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Abstract

Recently, a new deterministic characterization of the H
2

norm has been proposed, using a new norm (DD . DD
Wg

), based on
(approximate) set membership modeling of white noise. The main result shows that under mild conditions, for a xxed system the gap
between the H

2
and =g norms can be made arbitrarily small. Motivated by these results it has been argued that the DD . DD

Wg
norm

provides a useful tool for analyzing robust H
2

controllers, specially since in this context LMI-based necessary and su$cient
conditions for robust performance are available. Unfortunately, as we show here with an example involving a
very simple plant, the worst case DD . DD

W
m
g

norm can be conservative by at least a factor of Jm (where m denotes the dimension
of the exogenous signal) for the original robust H

2
problem. Moreover, the same example shows that competing state-space based

bounds also exhibit a similar degree of conservatism. Thus, at this point the problem of "nding non-conservative bounds on
the worst H

2
norm under LTI or slowly-varying LTV perturbations still remains open. ( 1999 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

A large number of control problems of practical
importance involve designing a controller capable of
stabilizing a given linear time invariant system while
minimizing the worst case response to some exogenous
disturbances. Depending on the choice of models for the
input signals and on the criteria used to assess performance,
this prototype problem leads to di!erent mathematical
formulations. The case where the exogenous disturbances
w belong to the set of signals with spectral density bounded
by one and the objective is to minimize the worst-case `sizea
of the output z measured using the power seminorm1

leads to the well-known H
2

control problem.

qThis paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor A.A.
Stoorvogel under the direction of Editor R. Tempo.

*Corresponding author. Tel.: 001-814-865-0196; fax: 001-814-865-7065.
E-mail addresses: msznaier@frodo.ee.psu.edu (M. Sznaier),

jtierno@htc.honeywell.com (J. Tierno)
1An alternative stochastic interpretation can be given by considering

the input signal w to be white Gaussian noise with unit covariance and
having as design objective the minimization of the RMS value of the
output, lim

t?=
E[zT(t)z(t)], where E denotes expectation.

H
2

control is appealing since there is a well estab-
lished connection between the performance index being
optimized and performance requirements encountered in
practical situations. Moreover, the resulting controllers
are easily found by solving two Riccati equations, and in
the state-feedback case exhibit good robustness proper-
ties (Anderson & Moore, 1990). However, as the classical
paper by Doyle (1978) established, these margins vanish
in the output feedback case, where in"nitesimal model
perturbations can destabilize the closed-loop system.

Following this paper, several attempts were made to
incorporate robustness into the H

2
framework, at least

for the case of minimum phase (or mildly non-minimum
phase) plants (Stein & Athans, 1987; Zhang & Freuden-
berg, 1990). More recently these e!orts led to the mixed
H

2
/H

=
problem (Bernstein & Haddad, 1989; Doyle,

Zhou, Glover & Bodenheimer, 1994; Zhou, Glover,
Bodenheimer & Doyle, 1994; Kaminer, Khargonekar
& Rotea, 1993; Sznaier, 1994; Scherer, 1995; Chen
& Wen, 1995), where the resulting controller guarantees
optimal performance for the nominal controller and sta-
bility against LTI dynamic uncertainty. While these re-
sults represent signi"cant progress towards obtaining
robust H

2
controllers, they su!er from the fact that

0005-1098/00/$ - see front matter ( 1999 Elsevier Science Ltd. All rights reserved.
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performance is only guaranteed for the nominal plant.
Moreover, the resulting controllers have potentially high
order (in fact, the optimal H

2
/H

=
controller is in"nite

dimensional (Megretski, 1994)).
Robust H

2
performance was analyzed by Stoorvogel

(1993) who obtained bounds on the worst-case perfor-
mance. These bounds are related to the auxiliary prob-
lem introduced by Kaminer et al. (1993) and lead to
tractable synthesis problems. However, they are obtained
assuming non-causal, non-linear time varying model un-
certainty. Thus, they are potentially conservative for the
case of causal, LTI perturbations.

Recently, Feron (1997) proposed an upper bound on
the worst case H

2
norm under passive uncertainty. This

upper bound is obtained using an impulse response
based interpretation of the H

2
norm and dynamic (non-

causal) stability multipliers. This approach is appealing
since it takes into account, to some extent, causality.
However, in order to obtain tractable problems, these
multipliers must be restricted to the span of some basis,
selected a priori. Moreover, the complexity of this basis is
limited by the fact that the computational complexity of
the resulting LMI problem grows roughly as the 10th
power of the state dimension (Paganini & Feron, 1997).

Alternatively, a new research line has emerged (Pagan-
ini, 1995) based upon (approximate) set membership
modeling of white signals. As shown in (Paganini, 1995,
1995b, 1996, 1999), for a xxed, given plant this alternative
formulation can capture the H

2
norm with arbitrary

precision. Motivated by these results it has been argued
(Paganini, 1995b, 1996, 1999) that this approach provides
a useful tool for analyzing robust H

2
controllers,

specially since in this context LMI-based necessary and
su$cient conditions for robust performance are avail-
able. Moreover, these conditions are no more complex
than comparable H

=
conditions for the same problem.

Unfortunately, as we show here with an example, both
impulse}response and set modeling-based bounds can be

conservative by at least a factor of Jm, where m denotes
the dimensions of the exogenous input, even for very
simple plants. Thus, at the present time the problem of
robust H

2
analysis for general MIMO systems still re-

mains open.

2. Preliminaries

2.1. Notation and dexnitions

L
=

denotes the Lebesgue space of complex-
valued matrix functions which are essentially bounded
on the unit circle, equipped with the norm
DDG(z)DD

=
Gess sup

@z@/1
p6 (G(z)), where p6 denotes the largest

singular value. By H
=

we denote the subspace of func-
tions in L

=
with a bounded analytic continuation out-

side the unit disk. The norm on H
=

is de"ned by
DDG(z)DD

=
Gess sup

@z@;1
p6 (G(z)). By H

2
we denote the space

of complex valued matrix functions G(z) with analytic
continuation outside the unit disk and square integrable
there, equipped with the usual H

2
norm:

DDGDD2
2
Gsup

c;1

1

2p Q
@z@/c

DG(z)D2
F

dz

z
,

where DD.DD
F

denotes the Frobenious norm.
Given two matrices M and * of compatible dimen-

sions we denote by *wM the upper LFT F
u
(M ,*), i.e.:

*wM"M
22
#M

21
*(I!M

11
*)~1M

12
.

Let L(l2) denote the set of linear bounded operators in
l2. In the sequel we will consider the following set of
structured bounded operators in L(l2):

BD"M*3L(l2): *"diag[d
1
I
r1
,2 , d

L
Ir

L
,*

L`1
,2 ,

*
L`F

] : DD*DDl2?l241N.

The subsets of BD formed by linear time invariant, linear
time varying and (arbitrarily) slowly linear time varying
operators will be denoted by BDLTI , BDLTV and BDSLTV,
respectively.2 Finally, we will also make use of the follow-
ing set of scaling matrices which commute with the ele-
ments in BD:

X"diag[X
1
,2, X

L
,x

L`1
I
m1

,2, x
L`F

I
mF

].

De5nition 1 (Robust H
2

performance). Consider the
uncertain system shown in Fig. 1, where f3lm

2
and z rep-

resent an exogenous input and a performance output,
respectively, and where *"diagM*

i
N represents struc-

tured model uncertainty. The interconnection (M , *) has
robust H

2
performance against LTI perturbations if it is

robustly stable and

sup
*|B*LTI

DD*wMDD
2
41. (1)

De5nition 2 (Luenberger, 1969). A partition of an inter-
val [a , b] of the real line is a "nite set of points
t
i
3[a , b], i"0, 1, 2,2, n such that a"t

o
(t

1
(

t
2
(2(t

n
"b.

De5nition 3 (Luenberger, 1969). A real function
f:[a, b]PR is said to be of bounded variation if there
exists a constant K such that for any partition of [a , b]

n
+
i/1

D f (x
i
)!f (x

i~1
)D4K.

2 In rigor BDSLTV is not a single family of operators, but a class
containing all the LTV operators with variation slower than a given
l'0, i.e. BDSLTVl GM*3BDLTV:DDj*!*jDD4lN, where j denotes the
unit delay operator. In the sequel, for notational simplicity and with
a slight abuse of notation we will drop the subscript l.
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Fig. 1. Setup for robust H
2

analysis.

The total variation of f, denoted as ¹<( f ) is de"ned as

¹<( f )"sup
n
+
i/1

D f (x
i
)!f (x

i~1
)D

where the supremum is taken over all partitions of
[a , b].

The approach proposed by Paganini (1995) is based
upon approximating white noise by a subset of l2 com-
posed by `approximatelya white signals, de"ned as fol-
lows:

De5nition 4 (Paganini, 1995). Given g'0, the set of
`white up to accuracy ga signals is given by

=mg"Gf3l2: KKP
s

0

f (u) f (u)H
du
2p

!

s

2p

DD f DD2
m

I
mKK

=

(gH , (2)

where the DD . DD
=

norm denotes the maximum across the
coordinates of the supremum norm.

Thus this set includes all signals in l2 such that their
cumulative spectrum only deviates a small amount from
the spectrum of a `truea white signal. Given an l2 stable
system (not necessarily LTI) one can look then at the
worst case value of the output (in the l2 sense) in re-
sponse to signals in=mg and use this to de"ne an induced
norm as follows:

De5nition 5 (Paganini, 1995). Given an l2 stable oper-
ator H, its =mg norm is de"ned as

DDHDD
W

mg
:"supGDDHf DD: f3=mg ,

1

m
DD f DD2

2
41H. (3)

Since the set=mg is formed by signal that are close to
being white, one can expect that DDHDD

W
mg
is close to DDHDD

2
in

some sense. The following theorem shows that this is
indeed the case as long as H is a "xed, given system.

Theorem 1 (Paganini, 1995). For an l2 stable LTI system
H the following inequality holds:

DDHDD2
2
4DDHDD2

W
mg
4DDHDD2

2
#g=[H(e+u)],

where

=(>)
$%&
" +

ij

[>(2p)H>(2p)]
ij
#¹<[>(u)H>(u)]

ij
.

Corollary 1. For a given , xxed system H ,

DDHDD
W

mg
g?0`
&&" DDHDD

2
.

2.2. Robust DD . DD
W

mg
performance

Consider now the problem of assessing the worst case
performance (in the=mg sense) of the interconnection of
a nominal LTI system M and bounded structured uncer-
tainty.

De5nition 6 (Robust DD.DD
W

mg
performance). The uncertain

system (M , *) with input u in lm
2

has robust DD . DD
W

mg
perfor-

mance if it is robustly stable, and there exists g'0 such
that

sup
*|B*SLTV

DD*wMDD
W

mg
41. (4)

The following result shows that this de"nition leads to
a tractable necessary and su$cient condition that can be
checked numerically to any desired degree of accuracy.

Condition 1 (Paganini, 1995). There exists g'0 such
that the interconnection *wM achieves robust =mg perfor-
mance against *3BDSLTV (not necessarily causal) if and
only if there exists X(u)3X , and a matrix function
>(u)">H(u)3CmCm , such that

M(e+u)HC
X(u) 0

0 IDM(e+u)!C
X(u) 0

0 >(u)D(0,

(5)
holds for all u3[0, 2p], and

P
2p

0

trace(>(u))
du
2p

(1. (6)

Clearly, from Corollary 1, having robust DD.DD
W

mg
perfor-

mance in the sense of De"nition 6 is a suzcient condition
for achieving robust H

2
performance in the usual sense.

Moreover, motivated by Theorem 1 one may think that
this is also necessary. However, as we show in the sequel,
in the case of MIMO systems this condition is only
su$cient and potentially conservative by at least a factor
of Jm, where m is the dimension of the exogenous l2 dis-
turbance. Thus, it follows that robust H

2
performance
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(in the usual sense) and robust =mg performance are
di!erent problems, and solving the latter does not neces-
sarily solve the former.

3. A simple counterexample

Consider the following MISO plant where the
exogenous disturbance f3l2

m
and the performance output

z is a scalar (see Fig. 1):

C
q

zD"C
0
mC1

I
mCm

1 0
1Cm
DC

p

f D"MC
p

f D ,

q"[q
1

q
2 2 q

m
]T ,

f"[ f
1

f
2 2 f

m
]T ,

*"[*
1

*
2 2 *

m
]3BDLTI ,

z"(*wM) f"
m
+
i/1

*
i
f
i
. (7)

Clearly for this plant we have

sup
*|B*LTI

DD*wMDD
2
"1. (8)

Moreover, expanding the set of *'s to include non-causal
perturbations does not increase this worst-case norm. On
the other hand, consider now the following perturbation
*nG[*n

1
*n
2
,2, *n

m
]:

*n
i
(ju)GG

1 if u3[(i~1`km)p
mn

, (i`km)p
mn

) ,

i"1,2,m , k"0, 1,2 .

0 otherwise.

(9)

By construction *n is such that DD*nDD
=
"1 for all n.

Finally, consider the following input:

f n"C
f n
1

F

f n
m
D ,

fn
i
(ju)GG

Jm if u3[(i~1`km)p
mn

, (i`km)p
mn

) ,

i"1,2,m , k"0, 1,2 .

0 otherwise.

(10)

By construction f n is an l2 signal with DD f n DD2
2
"m. More-

over, as we show next, given any g'0, f n is in the set
=mg of signals `white up to ga for an appropriate choice
of n. To this e!ect consider the following quantity:

Fg(s)"
1

2pP
s

0
Cf n( ju)( f n)H( ju)!

1

m
I
m
DD f n DD2

2Ddu. (11)

Using the fact that

f n( ju)( f n)H( ju)!1
m
I
m
DD fn DD2

2

"A
!1 0 0 2 0

F } F } F

0 0 m!1 2 0

F F F } F

0 0 0 2 !1B , (12)

u3C
(i!1#km)p

mn
,
(i#km)p

mn B ,

it can be easily shown that

sup
s|*0,2p)

DDF(s)DD
=
"

m!1

2mn
. (13)

It follows that f n3=mg for all n'(m!1)/2mg, m52.
Finally, the output zn corresponding to the uncertainty
*n and signal f n satis"es:

DDznDD2
2
"

1

2pP
2p

0

m
+
i/1

(*n
i
f n
i
)2du"m. (14)

Hence in this case, we have that, for any g'0:

1" sup
*|B*LTI

DD*wMDD
2
(Jm

4 sup
*|B*LTI G sup

f|Wmg

DD(*wM) f DD
2H

" sup
*|B*LTI

DD*wMDD
W

mg
. (15)

This last equation shows that in the case of MISO sys-
tems having m inputs the worst case DD.DD

W
mg
norm may be

conservative by at least a factor of Jm with respect to the
worst case H

2
norm. Thus, De"nition 6 does not co-

incide in general with the standard de"nition of Robust
H

2
performance.

Note that the perturbation *n is not square. An
example with square perturbations and having exactly
the same gap can be obtained by simply setting:

M
s
"C

0
mCm

I
mCm

e
1

0 D , e
1
"[1 0 2 0],

*
s
"C

*
11 2 *

1m
F F

*
m1 2 *

mm
D3BDLTI. (16)

Clearly, *
s
wM

s
"[*

11 2 *
1m

] and the example
reduces to the previous one.

Further insight into the conservatism of the DD.DD
W

mg
can

be gained by using condition 1. Since in order to apply
this condition M should be square, we padd M

s
with

264 M. Sznaier, J. Tierno / Automatica 36 (2000) 261}267



rows of zeros, yielding

M"C
0
mCm
e1
0

I
mCm

0
mCm

D (17)

Obviously, this does not change any of the features
discussed previously. Since * is a full block,

X"xI
mCm

,

and Eq. (5) becomes

C
1

0

} 0
mCm

0

0
mCm

xI
mCm

D
!C

x

x

} 0
mCm

x

0
mCm

> D (0. (18)

Eq. (18) implies the following inequalities:

1!x(0,

x!y
ii
(0, i"1,2 ,m ,

from which it follows that y
ii
'1 and thus trace(>)'m.

Since > does not depend on u,

P
2p

0

trace(>(u))
du
2p

'm ,

and the inequality can be achieved up to arbitrarily small
e. In this case the worst case =mg norm with respect to
slowly time varying *'s coincides with the worst case
=mg norm with respect to LTI *'s and is Jm times bigger
than the worst case 2-norm with respect to LTI *'s. The
conservativeness of condition 1 does not come from
using slowly time varying perturbations, but from the
de"nition of the worst case=mg norm itself.

Remark 1. Note that the worst-case model uncertainty
*n as de"ned in (9) is non-causal. This shows that, con-
trary to the conjecture by Paganini and Feron (1997),
there is a gap between the H

2
norm and Condition

1 even when considering non}causal perturbations.

4. Where the problem lies

From Theorem 1, one can conclude:

sup
*|B*LTI

DD*wMDD2
2
4 sup

*|B*LTI

DD*wMDD2
W

mg

4 sup
*|B*LTI

(DD*wMDD2
2
#g=(*wM)) , (19)

and, therefore,

sup
*|B*LTI

DD*wMDD2
2
4lim

g?0

sup
*|B*LTI

DD*wMDD2
W

mg

4lim
g?0

sup
*|B*LTI

(DD*wMDD2
2
#g=(*wM)). (20)

For De"nition 6 to be equivalent to the standard de"ni-
tion of Robust H

2
performance, the following would

have to hold:

sup
*|B*LTI

DD*wMDD2
2
4lim

g?0

sup
*|B*LTI

DD*wMDD2
W

mg

4 sup
*|B*LTI

(DD*wMDD2
2
). (21)

However, since in general,

lim
g?0

sup
*|B*LTI

g=(*wM)

"lim
g?0

sup
*|B*LTI

gG+
ij

[(*wM)(2p)H(*wM)(2p)]
ij

#¹<[(*wM)(u)H(*wM)(u)]
ij
NO0. (22)

Eq. (21) does not necessarily follow from Eq. (20). Indeed,
as the example presented earlier in this paper shows,
Eq. (21) does not hold in general. By switching the lim and
sup operators in De"nition 6, the worst case=mg penalizes
not only the 2-norm of the operator *w=, but also its total
variation. This fact causes the worst case =mg norm
to be achieved by *'s that are not a good abstraction
of physical uncertainty, and thus arti"cially in#ates the
worst case norm with respect to the worst case H

2
norm.

5. Limitations of state-space-based approaches

In this section we brie#y consider the state-space-
based approach proposed by Feron (1997) for "nding the
worst case H

2
norm under LTI uncertainty. As we show

in the sequel, this bound exhibits exactly the same degree
of conservatism as the DD.DD

W
mg

bound when dealing with
multivariable noise. The main idea behind the bound is
to consider the impulse response based de"nition of the
H

2
norm (energy of the impulse response added over the

input channels):

DD¹
zf

DD2
2, imp

$%&
"

m
+
i/1

DD¹
zf

e
i
d(k)DD2

2
, (23)

where d(k) denotes the unit impulse and
e
i
"[0 2 1 2 0]. Using this de"nition to compute the

worst case H
2

norm requires computing the following
quantity:

sup
*|B*

DD*wMDD2
2
"sup

*|B*

m
+
i/1

DD(*wM)e
i
d(k)DD

2
. (24)
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In order to obtain an upper bound of the right-hand side
of (24), the uncertainty block3 is replaced by l2[0,R)
signals p

l
and q

l
subject to the integral quadratic con-

straint DDq
l
DD2
2
5DDp

l
DD2
2

(see Feron, 1997 for details). This
leads to the following optimization problem:

sup
*|B*

DD*wMDD2
2
4J

s

$%&
" sup

p|l2*0,=),@@qi@@22z@@pi@@
2
2

m
+
i/1

DD[M
21

M
22

][pi

eid(k)]DD2. (25)

In the special case of system (7) we have that q
i
"d(k)e

i
,

leading to the following problem:

sup
*|B*

DD*wMDD2
2
4J

s

" sup
p|l2*0,=),@@pi@@

2
2y1

DD[M
21

M
22

][pi

eid(k)]DD2

" sup
p|l2*0,=),@@pi@@

2
2y1

m
+
i/1

DDp
i
DD2
2
"m. (26)

Hence, we get the same (conservative) answer obtained
by using set modeling of white note. In this case this is
due to the fact that replacing * by the signals p

i
and q

i
in

(24) amounts to interchanging the operators + and sup*.
Essentially, this allows for diwerent *'s to act in di!erent
channels leading to the conservative answer. With the
hindsight provided by this example, it can be easily
shown that exactly the same situation arises when using
the LMI (5). This gives another view of the source of the
conservatism entailed in using this condition in the
MIMO case.

6. Conclusions

While the DD . DD
W

mg
norm provides a useful tool for

analyzing the H
2

norm of a "xed given system, the
simple counterexample presented here indicates that
these results cannot be used in general to assess the worst
case H

2
norm of uncertain systems, since there exists at

least a Jm gap between the worst case H
2

norm and the
worst case DD.DD

W
mg
. Thus, necessary and su$cient condi-

tions for robust performance in the =mg sense are only
su$cient for robust H

2
performance. Surprisingly, the

same counterexample shows that competing state-
space-based bounds also su!er from exactly the same
degree of conservatism. Neither approach can impose the
non-correlation of uncertainty and input direction, lead-
ing to conservative answers when dealing with multivari-
able noise. Hence, at the present time the problem of
obtaining convex tight bounds on the worst case H

2

3For notational simplicity we consider here unstructured uncertain-
ty, but the same technique applies to the structured case.

performance in the presence of LTI (or slowly LTV)
uncertainty is still open.
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