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Abstract

This paper presents an LMI based algorithm for deterministic worst-case identi"cation of nonSchur plants in an open-loop setting.
Contrary to other approaches dealing with this problem, the proposed technique does not require prior knowledge of a stabilizing controller.
The main result of the paper shows that, as the information is completed, the identi"ed model converges, in the ‘2-induced topology, to
the actual plant. Additional results include upper bounds on the worst-case identi"cation error on the "nite horizon. The usefulness of the
proposed approach is illustrated with a practical example arising in the context of robust visual tracking.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of identifying nonSchur (i.e. marginally sta-
ble or unstable) plants has been addressed several times
in the literature (see the survey by M8akil8a, Partington, &
Gustafsson, 1995). A common feature of all these papers is
that they require prior knowledge of a controller that will
stabilize the unknown plant. Working in an H∞ setting, and
under the additional assumption that the unknown plant is
strongly stabilizable, M8akil8a and Partington (1992) showed
that this approach leads to an approximation to the open loop
unstable plant that converges in the graph, gap and chordal
metrics. The existence of robustly convergent algorithms in
the ‘1 sense and bounds on the identi"cation error were ob-
tained in Partington and M8akil8a (1994).

Alternatively, by considering the unknown plant as a
member of the set of all plants stabilized by the known
controller, the problem can be reduced to the identi"cation
of a stable system, namely the Youla–Kucera parameter.
This approach was proposed by Hansen, Franklin, and Ko-
sut (1989) and Schrama (1991), and extended by Dasgupta
and Anderson (1996) to nonlinear time varying plants.
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While successful, these approaches are limited by the
assumption that a stabilizing controller is known. This
requirement can be too restrictive, for instance in cases
where the plant is not strongly stabilizable (and thus the
controller itself has to be open loop unstable). Moreover,
as we illustrate in the sequel with a problem arising in the
context of computer vision, many practical problems in-
volve estimating marginally stable dynamics that cannot be
stabilized.

To avoid these diFculties, in this paper we directly
identify the plant from some a priori assumptions and
time-domain measurements of its output over a "nite hori-
zon [0; N ]. Note that in the case of marginally stable or
mildly unstable plants, it is feasible to carry out these
time-domain experiments over reasonably long horizons.
Formally, the proposed approach is similar to the one used
by Chen and Nett (1995) and Parrilo, SJanchez Peña, and
Sznaier (1999) for worst-case identi"cation of stable plants.
The main result of this paper shows that even when used
for open-loop unstable plants, the identi"cation algorithm
converges in the ‘2-induced topology as the information
is completed, i.e. as the noise level tends to zero and the
number of data points to in"nity. In addition, we provide
worst-case identi"cation error bounds over a "nite hori-
zon. The usefulness of the proposed approach is illustrated
with an academic example and a practical one, that in-
volves robustly tracking a person in a sequence of video
frames.
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2. Notation

This paper considers discrete time, single input–single
output, causal, linear time invariant (LTI) systems rep-
resented by the convolution kernel yk = (h ∗ u)k

:=∑k
j=0 hk−juj, or, alternatively by the complex-valued

transfer function H (z) =
∑∞

k=0 hkz−k .
H∞;� denotes the space of complex-valued functions

H (z) essentially bounded on |z|= � and with bounded ana-
lytic continuation in |z|¿�, equipped with the usual norm
‖H‖∞;�

:= sup
|z|¿�

|H (z)|. BH∞;�(K) denotes the closed

K-ball in H∞;�. In the sequel, we will use simply H∞ and
‖ ·‖∞ for the case �=1 and BH∞ for the closed unit ball.

‘2[0; N ] denotes the space of square summable,
real-valued sequences {xi}Nk=0 equipped with the norm
‖x‖2

‘2[0; N ]
:=

∑N
i=0 x2

i ¡∞. Similarly, ‘∞[0; N ] denotes
the space of bounded sequences equipped with the norm
‖x‖‘∞[0; N ]

:= sup
06i6N

|xi|¡∞ and B‘∞(N; �), the origin

centered � radius closed ball in this space. ‖h‖‘2[0; N ]→‘2[0; N ]

denotes the ‘2 induced norm in L(N ), the space of causal,
LTI operators bounded in ‘2[0; N ]. The projection operator
PN is de"ned by PN [h] := {h0; h1; : : : ; hN ; 0; 0; : : :}. To a
given sequence x, we will associate the column vector x
and the "nite lower Toeplitz matrix Tx:

x :=




x0

...

xN


 ; Tx

:=




x0 · · · 0

...
. . .

...

xN · · · x0


 :

Given a subset A of a metric space (X; m) its diameter is
de"ned as d(A) := sup

x;a∈A

m(x; a) and PA denotes its closure.

Finally, given a matrix M, MT denotes its transpose, M† its
Moore–Penrose pseudoinverse, (M)i its ith row and ‖M‖1=
maxi

∑
j |(M)i; j|. As usual, M¿ 0(M¿ 0) indicates that

M is positive de"nite (positive semi-de"nite).

3. Identi�cation of nonSchur plants

3.1. Problem statement

Consider the problem of identifying a nonSchur plant
g from measurements of its output y to a known input
u∈ ‘2[0; N ], corrupted by additive bounded noise �:

yk = (g ∗ u)k + �k ; k = 0; 1; : : : ; N;

�∈N
:= B‘∞(N; �):

Further, the plant is known to belong to a given set of can-
didate models S:

S
:= {G(z) = H (z) + P(z)}:

Here H (z) denotes the nonparametric component of the
model, in a given set Snp to be de"ned later. On the other
hand, P(z) represents the parametric component and is as-
sumed to belong to the following class P of aFne models:

P
:= {P(z) = pTGp(z); p∈RNp};

where the Np components Gpi(z) of vector Gp(z) are
known, linearly independent, rational transfer functions.

The identi"cation problem can be precisely stated as
follows.

Problem 1. Given an unknown nonSchur plant g, the a prior
sets of candidate models and noise (S;N) and a "nite set
of samples of the input and output of the plant (u; y):

• Determine whether the consistency setT(y) is nonempty,
with T(y) := {g∈S: {yk − (g ∗ u)k}Nk=0 ∈N}.

• If T(y) �= ∅, "nd a model gid ∈T(y) and a bound on
the worst-case identi"cation error.

In the sequel, we consider the following characterizations
of the a priori set Snp:

Snp1
:= BH∞;�(K) for some given �¿ 1; K ¿ 0; (1)

Snp2
:= {H (z)∈H∞;�: |hk |6K�k;∀k}: (2)

The "rst case above leads to a computable necessary and
suFcient condition for checking consistency. However, in
the case of unstable plants (as opposed to marginally stable),
it may be diFcult to check its validity. On the other hand,
while characterization (2) is easily testable, as we will show
in the next section, it leads only to suFcient conditions.

3.2. Consistency

Notice that an interpolatory algorithm such as the one
proposed by Parrilo et al. (1999) can still be applied to
establish consistency of the data and obtain an identi"ed
unstable model gid, since stability of the unknown plant is
used only to obtain worst-case error bounds and establish
convergence. More precisely, there exists at least one model
g = h + p in S with h∈Snp1 which can reproduce the
experimental data within the assumed error bounds if and
only if there exist two vectors p = [p1 · · ·pNp ]

T and h =
[h0 · · · hN ]T so that the following LMIs in (p; h) hold:

MR(h) =

[
R2

�
1
K TT

h

1
K Th R−2

�

]
¿ 0;

y − TuPp− Tuh∈N; (3)

where (P)k
:= [g1

k g
2
k · · · gNp

k ], R�
:= diag [1 � · · · �N ], gi

k
denotes the kth Markov parameter of the ith transfer function
Gpi(z) and hk is the kth Markov parameter of the nonpara-
metric component H (z). The set of all models consistent
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with both the a priori assumptions and the a posteriori ex-
perimental data can be parametrized in terms of a free para-
meter B(z)∈BH∞. In particular, the choice B(z)=0 leads
to the central model Gid(z) = Hid(z) + pTGp(z) where an
explicit state-space realization of Hid(z) is given by

X = CT
−C− + (AT − I)MR;

AH = �[A − X−1CT
−C−(A − I)]−1;

BH = �[CT
−C−(AT − A − I) − (AT − I)MRA]−1CT

−;

CH = KC+{I − [A − X−1CT
−C−(A − I)]−1};

DH = KC+[XA − CT
−C−(A − I)]−1CT

−;

with

A =

[
0 IN×N

0 0

]
;

C− = [

N+1︷ ︸︸ ︷
1 0 : : : 0 ]; C+ =

hTR�

K
:

A potential problem here is that the condition number of
MR grows 1 as �4N . This diFculty can be solved by noticing
that if conditions (3) hold for some K; �; h, then they hold
for K; �̃; h�̃, with h�̃

:= [h0 h1=�̃ · · · hN =�̃N ]T. Thus, Problem
1 can be solved using the following scaled conditions:

R2
�=�̃ −

1
K2 TT

h�̃R
2
�=�̃Th�̃ ¿ 0

(R−1
�̃ y − TũP�̃p− Tũh�̃)∈N�̃; (4)

where �̃ ∼ �, N�̃
:= {��̃: |��̃k |6 �=�̃k}, Tũ=R−1

�̃ TuR�̃ and
P�̃ =R−1

�̃ P, combined with the mapping Gid(z) =G�̃(z=�̃).
When �̃¿� the modi"ed algorithm outlined above can be
formally interpreted as solving the modi"ed problem of ob-
taining a model of a stable plant in the set:

S�̃
:= {G�̃(z) = G(�̃z); G ∈S};

using the experimental data {uk=�̃k}; {yk=�̃k}, corrupted by
noise in the set N�̃.

Remark 1. Since Snp1 ⊂ Snp2, feasibility of the LMIs (4)
also guarantees consistency of the a priori sets (Snp2;N)
and the a posteriori experimental information (u; y). How-
ever, in this case the condition is clearly only suFcient.

While intuitively appealing, a diFculty with the approach
outlined above is that neither the worst-case identi"cation
bounds obtained from the modi"ed problem nor its conver-
gence properties can be used to establish similar bounds or
properties for the identi"ed plant Gid(z). However, as we

1 This follows from the fact that P�(R2
�) = �2N ; �(R−2

� ) = �−2N and the
interlacing property of the eigenvalues of symmetric matrices.

show in the sequel, as long as �̃¿� then the identi"ed
model converges (in the ‘2 induced topology) to the actual
plant as the information is completed.

3.3. Identi3cation error and convergence properties

The identi"cation procedure proposed above is inter-
polatory since it generates a model in the consistency set
T(y). Thus, (see for instance SJanchez Peña & Sznaier,
1998, Chapter 10), its worst-case identi"cation error can be
bounded by:

eid
:= sup

y∈Y

{
sup

g∈T(y)
‖g− gid(y)‖‘2[0; N ]→‘2[0; N ]

}

6D(I); (5)

where gid(y) denotes the model identi"ed using the data y,Y
is the set of all possible experimental data consistent with the
a priori information (S;N), and D(I) := sup

y∈Y

d(T(y)) is

known as the diameter of information. Moreover, since the
a priori sets (S;N) are convex and symmetric, with points
of symmetry gs =0 and �s =0, respectively, it can be shown
(see SJanchez Peña & Sznaier, 1998) that the worst-case
diameter is attained by experiments resulting a null output
y0, i.e.:

D(I) = d(T(y0)) = 2 sup
g∈T(y0)

‖g‖‘2[0; N ]→‘2[0; N ]:

The following result provides an upper bound on the induced
‘2[0; N ] norm of a not necessarily stable LTI system G(z).
This bound will be used to establish both, a worst-case bound
on the identi"cation error and convergence of the proposed
method.

Lemma 2. Consider a not necessarily stable LTI system
g. Let �̃¿ 1 be such that the system g�̃: G�̃(z)

:= G(�̃z) is
stable. Then ‖g‖‘2[0; N ]→‘2[0; N ]6 ‖G�̃‖∞�̃N .

Proof. Given in the appendix.

Corollary 3. The worst-case identi3cation error is
bounded by

eid6 2�̃N


 N∑

i=0

"i + ‖p‖∞
Np∑
i=1

‖(I −PN )gi
�̃‖‘∞→‘∞

+
K(�=�̃)N+1

1 − (�=�̃)


 ; (6)

where "i
:= min{K(�=�̃)i+‖p‖∞

∑Np

i=1 |gi
�̃; k |; ‖(Tũ)−1

i+1‖1�},
{gi

�̃; k} is the kth Markov coe5cient of the ith transfer

function Gpi(�̃z) and ‖p‖∞ := ‖P†
�̃‖1(‖(Tũ)−1‖1� + K).
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Proof. Follows from combining Lemma 2 with the error
bound obtained in Parrilo et al. (1999).

Next we exploit this result to establish convergence of the
algorithm when N → ∞ and � → 0.

Theorem 4. If �̃ is selected such thatS�̃ ⊂ H∞, then the
proposed algorithm is convergent, i.e. lim N→∞

�→0
eid = 0.

Proof. Consider sequences Ni ↑ ∞, �i ↓ 0, and for
a given pair (N; �) denote by T(y0; N; �) the set of
plants consistent with the a priori information and the
null outcome y0. Clearly if g∈T(y0; N; �) then for
06 k6N its kth Markov coeFcient can be bounded by
|gk |6min{‖(T−1

u )k‖1�; K�k + ‖p‖∞
∑Np

j=1 |gj
k |}. It fol-

lows that if, for every i, (Ni; �i) are selected such that
K�Ni ¿ ‖(T−1

u )Ni‖1�i then T(y0; Nj; �j) ⊂ T(y0; Ni; �i) for
j¿ i, 2 and thus (Aubin & Frankowska, 1990, p. 18), the
sequence of sets has a limit T∗ =

⋂
k T(y0; Nk ; �k). If

T∗ �= {0}, then there exist some g∗ ∈T(y0; Nj; �j);∀j and
such that, for some M and %,

‖g∗‖‘2[0;M ]→‘2[0;M ] ¿%¿ 0: (7)

Let T�̃(y0; Nj; �) = {g�̃: G�̃(z) = G(�̃z); g∈T(y0; Nj; �)}.
Since g∗�̃ ∈T�̃(y0; Nj; �), ∀j, using the error bound de-
rived in Parrilo et al. (1999), it follows that there exists
some (N; �) such that ‖g∗�̃‖∞6 %=�̃M . This, combined
with Lemma 2 implies that ‖g∗‖‘2[0;M ]→‘2[0;M ]6 %, which
contradicts (7).

4. Examples

This section illustrates our theoretical results with two
examples, one academic and one practical, the latter arising
in the context of a computer vision application.

4.1. Example 1: A plant not strongly stabilizable

Consider the problem of identifying the following not
strongly stabilizable plant, analytic in |z|¿ 1:2223:

S1(z) =
0:1009z2 − 0:0002z − 0:1011

z2 − 0:4040z − 1
;

from N = 30 samples of its impulse response corrupted by
additive noise bounded in amplitude by � = 0:51. Assume
that there is some a priori knowledge about the approxi-
mate 3 location of the poles of the system. This informa-
tion may be taken into account as a parametric unstable

2 For instance g = K(�=z)Ni+1 ∈T(y0; Ni; �i) but g �∈ T(y0; Nj; �j),
j ¿ i.

3 To this end, the actual values of the poles were both perturbed by
10%.
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Fig. 1. (Upper) Identi"ed model vs. plant. (Bottom) Controller on the
model and actual plant.

component of the model, by using the following basis
functions:

G(z) :=
[

z2

D(z)
;

z
D(z)

;
1

D(z)

]T

;

D(z) = z2 − 0:4440z − 1:2076:

Choosing �̃=1:3444 4 and using MATLAB’s LMI Toolbox
to "nd the minimum value of the worst case gain K of the
nonparametric portion of the model so that the set of LMIs
(4) was feasible, led to a nonparametric component with a
stability margin �=0:9990 and gain K=8:2249×10−4. The
corresponding coeFcients of the parametric component of
the model are p = [0:0512 − 0:0157 − 0:0670]T. The actual
plant, the identi"ed unstable model and the experimental
samples are shown in the upper plot of Fig. 1.

These data can be directly used to synthesize a controller,
if the goal is to guarantee performance over a 3nite hori-
zon. On the other hand, since (6) tends to in"nity as M →
∞ it is not very useful for controller synthesis, when the
goal is to guarantee performance over an in"nite horizon.
This diFculty can be solved by modelling the actual plant
as the interconnection of the identi"ed plant and stable dy-
namic uncertainty (for instance additive) and performing an
additional model (in)validation step (Poolla, Khargonekar,
Tikku, Krause, & Nagpal, 1994) to test the validity of the
assumption and to quantify the size of this uncertainty. Since
the proposed algorithm is convergent, one will expect that
this invalidation will succeed, by taking N large enough and
tightening the bounds in the experimental noise, if neces-
sary. In this example, the invalidation step led to a bound on
the magnitude of the (additive) uncertainty of ‖(‖∞6 0:65.
The bottom plot of Fig. 1 shows the resulting controller. As

4 In this case, this a priori information is based on the approximate
pole location of G(z).
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Fig. 2. Robust identi"cation based tracking (black cross) versus Mean Shift (white cross).

required, it stabilizes not only the nominal but the actual
plant, and hence it can play the role of the prestabilizing
controller required by most of the literature in the "eld.

If no a priori parametric information is available, the
method outlined above can still be used, but at the expense
of considering a larger number of data points. In this spe-
ci"c example, using N = 50 samples led to a model with
gain of K = 0:5995, and closed-loop results similar to those
shown in Fig. 1. 5

4.2. Example 2: Multiframe tracking

A requirement common to most active vision applications
is the ability to track objects in a sequence of frames. In
principle, the location of the target can be predicted using a
combination of its (assumed) dynamics, empirically learned
noise distributions and past position observations (Blake &
Isard, 1998). However, this process is far from trivial in a
cluttered environment.

Fig. 2 shows the results of using a Mean Shift based
tracking (white crosses) implemented in Intel’s Open Source
Computer Vision Library (Bradski & Pisarevsky, 2000). Al-
though this algorithm is designed to improve tracking robust-
ness by exploiting color information (Comaniciu, Ramesh,
& Meer, 2000), it begins to track poorly in frame 19, and by
frame 21 it has completely lost the target due to a combina-
tion of clutter and moderate occlusion. As we show next, this
diFculty can be solved by modelling the motion of the target
as the impulse response of an unknown nonSchur plant, and
using the proposed approach to identify the relevant dynam-
ics. Speci"cally, we considered as outputs the coordinates
(xk ; yk) of the centroid of the child in each frame, corrupted
by noise bounded by |�|6 5:5. This bound was quanti"ed
from Uuctuations in the data taken when the person was at
rest. For the sake of briefness we report below only the re-
sults for the x coordinate, since those for y are similar.

These assumptions can be taken into account by using as
the parametric component of the model the span of G(z) :=
[ z2

z2−2z+1 ;
z

z2−2z+1 ]
T, combined with a nonparametric compo-

nent, which explains the unmodelled dynamics, with � =
0:99. For tracking purposes, we selected the "rst N = 12
samples as training data in order to get a model of the person

5 The details, omitted for space reasons can be obtained by contacting
the authors.

Table 1
Id error as a function of k. Target width is 30 pixels

Sample Mean-shift ID-based Worst-case bound

13 25.90 8.87 13
14 35.93 6.14 15
15 41.32 10.04 17
16 45.63 13.03 19
17 54.65 10.31 21
18 57.53 15.72 23
19 65.05 19.50 25
20 64.80 26.04 27

walking, using the technique proposed in Section 3.2. Both
the consistency and identi"cation problems were solved us-
ing MATLAB’s LMI Toolbox, leading to Kopt = 1:35e−12

and p= [127:7763− 135:0723]T. The advantage of this ap-
proach is illustrated in Fig. 2 where the black crosses in-
dicate the position of the centroid predicted by our model.
The numerical values of the error, computed as the diVer-
ence between the predicted and actual values (using oV-line
image processing) are given in Table 1. As shown there, the
identi"ed model is able to predict the location of the target,
far beyond the point where the mean shift tracker has failed.

Finally, notice that for this particular application the no-
tion of identi"cation error in terms of the largest diVerence
between the predictions of any two models in the consis-
tency set at k ¿N (given a "xed known input) might be
better suited than the one given by (5). More precisely, fol-
lowing Sections 3.2 and 3.3, let

eid(k)
:= sup

y∈Y

{
sup

g∈T(y)
|(g ∗ u)k − (gid(y) ∗ u)k |

}

6 2 sup
g∈T(0)

∣∣∣∣∣∣



 Np∑

i=1

pigi + h


 ∗ u




k

∣∣∣∣∣∣ ;
where the upper bound on the right hand side can be obtained
as the solution to a Linear Programming problem in p =
[p1 · · ·pNp ]

T and h=[h0 · · · hN ]T. The last column in Table 1
shows the error bounds as a function of k. As expected these
values increase with time, since no new data is being used
beyond k =12. However, they became comparable with the
width of the target (30 pixels) only beyond k = 20.
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5. Conclusions

This paper addresses the problem of identifying nonSchur
plants in a worst-case sense. Contrary to past work on this
problem, the proposed method is intended to be applied in an
open-loop setting. Thus it avoids the need for assumptions,
such as the knowledge of a stabilizing controller for the
unknown plant, that can prove to be too restrictive or even
meaningless in many practical situations. In this sense, the
contribution of the present paper can be viewed as twofold,
on one hand by obtaining a model of an unstable plant in an
open loop setting, and on the other, by getting a stabilizing
controller, which together with the given model, constitute
the "rst step in an iterative identi"cation-design procedure
such as the one proposed in e.g.: Hansen et al. (1989) and
Schrama (1991).
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Appendix A

A.1. Proof of Lemma 2

In order to proof Lemma 2 we need the following prelim-
inary result:

Lemma 5. Consider a LTI, stable system with state space
realization: (A;B;C;D). If the following functional LMI:[
ATXk+1A − Xk + CTC ATXk+1B + CTD

BTXk+1A + DTC BTXk+1B− )2I + DTD

]

¡ 0: (A.1)

admits a solution Xk =XT
k ¿ 0, then ‖h‖‘2[0; N ]→‘2[0; N ] ¡).

Proof. Let u∈ ‘2[0; N ] denote an arbitrary input sequence
and x; z the corresponding state and output sequences. Pre
and post-multiplying (A.1) by [xT

k uk ] and [xT
k uk ]T, and after

some algebra gives:

0¿ xT
k+1Xk+1xk+1 + z2

k − xT
kXkxk − )2u2

k :

Summing this last inequality from k =0 to k =N and using
the facts that x0 = 0 and Xk ¿ 0, ∀k yields:

0¿ xT
N+1XN+1xN+1 +

N∑
k=0

(z2
k − )2u2

k)

⇒
N∑

k=0

z2
k ¡ )2

N∑
k=0

u2
k

which is equivalent to ‖h‖‘2[0; N ]→‘2[0; N ] ¡).

Proof of Lemma 2. Assume that g has a state space
realization: (A;B;C;D). Since ‖�̃NG�̃‖∞6 )�̃N , from
the Bounded Real Lemma (see for instance Gahinet &
Apkarian, 1994) there exists X�̃ = XT

�̃ ¿ 0 such that[
AT

�̃X�̃A�̃ − X�̃ + �̃2NCTC AT
�̃X�̃B�̃ + �̃2NCTD

BT
�̃X�̃A�̃ + �̃2NDTC BT

�̃X�̃B�̃ + �̃2N (DTD− )2I)

]

¡ 0

with A�̃
:= A=�̃ and B�̃

:= B=�̃. De"ne Xk
:= X�̃�̃−2k . Mul-

tiplying last inequality by �̃−2k , it follows that Xk satis"es:[
ATXk+1A − Xk + CTC ATXk+1B + CTD

BTXk+1A + DTC BTXk+1B− )2�̃2N I + DTD

]

+ )2�̃2N (1 − �̃−2k)

[
0 0

0 I

]

+ (�̃2(N−k) − 1)

[
CT

DT

]
[C D ]¡ 0: (A.2)

The proof follows now from Lemma 5 by noting that, since
�̃¿ 1, for k6N , condition (A.2) implies (A.1)

References

Aubin, J. P., & Frankowska, H. (1990). Set-valued analysis. Boston:
Birkh8auser.

Blake, A., & Isard, M. (1998). Condensation–condensation density
propagation for visual tracking. International Journal of Computer
Vision, 29(1), 5–28.

Bradski, G. R., & Pisarevsky, V. (2000). Intel’s computer vision library:
Applications in calibration, stereo, segmentation, tracking, gesture,
face and object recognition. IEEE Computer Vision and Pattern
Recognition (CVPR) II, 796–797.

Chen, J., & Nett, C. (1995). The CarathJeodory–FejJer problem and the
H∞=‘1 identi"cation: A time domain approach. IEEE Transactions
on Automatic Control, 40(4), 729–735.

Comaniciu, D., Ramesh, V., & Meer, P. (2000). Real-time tracking
of non-rigid objects using mean shift. IEEE Computer Vision and
Pattern Recognition (CVPR), 142–149.

Dasgupta, S., & Anderson, B. D. O. (1996). A parametrization for
the closed-loop identi"cation of nonlinear time-varying systems.
Automatica, 32(10), 1996.

Gahinet, P., & Apkarian, P. (1994). A linear matrix inequality approach to
H∞ control. International Journal of Robust and Nonlinear Control,
4, 421–448.

Hansen, F., Franklin, G., & Kosut, R. (1989). Closed-loop identi"cation
via the fractional representation: Experiment design. In 1989 ACC,
Pittsburgh, PA, USA (pp. 1422–1427).

M8akil8a, P. M., & Partington, J. R. (1992). Robust identi"cation of strongly
stabilizable systems. IEEE Transactions on Automatic Control,
37(11), 1709–1716.

M8akil8a, P. M., Partington, J. R., & Gustafsson, T. K. (1995). Worst-case
control-relevant identi"cation. Automatica, 31(12), 1799–1819.

Parrilo, P. A., SJanchez Peña, R., & Sznaier, M. (1999). A parametric
extension of mixed time/frequency robust identi"cation. IEEE
Transactions on Automatic Control, 44(2), 364–369.



M. Sznaier et al. / Automatica 39 (2003) 1019–1025 1025

Partington, J. R., & M8akil8a, P. M. (1994). Worst-case analysis
of identi"cation—BIBO robustness for closed-loop data. IEEE
Transactions on Automatic Control, 39(10), 2171–2176.

Poolla, K., Khargonekar, P., Tikku, A., Krause, J., & Nagpal, K. (1994).
A time domain approach to model validation. IEEE Transactions on
Automatic Control, 39(5), 951–959.

SJanchez Peña, R., & Sznaier, M. (1998). Robust systems theory and
applications. New York: Wiley & Sons, Inc.

Schrama, R. J. P. (1991). Control-oriented approximate closed-loop
identi"cation via fractional representations. In 1991 ACC, Boston,
MA, USA (pp. 719–720).

Mario Sznaier received the Ingeniero Elec-
tronico and Ingeniero en Sistemas de Com-
putacion degrees from the Universidad de la
Republica, Uruguay in 1983 and 1984, re-
spectively and the MSEE and Ph.D degrees
from the University of Washington in 1986
and 1989, respectively. From 1991 to 1993
he was an Assistant Professor of Electri-
cal Engineering at the University of Central
Florida. In 1993 he joined the Pennsylva-
nia State University, where he currently is
a Professor of Electrical Engineering.

He has also held visiting appointments at the California Institute of
Technology in 1990 and 2000.

His research interest include Multiobjective Robust Control; l1 and
H-in"nity. Control Theory, Control Oriented Identi"cation and Active
Vision.

Mar/0a Cecilia Mazzaro received the Inge-
niero ElectrJonico degree from the Univer-
sity of Buenos Aires, Argentina in 1997,
where she was engaged in research activi-
ties until 1999. Since fall 1999 she is at the
Pennsylvania State University, where she is
a Research Assistant and a Ph.D. candidate.
Her current research interests include sys-
tem identi"cation and model (in)validation,
in particular its applications to visual anal-
ysis of human motion and tracking.

Octavia Camps received the B.S. degree
in computer science and the B.S. degree in
electrical engineering from the Universidad
de la Republica (Montevideo, Uruguay) in
1981 and 1984, respectively, and the M.S.
and Ph.D. degrees in electrical engineer-
ing from the University of Washington, in
1987 and 1992, respectively. In 1991, she
joined the faculty at The Pennsylvania State
University where she currently is an Asso-
ciate Professor at the departments of Electri-
cal Engineering and Computer Science and

Engineering. In 2000, she was a visiting faculty at the California Institute
of Technology and at the University of Southern California. Her current
research interests include robust computer vision, pattern recognition, and
image processing.


	Open-loop worst-case identification of nonSchur plants
	Introduction
	Notation
	Identification of nonSchur plants
	Problem statement
	Consistency
	Identification error and convergence properties

	Examples
	Example 1: A plant not strongly stabilizable
	Example 2: Multiframe tracking

	Conclusions
	Acknowledgements
	Appendix A 
	Proof of Lemma 2

	References


