origin by 
applying a sequence of admissible controls u(k )~  0 ~_ R" ,  
k =0 ,  1 . . . .  The Null Controllable domain of (1) will be 
denoted as C®. The Null Controllable domain in j or fewer 
steps will be denoted as Cj ~_ C®. 

The following lemmas characterize the Origin Attainable and 
Null Controllable domains. Their proofs are a direct 
extension to the discrete case of the results presented in Lee 
and Marcus (1967). 

Lemma 2.1. Consider the systems 

x(k + 1) = Ax(k)  + Bu(k)  (1) 

and 

x ( j  + 1) = A - i x ( j )  - A -1Bu( j )  (2) 

where x ~ R", u ~ f~ _cR m, f2 is convex and contains the 
origin in its interior and where A -1 exists. Then, the Null 
Controllable domain of (1) coincides with the Origin 
Attainable domain of (2). 

Lemma 2.2. Consider the Null Controllable domains of (1), 
C,+~, where k = 0, 1 . . . . .  and where n is the dimension of 
the system. If A -1 exists then the origin is an interior point 
of C,+ k and C® is open iff the pair (A, B) is controllable, 
that is: r a n k ( M ) = n ,  where M f [ B ,  AB . . . . .  A" - IB]  
(controllability matrix). 

Definition 2.3. A quantization ~2 s of a given set f~_cR" is 
the set 

~'~, = {U " U E ~'~, IJ i -~" n i / $ ,  where u i is the ith coordinate of u, 

nl is an integer and s is a scaling factor}. 

The quantity l / s  will be called the norm of the quantization. 
In this paper we will restrict ourselves to "quantizable" sets, 
i.e. sets Q that verify the following condition: there exists 
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So e R such that 

min Ilu - u ,  ll~ < 1/s 
u s c z ~  s 

for all u ~ £2t and for all s > so. 

Definition 2.4. The system (1) is Ouantized Null Control- 
lable in a region C c R "  if, for any open set O _ R "  
containing the origin in its interior, there exist a number 
so(C, 0 )  e R such that for all the quantizations £2~ of f~ with 
s >So, there exists a sequence of admissible quantized 
controls u(k) • [2~ such that the system can be steered from 
any initial condition Xo e C to O. 

In the following definition a concept closely related to 
Quantized Null Controllability is introduced. 

Definition 2.5. Consider the set 

X , =  { x e R n : x = M y  for y e R " "  and ][Yll~<l/s} 

where M is the controllability matrix of the system (1). The 
system (1) is X~ controllable in a region C ~ R ~ if there exists 
a number so(C) ~ R such that for all the quantizations f~, of 
f~ with S>So, there exists a sequence of admissible 
quantized controls u(k)~ f~, such that the system can be 
steered from any initial condition Xo e C to the set As. 

The set X, can be characterized in terms of the singular 
values of the matrix M as follows. Let E and E, be the 
hyperellipsoids defined as 

E = { x e R " : x = M y  for y e R " "  and IlYlt2-< 1} 

E, = {x ~ R" :x = My for y e R ' "  and IlYlI2 -< X/(mn)/s}. 

Note that the singular values, o~, of the matrix M are the 
lengths of the semi-axes of E (Golub and Van Loan, 1983) 
and that (X/(mn)/s)a~ are the lengths of the semi-axes of E~. 
Since IlYll2<-~/(mn)IlYlI® we have that X, _~E~. Hence we 
have the following lemma. 

Lemma 2.3. If the system (1) is X~ controllable in a region 
C, then it is Quantized Null Controllable in the same region. 

The proof follows from the fact that since X~ ~_ E~ then, given 
an open set O ~_ R" containing the origin in its interior, it is 
possible to find a suitable so such that X~o~_E~o~O. 
Therefore, X~ _cO for all s > s  o and (1) is Quantized Null 
Controllable. 

The following theorems show that a linear time invariant 
system is Quantized Null Controllable in the region 
Ck ~_ C~ ~_ R" for all finite k. 

Theorem 2.1. The system (1) is Quantized Null Controllable 
in the region C, (Null Controllable domain in n steps, with n 
the dimension of the system); moreover,  for any s > 0, the 
region X~ may be reached in n steps starting from any x o e C,, 
and using controls in ~ .  

Proof. Since Xo • C, there exists a sequence o(i)e ~ such 
that 

n ~ l  

O = x ( n ) = A ' x o +  ~ A~-~-~Bv(i). (3) 
0 

Let u(i) = v(i) + by(i) where u(i) • £~, by(i) e R"  and 

Then 

and 

}16v(i)ll~ = min IIv(i) - u~ll~ < 1/s. 

n - 1  

O=Anxo + ~ An-i "B(u(i) - 6v(i)) (4) 
o 

n - - I  n - - I  

Xq(n)=Anxo + 2 A"- ' - lBu( i )  = ~" A " - i - 1 B 6 v ( i ) = M Y  
0 o 

(5) 

"t An example of such a set is lull < k~, i = 1, n, where k i 
are given constants. 

where Xq(n) is the final state using quantized controls. 
y e R""  and I[YlI~ -< 1/s, hence Xq(n) • X v. Therefore.  the 
system is X, controllable in C, and by Lemma 2.3 it is 
Quantized Null Controllable in C,. 

Lemma 2.4. Let x e C k (Null Controllable domain in k steps) 
and bx e R". If y = A k 6x e C~, then 

x + ~ x • C k +  t. 

Proof Since x ~ C,,  it is attainable from the origin in k 
steps, hence 

k - I  

x = - ~ A-(k-i)Bu(i), u(i) • £2 (6) 
o 

similarly 

Hence 

t - I  

A k 6x = - ~  A-"- ' )Bv( i ) ,  v(i) • f2. (7) 
o 

1 - )  

6x = - ~  A-('+k-)~Bv(i). (8) 
o 

Adding (6) and (8) 
k ~ l  l - )  

x + ~X = - 2 A-(k-i)Bu(i) - 2 a-(t+k-))By(i) 
0 o 

I + k - I  

= -  ~ A-('+k-i)Bw(i) (9) 
o 

where w(i) = v(i) for i = 0 . . . . .  l - 1 and w(i) = u(i - 1) for 
i = l . . . . .  l + k - 1 ,  s o w ( i ) e f 2 .  Hence x + bx e Ck + I. 

Theorem 2.2. If the system (1) is controllable, then it is 
Quantized Null Controllable in C,+k+ ~ for all k = 0. 1 . . . .  

Proof. (By induction.) Define 

M~+ t = [B, AB  . . . . .  A"B], Mn+~ :R"(n+~)--~ R" 

Y ~ = { y e R " : y = M , + t z  f o r z • R  m~"÷)~andllzl l~<-l /s}.  

Let Xo be the initial condition of (1) and, for a given k, let 
r(k) be a number such that A~y e C, for all y e Y, and all 
1 = 0, 1 . . . . .  k. Note that since (1) is controllable, the origin 
is an interior point of Cn (Lemma 2.2) and therefore r exists. 

(a) For k = 0 we have that 

Xo~ C,,+1 and y • C, for all y • Y,. (10) 

Since xoeC~+l then there exists a sequence v ( i ) e ~  such 
that 

n 

O=x(n+ l )=A'+)xo+ ~ A ' - i B o ( i ) .  (11) 
o 

Let u(i) = v(i) + 6v(i)  where u(i) • £2, and 

Then 

116v(i)ll~ = min I t v ( i ) -  uAl~. 

n 

O = A " + t x o + ~ A "  'B(u( i ) -bv ( i ) )  (12) 
o 

n 

xq(n + 1) = A"+~xo + ~ A"-iBu(i) 
o 

= ~ A" 'B by(i) = M,+ tz (13) 
o 

where x¢(n + 1) is the final state using quantized controls, 
z e R  "¢"÷1) and Ilzll®<- l/r. Hence,  xq(n + l ) e  Y,. By 
hypothesis Y, ~_ C, ,  therefore x¢(n + 1) e C, and by Theorem 
2.1, it can be steered to X,  in n steps. Hence x¢(2n + 1) e X,. 
For a given set O, let t be a number such that X, c_ O, Then, 
by selecting So = max {r, t) we have that Xq(2n + 1) • O for 
all s->So and therefore (1) is Ouantized Null Controllable in 
C m + l .  

(b) Assume now that the theorem is true for 
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0, 1,2 . . . . .  k - 1. We have to prove thatxo~C~+k+l can be 
steered to X, (with s large enough). Since x0 e C,+k+x there 
exists a sequence v(i) • f~ such that 

n - - I  

x(n+ l)=A"+tXo + ~ An-iBv(i)~Ck (14) 
0 

(after n + 1 steps we need only k more to get to the origin). 

Let u(i) = v(i) + 6v(i) where u(i) ~ Q, and 

Then 

II~v(i)ll® = rain lie(i) - u, ll®. 

n - I  

x(n + 1) =An+lXo + ~'~ A"-iB(u( i ) -  6v(i)) 
0 

--xq(n + 1) - M , + , z  (15) 

where Xq(n + 1) is the final state achieved using quantized 
controls, z e R "¢"+1) and IIz/l® ~ 1/r. 

Since x(n + 1) ~ Ct and Aky =AkM~+lz • C~, we have, by 
Lemma 2.4, that Xq(n + 1)e  C,+k and therefore, by the 
induction hypothesis, the system can be steered from C,+k+l 
to X,. Again, by selecting so = max {r, t} we have that x 0 can 
be steered to the set O for all S>So and therefore (1) is 
Quantized Null Controllable in C,+k+t. 

Theorems 2.1 and 2.2 show that the system (1) is 
Quantized Null Controllable in any region Ck,-C=. 
However, note that the choice of So in Theorem 2.2 is quite 
restrictive since, for a system starting out in the region 
C,+k+l, it requires that AIY, o =_C, for all l=O, 1 . . . . .  k. 
For an unstable system Aky, o is an expansion of Y, In this 

0." . 
case, when the system starts "further" from the ongm, the 
norm of the partition must be smaller, to drive the system to 
the neighborhood of the origin. Hence So must be selected 
sufficiently large for each k and the existence of So such that 
we have Quantized Null Controllability in the union of all 
the sets C ,+t  (namely C®) is not guaranteed. 

3. Application to optimal control 
In this section we present an application to Optimal 

Control. In this case the quantization of the control space is 
introduced as an artifact to simplify the search for an optimal 
trajectory. Hence we will assume that there are no hardware 
imposed constraints on the controls. It will be shown that, 
using quantized controls, the system can be steered to a 
neighborhood of the origin where the problem reduces to the 
standard linear quadratic formulation. Once this region is 
reached it is no longer necessary to use quantized controls 
since the optimal trajectory is given by a simple linear 
feedback law of the form u = -Kx. 

Consider the following optimization problem: 

min ~ Ln(x(n), u(n)) (16) 
U n - O  

subject to 

x(k + 1) = Ax(k) + Bu(k), x(k) • R ~, u(k) • fJ ~_ R", 

Q compact, convex, containing the origin in its interior, 

(17) 
x(0) = x0 

where 

L,(x, u) = 0.5(xT(n)Qx(n) + uX(n)Ru(n)) + f(x, u), 

u =  (u(k), k =0,  1 . . . . .  ), 

Q positive semidefinite, R positive definite, and 

f(x, u):R"+"--~R,f(x, u)>-O,f(x, u)=O for all 

u • 2 ,  x ~ G _cRY; G, Q compact, 

convex, containing the origin in their interior. 

Note that f(x, u) may represent constraints. "Forbidden 
zones" may be represented by regions where f(x, u)--* ®. 

Let the optimal cost to go from a given point, x(]), to the 

origin be 

J(x)=O.5xTSx + h(x) = ~ Ln(x(n), u*(n)) (18) 
n ~ j  

where u*(.) is the optimal control and S is the solution to the 
Algebraic Riccatti Equation associated with the uncon- 
strained Linear Quadratic problem obtained when 
f(x, u)mO and ~ R " .  Note that h(x)>O since 0.5xTSx is 
the cost to go for the unconstrained problem. 

Finally, let Xx0 ~- G _= R ~ be the region defined as 

Xxo = {x: for the optimal trajectory starting at x then: 
(1) the feedback law u=-Kox(k )  generates a 
control u(k) • fJ  for every k, where K0 is the 
optimal gain for the system when f(x, u) m 0 and the 
control is unconstrained; 
(2) the states x(]) of the closed-loop system never 
leave the region G; 
(3) lira x(/') -- 0}. 

Note that: 

(1) if x(O)~XKo then the solution to the constrained 
optimization problem coincides with the solution to the 
unconstrained Linear Quadratic problem; 

(2) if x(0) • Xg 0 then f(x(k), -Kox(k)) = 0 for all k since 
x ( k ) • G  and the feedback law u - - - K o x ( k )  generates a 
control u • f~; 

(3) h(x) = 0 for all x • Xgo. 

The following theorems characterize the set Xxo. Their 
proofs, sketched in Appendix A, follow from the behavior of 
linear systems and from convexity and continuity arguments. 

Theorem 3.1. There exists an open ball B(O, r)=_Xg o. 

Theorem 3.2. Let Y =_ G be a convex polyhedron given by its 
vertices Yi, i = 1, 2 . . . .  Then Y ~ Xx0 iff y,- E Xx0. 

The relationship between the different sets defined is 
illustrated in Fig. 1. 

The optimal control law can be found using standard 
mathematical programming techniques. Usually, the amount 
of computational time required prevents their application in 
a real-time feedback-controller although we have suggested 
an approach for a suboptimal controller for the case of linear 
inequality constraints (Sznaier and Damborg, 1987). Another 
drawback of these techniques is that they do not leave room 
for the incorporation of any knowledge that the designer may 
have or can guess about the solution. 

These difficulties can be solved by the use of a 
Heuristically Enhanced Optimal Controller (Guez, 1986). A 
brief description of this technique, based upon casting the 
optimization problem into a tree search form by partitioning 
the control space, is presented in Appendix B. However, 
Guez (1986) gives no clues to the size of the partition or to 
the effects of such partition on the controllability of the 
system. Based on our work relating to these concepts, we 
propose the following suboptimal algorithm. 

FIG. 1. Relationship between the sets G, Xs, Xxo and Y. 
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(1) Determine a function g(x):R"---,R, O<-g(x)<-h(x) 
for all x e G _ = R  ~. The function g(x) will be used as a 
heuristical guideline for estimating the cost to go in the 
search for optimal trajectories, hence it should be very close 
to h(x). In the event that h(x) is completely unknown, 
g(x) = 0 may yield acceptable results. We are continuing to 
investigate how heuristic information can be incorporated at 
this stage of the algorithm. 

(2) Determine a region Y c_ Xro by finding points y~ e Xr0 
and by applying Theorem 3.2. 

(3) Determine the scaling factor s for the partition of ~. A 
lower bound of s can be determined by requiring that 
Xs c_ Y ~ Xr0 to assure that the origin can be reached using 
the quantized controls. Since X~c_Es, s can be easily 
determined using the singular value decomposition of the 
controllability matrix M. The upper bound of s depends on 
the amount of time available for computation. There is a 
trade-off between computation time and the proximity of the 
quantized trajectory to the true minimum. 

Note that steps 1-3 can be performed off-line, prior to 
switching on the controller. 

(4) Let x(k) be the current state of the system, k the 
current time instant and AT the sampling interval. 

(i) If x(k)~ Y the solution coincides with that of the 
unconstrained LQ problem: u( k ) = -Kox( k ). 

(ii) If x (k ) t  Y, generate a tree by considering all the 
possible trajectories starting at x(k), with controls u(k) ~ Q,. 
Note that this is a finite tree since we are dealing with a finite 
set fls. Search the tree for a minimum cost trajectory to the 
origin using heuristic search algorithms. Note that once a 
path reaches the region Y, then the cost to proceed from the 
first point of the trajectory interior to Y, x(n), to the origin is 
given by 0.5x(n)TSx(n), where S is the Riccatti matrix 
associated with the unconstrained LQ problem. 

(iii) If there is no more computation time available for 
searching and the region Y has not been reached, use the 
minimum partial cost trajectory that has been found. 

(5) Repeat Step 4 until the origin is reached. 

It should be remarked that the proposed controller is a 
feedback-controller and therefore can respond to the present 
condition. 

4. A simple example 
Consider the test system utilized in Sznaier and Damborg 

(1987), given by 

with 

A =  

x(k + 1) = Ax(k) + Bu(k) 

[~:o o 0.2212] r0.02881 
0.7788J' B = Lo.2212J (19) 

f2 = {u e R, lul - 0.5), G = {x ~ R 2, Ixll ~ 1.5, Ix21 --- 0.3}, 

a sampling time of 0.25 s and initial condition Xo = (1.0, 0.3). 

The objective is to drive the system to the origin with 
unspecified final time and with minimum energy. The 
matrices Q and R are selected to be the identity of 
appropriate dimensions. The unconstrained LQ solution is 
given by 

u = -Kox, Ko = [0.8831 0.8811]. (20) 

It is easily verified that the points 

(0.5, 0); (0, 0.3); ( -0 .5 ,  0); and ( 0 , - 0 . 3 )  

belong to the region Xx_. Hence the polygon Y that has 
. . V 

these points as vertices ,s entirely contained in Xr~. By 
construction, it can be shown that the region C2 is the convex 
hull of the points 

(-0.074, 0.324); (0.040,-0.040); (0.074,-0.324); 

(-0.040, 0.040) 
and that 

B(0, 0.0264) = C 2 (22) 

1.20 - 

1.00 - 

0 .80  - 

0 .60  - 

0 , 4 0  - 

0.20 - 

0 . 0 0  - 

- - 0 . 2 0  - 

- 0 . 4 0  - 

- 0 . 6 0  
0 

L - -  X 2  

• . . . . .  X 1 

x . . . . . . . . . . . . . . . . . . . . . .  

I 
I I I [ I I I I 

1 2 3 4 5 6 7 8 
T i m e  (s) 

FIG. 2. Results of the HEOC algorithm applied to the 
example of Section 4. 

where B(0, 0.0264) is the ball centered in the origin with 
radius 0.0064. 

By applying Lemma 2.3 with O - Y we have 

Xs ~ Es ~ B(O, o==,(M)~/2/s) ~ O(O, 0.0264) c C2 

if s is selected such that 

1/s <- O.0264/(am,x(M)V2) = 0.6288 (23) 

where ainu(M) is the maximum singular value of M. 
It can be shown that the initial condition Xo e Czs. Hence, 

application of Theorem 2.2 with k = 25 yields 

iiA~Yll2 = IiAtM~zll2 <_ a,,,x(A1)Om,x(M3)V3/s (24) 

for all y e Y~ and l = 0, 1 . . . . .  25. Hence, by selecting s such 
that 

1Is ~- rain {O.0264/(omax(A~)am=,(M3)X/3)} = 0.0324 (25) 
t 

we have 
A~Y~ _ B(0, 0.0264) c C 2 (26) 

from (23) and (26) we have 

1/So <- O. 0324. (27) 

Figure 2 shows the response of the controller with initial 
conditions (1.0, 0.3), quantization 0.03125, and computation 
time restricted to 0.20 s. Note that the control action is kept 
to 0 during the first sampling interval which is used to 
measure the state of the system (the initial conditions are 
assumed to be unknown). Afterwards, the control constraint 
is active from t = 0 to 1.5 and the state constraint is active 
from t --- 1.5 to 2.75. It is our experience that, for this system, 
the HEOC algorithm is faster than the On-line Quadratic 
Programming employed in Sznaier and Damborg (1987), 
allowing for a solution that takes more terms of the 
expansion into account. Note that the choice of so in 
Theorem 2.2 is overly conservative. Experimenting with this 
problem, we have obtained convergence to the region Xxo 
with quantizations of up to 0.5. 

5. Conclusions 
In this paper we presented basic results on the 

controllability of constrained, discrete time linear systems 
when the controls are limited to a finite (or countably 
infinite) set of the form u~ = nJs where ni is an integer and s 
is a scaling factor. These results are important for the 
analysis of digital controllers. They also provide a much 
needed theoretical framework for some new developments in 
real-time optimal controllers. We believe that Heuristically 
Enhanced Optimal Control is a valuable alternative to 
mathematical programming, especially for cases where it is 
neither feasible to compute and store a family of extremal 
curves nor to solve a Hamiiton-Jacobi type equation in real 
time. An example of such a situation could be a 
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microprocessor controlled robotic system. A future article is 
planned to discuss applications of heuristically enhanced 
optimal controllers and an analysis of their performance 
compared to the performance of real-time quadratic 
programming controllers which were the subject of Sznaier 
and Damborg (1987). 
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Appendix A. Proofs of Theorems 3.1 and 3.2 
Proof of Theorem 3.1. By hypothesis the origin is an 
interior point of G and 2 ,  hence there exist r x and r= > 0 
such that: B(O, rx) c G and B(O, r,) ,- 2. 

Consider the mapping f :R"-- ,  R "  defined by the feedback 
law u = - K o  x. 

Since f is continuous there exists r > 0 such that if 

x ~ B(0, r) then u ¢ B(0, r=) c 2.  (A1) 

Let t = min {r, r~}. 
Since Q, R are positive definite the closed-loop system 

x(j + 1) = (A - BKo)x(j ) (A2) 

is asymptotically stable. Hence 

where y~(j) is the trajectory that starts at y~ and 

lim y( j )  = O. 

Since G is convex then y(j) ¢ G for all j. 
Consider now the control law 

n n 

u(m) = - K o y ( m  ) = - K  o ~ aiyi(m ) = E aiu~(m). (A6) 
1 I 

Since Yi e Xro, u~(m)E 2 for all m and therefore, by the 
convexity of 2 ,  u(m) ¢ 2. Hence y ¢ XKo and, since y is an 
arbitrary point of Y, we can conclude that Y c_ Xxo. 

Appendix B. A brief description of Heuristically Enhanced 
Optimal Control 

Heuristically Enhanced Optimal Control is an alternative 
to mathematical programming techniques for approximately 
solving constrained optimal control problems. In this 
approach, suggested by Guez (1986), the control space 2 is 
partitioned into a finite set 2 s as shown in Fig. 3. The 
attainable domain from the initial condition, using controls in 
2 s, can be represented now as a tree, with each node 
corresponding to one of the attainable states. Hence the 
original optimal control problem is recast as a tree search, 
with the approximation resulting from the control quanti- 
zation. The resulting tree can be scanned efficiently for 
minimum cost paths using artificial intelligence techniques, 
based upon an under-estimate of the cost to go, as follows 
(Winston, 1984). 

(1) Form a queue of partial paths, with the initial queue 
consisting of the zero-cost, zero-step path from the root node 
to nowhere. 

(2) Until the queue is empty or the goal has been reached 
determine if the first path in the queue reaches the goal. 

(a) If the first path reaches the goal, do nothing. 
(b) If the first path does not reach the goal: 

n ~s 

....... ( 1 1  I I I I I !  
\ l l  I I  I l Y  

lim x(j) = 0 

and there exists 6 > 0  such that: if x(0)EB(0, 6) then 
x(j)  ~ B(O, t) c G and by (A1) u(j) ~ B(O, r=) ~- Q. 
Therefore, B(0, 6) c Xro. 

Proof of Theorem 3.2. The direct portion of the proof is 
immediate since Y _ Xxo implies that Yi ~ Xro. Converse. 

Let x(0) = y,. Since Yi ~ Xxo, i = 1, n, then by definition of 
XKo the control law u i ( t ) = -KoY i ( t )EQ  and the states 
y,(t) ¢ Xro. 

Let y be an arbitrary point of Y. Since Y is convex then 

n n 

y=~a~y~, whereO<~ai<~l and ~ a i = l .  (A3) 
1 1 

Consider the closed-loop system 

y( j  + 1)=  (A -BKo)y(j) with initial condition y (O)=y  

(A4) 
then 

y(m) = (A - BKo)"y(O) = ~ a,(A - BKo)"y,(0) = ~ a, yi(m ) 
l 1 

(A5) 

It 

Estimated cost to go for the trajectory x(0) - x(n): 

n - 1  

Jn(x,u) = ~ L (x(k),u(k)) + g(x(n)) 
k = 0  

actual cost heuristic 
approximation 

FIG. 3. Diagram of the HEOC algorithm. 
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(i) remove the first path from the queue; 
(ii) if possible, form new paths by extending the removed 

path one step with all permissible controls; 
(iii) add the new paths to the queue; 
(iv) sort the queue by the sum of the actual cost 

accumulated so far and a lower bound of the cost to go, with 
least-cost paths in front. 

(3) If the goal has been reached announce success; 
otherwise announce failure. 

Note that since the algorithm uses an under-estimate of the 
cost, the correct path will not be overlooked. 

By using the under-estimate of the cost, this approach has 
the advantage of providing an easy way of incorporating 
knowledge available about the solution into the controller. 
thus presenting the potential for a significant reduction of the 
computation time. 


