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a b s t r a c t

This paper analyzes the computational complexity of set membership identification of Hammerstein and
Wiener systems. Its main results show that, even in cases where a portion of the plant is known, the
problems are generically NP-hard both in the number of experimental data points and in the number of
inputs (Wiener) or outputs (Hammerstein) of the nonlinearity. These results provide new insight into the
reasons underlying the high computational complexity of several recently proposed algorithms and point
out the need for developing computationally tractable relaxations.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Identification of systems consisting of the cascade of a
memoryless, static nonlinearity and a Linear Time Invariant (LTI)
plant has received considerable attention in the past decade, since
this configuration arises in a wide range of domains, including
control (Wigren, 1994), communications, (Cripps, 1999; Giunta,
Jacoviti, & Neri, 1991), and biology, (Brinker, 1989; Celka & Colditz,
2002).
Roughly speaking, existing techniques can be classified into

two broad categories: those based on a statistical approach (see
for instance Bai (1998, 2002, 2003a,b, 2004), Chou, Haverkamp,
and Verhaegen (1999), Greblicki (1992, 1997, 2000), Lia, Pengan,
and Bai (2006) Raich, Zhou, and Viberg (2005), Westwick and
Verhaegen (1996) and references therein), and those using a set
membership framework (Belforte & Gay, 2001; Cerone & Regruto,
2003, 2007; Falugi, Giarre, & Zappa, 2005; Garulli, Giarre, & Zappa,
2002). The latter are attractive since they furnish hard bounds
on the values of the unknown parameters of the plant, in a
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form that can be directly used for instance by robust control
synthesis techniques. However, a common feature of existing set
membership approaches is the high computational complexity
entailed in the resulting algorithms, requiring for instance solving
an optimization over rank one matrices (Garulli et al., 2002),
non-convex optimization problems (Falugi et al., 2005), or a
combinatorial number of Linear Programs (Cerone & Regruto,
2003). In all cases, this necessitates the use of different relaxations
in order to obtain computationally tractable problems.
The goal of this paper is to shed some insight into the reasons

underlying this high computational complexity. As shown here,
this is an intrinsic difficulty of the general framework, rather than
a feature of specific approaches. Our main results shows that,
contrary to the case of linear identification, the problems of set-
membership identification of Hammerstein orWiener systems are
generically NP-hard in both the number of inputs (Wiener) or
outputs (Hammerstein) of the nonlinearity, and in the number of
experiments, even when a portion of the system is known. These
results highlight the intrinsic difficulty of Hammerstein/Wiener
(and by extension non-linear) systems identification and point out
to the need to develop polynomial time relaxations, such as the
ones in Cerone and Regruto (2003), Falugi et al. (2005) and Garulli
et al. (2002) or the one recently proposed in Ma, Lim, Sznaier, and
Camps (2006). In addition, our results also highlight a connection
between high computational complexity and non-invertibility of
the static nonlinearity.
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2. Preliminaries

In this section we introduce the notation used in the paper and
some background results required to perform the computational
complexity analysis.

2.1. Notation

Z, R, C set of integer, real, complex numbers, respectively
D closed unit disk in C

σ (A) maximum singular value of the matrix A.
`p Banach space of finite vector valued real sequences
equipped with the norm:

‖x‖p
.
=

(
N∑
i=0

‖xi‖pp

) 1
p

,

p ∈ [1,∞) and ‖x‖∞
.
= supi ‖xi‖∞.

H∞ space of transfer functions analytic in |z| ≤ 1, equipped
with the norm ‖G‖∞

.
= ess sup|z|<ρ σ (G(z)).

BH∞(γ ) closed γ -ball inH∞: {H ∈ H∞: ‖H‖∞ ≤ γ }.

Finally, given a Linear Time Invariant (LTI) system H , we will
denote by h its impulse response sequence (Markov parameters).

2.2. Background results on computational complexity

In order to establish that the problems of set membership
identification of Hammerstein or Wiener systems are both NP-
hard, we need the following preliminary results concerning the
computational complexity of two optimization problems.

Lemma 1 (Martello & Toth, 1987). Given a vector a ∈ Zn, the
problem of determining if there exists a vector x ∈ {−1, 1}n such
that aTx = 0 (the knapsack problem) is NP-complete.

Lemma 2 (Chen & Gu, 2000, page 307). For a given vector a ∈ Zn,
there exists a polynomial time computable (2n + 1) × (2n + 1)
symmetric matrixAa and a polynomial time computable number εa ∈
(0, 1) such that maxz1,z2∈D2n+1 |z

T
1Aaz2| = 1 if there exists a solution

x ∈ {−1, 1}n to aTx = 0, and is less than or equal to 1−εa otherwise.

Corollary 1. The problem of checking whether

max
z1,z2∈D2n+1

|zT1Aaz2| > 1−
εa

2

is NP-hard, since the knapsack problem can be reduced to it in
polynomial time.

In the sequel we will establish that the problems above can be
reduced in polynomial time to a suitable Wiener or Hammerstein
set membership identification problem. It follows that these
identification problems are NP-hard.

3. Computational complexity analysis of set membership
identification of Wiener systems

In this section we present a computational complexity analysis
of the problemof setmembership identification ofWiener systems
using time-domain data.Webegin by precisely stating the problem
under consideration.
Fig. 1. Wiener system structure.

3.1. Statement of the problem

Consider the Wiener system shown in Fig. 1 consisting of
the interconnection of a LTI system H(z) and a memoryless
nonlinearity ψ(.). The corresponding equations are given by:

ωk = (h ∗ u)k, ŷk = ψ(ωk)
yk = ŷk + ηk

(1)

where ∗ denotes convolution and the signals u ∈ Rnu and
y ∈ Rny represent the experimental data: a known input
and its corresponding output, ŷk, corrupted by unknown but
norm-bounded measurement noise η. In this context, the set
membership Wiener identification problem can be stated as:

Problem 1. Given (i) a priori information consisting of a set
membership description of the admissible plants, non-linearities
and noise, S,F ,N , respectively, and (ii) a posteriori experimental
data {yk,uk}

Nm−1
k=0 , determine:

1. if the a priori and a posteriori information are consistent, i.e., the
consistency set

T (y,Nm,N )
.
= {H ∈ S: yk = ψ [(h ∗ u)k]+ ηk,
k = 0, . . . ,Nm − 1 for some ψ ∈ F

and some sequence ηk ∈ N }

is nonempty.
2. If T (y,Nm,N ) 6= ∅, find a nominal model {H, ψ(.)} that
interpolates the experimental data.

In particular, in its simplest form the set description of the
admissible set of linear plants and noise are (see for instance Ma
et al. (2006)) S

.
= BH∞(K) and N

.
= {η: ‖ηk‖p ≤ ε} for some

known constants K , ε.

3.2. Computational complexity analysis

In this section we show that the problem of set membership
Wiener systems identification from time-domain data is generi-
cally NP-hard both in the number of inputs of the nonlinearity and
in the number of experimental data points, evenwhen the nonlin-
earity ψ is completely known.

Theorem 1. The problem of identifying the linear portion of aWiener
system is generically NP-hard in the number of inputs to the static
nonlinearity.

Proof. The proof proceeds by showing that the Knapsack problem
can be reduced in polynomial time to the problem of worst case
identification of the linear portion of a Wiener system cascaded
with a known nonlinearity. To this effect, given a vector a ∈ Zn,
consider a Wiener system of the form shown in Fig. 2, with an
input u = [(u1)T, (u2)T]T, ui

∈ R2n+1, an (unknown) linear portion
of the form H(z) =

(
H1(z) 0
0 H2(z)

)
∈ BH∞, where each block

Hi is diagonal, e.g. Hi = diag{H ji }, j = 1, 2, . . . , 2n + 1, and
a (known) static nonlinearity ψ(.) = wT

1Aaw2, where w1 =(
ω0,1 . . . w0,2n+1

)T and w2 =
(
ω0,2n+2 . . . w0,4n+2

)T, and
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Fig. 2. Reducing the knapsack problem to a Wiener identification.

where ω0,i denotes the ith output of H(.) at time k = 0. Further,
assume the following a priori information:

η ∈ `p, ‖η‖p ≤
εa

2
, p ∈ [1,∞)

and a posteriori experimental data u10 = u20 = [1, 1, . . . , 1]
T,

y0 = 1. Let h0,1 and h0,2 denote the first Markov parameter of
H1(z) and H2(z), respectively. From Carathéodory–Fejér Theorem
(see for instance Theorem 2.3.6 in Chen and Gu (2000)) it follows
that there existsH1(z),H2(z) ∈ BH∞ such thatHi = h0,i+· · · , i =
{1, 2} if and only if h0,i ∈ D2n+1. Thus, the a priori assumptions
are consistent with the a posteriori experimental data if and only if
there exists a pair {h0,1,h0,2} ∈ D2n+1 such that

|1− hT0,1Aah0,2| ≤
εa

2
. (2)

From Lemma 2 it follows that if the knapsack problem has a
solution, then

max
h0,1,h0,2∈D2n+1

|hT0,1Aah0,2| = 1.

Furthermore, h0,1,h0,2 can be chosen such that hT0,1Aah0,2 = 1,
and thus (2) is satisfied. On the other hand, if the knapsack problem
is infeasible, then

|1− hT0,1Aah0,2| ≥ 1− max
h0,1,h0,2∈D2n+1

|hT0,1Aah0,2| ≥ εa (3)

and thus (2) is violated. Since the reasoning above (polynomially)
reduces the NP-complete knapsack problem to a Wiener identifi-
cation one, it follows that the later is generically NP-hard. �

Remark 1. Recent research (Sznaier & Camps, 2007) has shown
that the problem of nonlinear dimensionality reduction via
manifold embeddings can be formalized as a Wiener system
identification problem. Since in this case the dimension of the
output (the raw data to be reduced) is very high (typically at least
O(103) in image processing applications), the result above points
out to an intrinsic difficulty in nonlinear manifold embedding
and highlights the need for developing computationally tractable
relaxations of the underlying identification problem.

The next result complements the results above by showing that
the problem is also NP-hard in the number of experimental data
points used in the identification.

Theorem 2. The problem of set membership identification of the
linear portion of aWiener system is generically NP-hard in the number
of experimental data points

Proof. As before, the proof proceeds by showing that the knapsack
problem can be reduced in polynomial time to the problem of
worst case identification of the linear portion of a Wiener system.
In this case, consider a Wiener system consisting of the cascade of
a SISO linear plant H ∈ BH∞(n) and the nonlinearityψ(w) = w2.
Further assume that N = {η: |ηk| ≤ 0.5} and, given an arbitrary
vector a ∈ Zn, consider the following three experiments:
(1) u1k = δ(0) and y
1
k = 1.5, k = 0, 1, . . . , n− 1

(2) u2k = δ(0) and y
2
k = 0.5, k = 0, 1, . . . , n− 1

(3) u3k = α · ak+1, k = 0, 1, . . . , n− 1 where α
.
=

1
√
2
∑n−1
i=1 |ai|

with

corresponding measurements y3k = 0, k = 0, 1, . . . , n− 2 and
y3n−1 = −0.5.

Clearly, the consistency sets of the first two experiments are given
by

T1 = {H ∈ BH∞(n): 1 ≤ h2i ≤ 2, i = 0, 1, . . . , n− 1}

T2 = {H ∈ BH∞(n): 0 ≤ h2i ≤ 1, i = 0, 1, . . . , n− 1}.
(4)

Hence, these two experiments are consistent if and only if
hi ∈ {−1, 1}. Note that these values do not invalidate the a
priori assumptions since ‖H‖∞ ≤

∑n−1
i=0 |hi| ≤ n. Next, note that

the first n− 1 experimental data points from the third experiment
do not provide additional information, since ωk, the intermediate
signal corresponding to the input sequence u3k satisfies:

|ω3k | =

∣∣∣∣∣ k∑
i=0

hiu3k−i

∣∣∣∣∣ ≤ α k∑
i=0

|hi||ak−i+1|

≤

k∑
i=0
|ak−i+1|

√
2
n−1∑
i=1
|ai|
≤
1
√
2

which is consistent with information already available, since the
difference between the actual and observed output: |y3k − ŷ

3
k | =

|0 − (ωk)2| ≤ 0.5, the noise level. Finally, since ŷk ≥ 0, the last
data pair in experiment 3 is equivalent to:

ŷn−1 = 0⇒
n−1∑
i=0

hiak−i = 0. (5)

Thus, establishing consistency of the a priori information and the
a posteriori experimental data is equivalent to finding a vector
h ∈ {−1, 1}n such that (5) hold, e.g. solving a knapsack problem
with O (number of experimental data points) variables. �

4. The Hammerstein systems case

In this section we analyze the computational complexity of set
membership identification of Hammerstein systems, consisting of
the cascade of a static nonlinearity followed by an LTI plant (see
Fig. 3).
In this case the corresponding equations are given by:

ωk = ψ(uk), yk = (h ∗ ω)k + ηk (6)

and the identification problem can be stated as

Problem 2. Given (i) a priori information consisting of a set
membership description of the admissible plants, non-linearities
and noise, S,F ,N , respectively, and (ii) a posteriori experimental
data {yk,uk}

Nm−1
k=0 , determine:

(1) if the a priori and a posteriori information are consistent, i.e., the
consistency set

T (y,Nm,N )
.
= {H ∈ S: yk = [h ∗ ψ(u)]k + ηk,
k = 0, . . . ,Nm − 1
for some ψ ∈ F

and some sequence ηk ∈ N }

is nonempty.
(2) If T (y,Nm,N ) 6= ∅, find a nominal model {H, ψ(.)} that
interpolates the experimental data.
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Fig. 3. Hammerstein system structure.

4.1. Computational complexity analysis

In this section we show that the problem of set membership
identification of Hammerstein systems is also NP-hard both in the
number of outputs of the nonlinearity (inputs to the linear portion
of the system) and in the number of experimental data pairs.

Theorem 3. The problem of identifying the static nonlinearity of a
Hammerstein system in a set membership framework is generically
NP-hard in the number of experimental data pairs, even when the
linear portion of the plant is known.

Proof. Given an arbitrary vector a ∈ Zn, consider the following a
priori information:

H(z) = a1 + a2z + · · · + anzn−1 + · · ·

F =

{
ψ:ψ =

n∑
i=1

xiψi(u), xi ∈ {−1, 1}

}

where: ψi(u) =
{
1 i− 1 ≤ u < i
0 otherwise

N =

{
η: |ηk| ≤ ε

.
=

n−1∑
i=1

|ai|

}
(7)

and a posteriori experimental data:

(1) Experiment 1: Input {u∗}: uk = k, k = 0, 1, . . . , n − 1 and
corresponding output yk = 0, k = 0, 1, . . . , n− 2; yn−1 = ε.

(2) Experiment 2: Input {u∗} and corresponding output yk = 0, k =
0, 1, . . . , n− 2; yn−1 = −ε.

The output sequence corresponding to the input sequence {u∗} is
given by

ŷk =
k∑
i=1

aiωk−i =
k∑
i=1

aixk−i. (8)

Thus, the a priori information and a posteriori experimental data
are consistent if and only if there exists x ∈ {−1, 1}n such that:
|ŷk − yk| ≤ ε, or equivalently:∣∣∣∣∣ k∑
i=1

aixk−i

∣∣∣∣∣ ≤ ε, k = 1, 2, . . . , n− 1 (9)

0 ≤
n∑
i=1

aixn−i ≤ 2ε (10)

−2ε ≤
n∑
i=1

aixn−i ≤ 0 (11)

where the two last equations originate from the last data pairs
in experiments one and two respectively. Since condition Eq. (9)
is trivially satisfied by our choice of the noise level ε, it follows
that establishing consistency is equivalent to finding x ∈ {−1, 1}n
such that (10) and (11) are satisfied, or, equivalently, such that∑n
i=1 aixn−i = 0, e.g. solving a Knapsack problem with n variables.
�

Finally,we show that, as in theWiener systemcase, the problem
of set membership identification is generically NP-hard in the
number of outputs of the nonlinearity.

Theorem 4. The problem of identifying the static nonlinearity in a
Hammerstein system is generically NP-hard in the number of outputs
of the nonlinearity, even if the linear portion of the plant is known.

Proof. Given an arbitrary vector a ∈ Zn, consider the following a
priori information:

H(z) = a+ · · · ; S = BH∞(‖a‖)

F = {ψ:ψ = [ψ1(.), . . . , ψn(.)]T,
ψi = xi sign(u), xi ∈ {−1, 1}}

N = {η: |ηk| ≤ ε < 1}

(12)

and a posteriori experimental data u0 = 1, y0 = 0. In this case,
the a priori information and the a posteriori experimental data are
consistent if and only if there exists x ∈ {−1, 1}n such that |aTx| ≤
ε. Since a ∈ Zn and ε < 1 this last condition is equivalent to
aTx = 0. It follows then that the Knapsack problem can be reduced
to aHammerstein identification of the form above. Hence the latter
problem is NP-hard. �

5. Conclusions

This paper shows that the problems of set membership
identification of two classes of nonlinear systems, Hammerstein
and Wiener systems, are generically NP-hard, even in cases where
a portion of the plant is known exactly. These results highlight
the fact that, as opposed to the case of linear identification, these
problems are intrinsically difficult, shedding some insight into the
high computational cost of existing approaches and pointing out
to the need to search for computationally tractable relaxations.
An interesting feature borne out by the analysis presented here
is the key role played by the non-invertibility of the nonlinearity
in reducing the knapsack problem to a either a Wiener or a
Hammerstein system identification and thus establishing that
these problems are NP-hard. Thus, the issue of whether these
problem are NP-hard in the case of invertible nonlinearities is still
open.
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