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Mixed Control of MIMO
Systems via Convex Optimization

Mario Sznaier,Member, IEEE, and Juanyu Bu

Abstract—Mixed performance control problems have been
the object of much attention lately. These problems allow for
capturing different performance specifications without resorting
to approximations or the use of weighting functions, thus elimi-
nating the need for trial-and-error-type iterations. In this paper
we present a methodology for designing mixedl1=H1 controllers
for MIMO systems. These controllers allow for minimizing the
worst case peak output due to persistent disturbances, while at the
same time satisfying anH1-norm constraint upon a given closed-
loop transfer function. Therefore, they are of particular interest
for applications dealing with multiple performance specifications
given in terms of the worst case peak values, both in the time
and frequency domains. The main results of the paper show
that 1) contrary to the H2=H1 case, thel1=H1 problem admits
a solution in l1, and 2) rational suboptimal controllers can be
obtained by solving a sequence of problems, each one consisting
of a finite-dimensional convex optimization and a four-blockH1
problem. Moreover, this sequence of controllers converges in the
l1 topology to an optimum.

Index Terms—l1; =H1; multiobjective control.

I. INTRODUCTION

DURING THE last decade a powerful robust control
framework has been developed addressing issues of

stability and performance in the presence of norm-bounded
model uncertainties. Robust stability and performance are
achieved by minimizing a suitably weighted norm (either

[12], [15], [34] or [9], [11], [17], [32]) of a
closed-loop transfer function. This framework has gained wide
acceptance among control engineers since it embodies many
desirable design objectives. Furthermore, the framework,
in conjunction with -analysis [21], has been successfully
applied to a number of hard practical control problems (see
for instance [26]).

However, despite its significance, this framework is limited
by the fact that in its context, performance must be measured in
the same norm used to assess stability. Clearly, a single norm is
usually not enough to capture different, and often conflicting,
design specifications, such as simultaneous rejection of distur-
bances having different characteristics (white noise, bounded
energy, persistent); good tracking of classes of inputs; satisfac-
tion of bounds on peak values of some outputs; closed-loop
bandwidth, etc. Thus, designers are forced to use weighting
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functions and similarity scaling of appropriate closed-loop
transfer functions, in an attempt to cast the specifications into
a single norm form, amenable to tools currently available

. Although there exist some guidelines relating time
specifications to the selection of weighting functions [19], this
process remains essentially an art. Hence, we can expect at best
a complex design procedure requiring considerable expertise
and numerous trial-and-error-type iterations.

Multiple performance control problems have been the object
of much attention lately (see [30] for references on recent
work on multiobjective control). In particular, mixed
control has been extensively investigated since its introduction
(see for instance [1], [16], [18], [20] and references therein).
More recently [6], [27] and control problems
have been formulated [33]. In this paper we concentrate
on discrete-time mixed controllers. These controllers
allow for minimizing the worst case peak output due to
persistent disturbances, while at the same time satisfying an

-norm constraint upon a given closed-loop transfer func-
tion. Therefore, they are of particular interest for applications
dealing with specifications upon the peak admissible values
both in the time and frequency domains.

It is well known that for stable systems the norm is an
upper bound of the norm. Thus, in principle, this problem
can be recast into a single-norm form, involving only the
norm, and can be solved using the techniques proposed in [11].
However, it has recently been shown through examples in [31]
that this approach can introduce a great deal of conservatism.
Moreover, in some extreme cases, minimizing thenorm
can cause the norm to increase rather than to decrease
[31]. Thus, mixed problems are true multiobjective
problems that cannot be recast into a single norm form.

An alternative approach is to use the Youla parameteriza-
tion to cast the problem into a (infinite-dimensional) convex
optimization form [5], [14], [23]. However, in order to obtain
a tractable problem, several approximations, such as replacing
the infinite-dimensional constraint with a finite number of
constraints obtained by sampling the unit circle, are required.
This may prevent finding a solution if the performance specifi-
cations are tight. Moreover, it has been recently shown that, for
a class of problems, the approximations obtained by sampling
the unit circle will fail to converge to a solution, even when
the number of sampling points tends to. This difficulty
can be avoided by using a linear matrix inequality (LMI)
characterization of the constraint [6]. This approach leads
to tractable problems that can be efficiently solved using
LMI tools. However, it requires imposing that the closed-loop
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system must be an finite impulse response (FIR) in order to
maintain convexity. Moreover, at the present time there is no
known method to prespecify the order of the approximation in
order to meet given approximation error bounds.

The approach that we pursue in this paper evolves from the
solution to the mixed problem for single-input/single-
output (SISO) systems presented in [27]. The generalization to
a multi-input/multi-output (MIMO) four-block problem is not
straightforward but can be achieved by using some of the ideas
in [27] and the formulas in [24]. As in [27], it will be shown
that asuboptimalsolution to the mixed problem, i.e.,
a solution satisfying the constraint and with performance
arbitrarily close to the optimal, can be obtained by solving
a finite-dimensional convex optimization problem followed
by an unconstrained minimization. Furthermore, stronger
results will include the existence of an optimal solution in
(contrary to the mixed case where it has been shown
that the optimal closed-loop system does not belong to
[20]) and the convergence of the sequences of controllers and
closed-loop systems in the topology.

The paper is organized as follows: In Section II we intro-
duce the notation to be used and some preliminary results
on functional and complex analysis. In Section III we show
that the mixed -control problem admits a minimizing
solution in and that the optimal performance level can
be approximated arbitrarily close with rational controllers. In
Section IV we furnish a method for computing an optimizing
sequence of rational controllers such that the resulting closed-
loop systems approximate the optimum in thetopology. In
Section V we indicate how to computesuboptimal solutions
by solving a finite-dimensional convex optimization problem
and a standard problem. In Section VI we briefly indicate
how to extend these results to the continuous-time case.
Section VII illustrates our results with some simple design
examples. Finally, in Section VIII, we summarize our results
and we present some concluding remarks.

II. PRELIMINARIES

A. Notation

Given a matrix , we denote by its th row. For
we define as the vector with components .

We denote the one-norm as and the
infinity norm as . denotes the space
of absolutely summable sequences equipped with
the norm . denotes the space
of bounded sequences equipped with the norm

. We denote by the space of
bounded vector sequences . In this space we
define the norm . Finally, by we
denote the subspace of formed by sequences
such that . Given a sequence , its -transform is
defined as . In the sequel we will denote
by the space of transforms of elements in , and by a
slight abuse of notation we will sometimes use the notation

to denote .

Given a bounded linear operator defined by
the usual convolution relation , its induced
norm is given by

Given a sequence the truncation
operator is defined as

denotes the Lebesgue space of complex valued matrix
functions which are essentially bounded on the unit circle,
equipped with the norm

where denotes the largest singular value. By we
denote the subspace of functions in with a bounded ana-
lytic continuation inside (outside) the unit disk. denotes the
subset of functions continuous in theclosedunit disk. The
norm on is defined by .
Also of interest is the space of transfer matrices in
which have analytic continuation inside the disk of radius

(usually ). When equipped with the norm
becomes a normed

Banach space.
Given one can write the formal series

. The series converges pointwise for each
and uniformly inside any disk with radius smaller than one. It
is a standard result that if and only if .
In this case, the series converges uniformly also on the unit
disk.

For a transfer matrix . In the sequel,
both the dependence on the complex variableand the
dimensions of the transfer matrices will be omitted unless
necessary for clarity.

Finally, throughout the paper we will use the prefix to
denote real rational transfer matrices, and packed notation to
represent their state-space realizations, i.e.,

B. Background Materials on Functional and Complex Analysis

In this section we present the mathematical background
required for establishing the existence of the solution to the
mixed problem and to assess its properties. This
material is standard either in functional analysis (such as [13])
or complex analysis textbooks (such as [22]) and is included
here for ease of reference.

1) Preliminaries on Functional Analysis:Let be a
normed linear space. The space of all bounded linear
functionals on is denoted by . Given and

denotes the value of the linear functionalat
. The induced norm on is defined as
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where .
Definition 1: Let be a Banach space with dual space.

A sequence converges weakly to if for every
we have that .

Definition 2: Let be a Banach space with dual space.
A sequence converges weakto if for
every we have that .

Definition 3: A set is said to be weakcompact
if every infinite sequence in contains a weakconvergent
subsequence.

It is a standard result that strong convergence (or conver-
gence in the norm) implies weak convergence, which itself
implies weak convergence. However, the converse are not
true. The importance of weakconvergence is highlighted by
the following theorem.

Theorem 1 (Alaoglu–Banach):Let be a Banach space
and denote its dual space by , then the closed balls in

are weak compact for any positive .
This theorem will be used to establish the existence of

a solution to the mixed problem by constructing an
optimizing sequence of controllers such that all the closed-loop
systems are inside a given ball in and exploiting
weak compactness. However, this result itself is not enough
to show that the sequence of suboptimal closed-loop systems
converges in the topology to the optimal. The latter will be
established by exploiting the following result.

Theorem 2 [13, p. 296]:Weak and strong convergence of
sequences in are equivalent.

Corollary 1 [8, p. 219]: If converges weak to
and , then converges strongly to

, i.e., .
Finally, we recall a theorem about the invertibility of

functions. This theorem will be used to establish that the
optimal controller is indeed in .

Theorem 3 (Wiener–Gelfand [7, p. 483]):Let denote a
commutative Banach algebra with a unit. An element
is invertible in if and only if for all ,
where

Corollary 2: Let denote the Banach space of se-
quences . Consider
and its bilateral -transform . Then

if and only if for all .
Corollary 3: Let denote the Banach space of

sequences of matrices
. Consider . If its

bilateral -transform has full column rank on ,
then its left inverse . Similarly, if has full
row rank in , then .

Proof: Since has full column rank on
for all . From Corollary 1 we have

that . Thus
and . The proof for the right
inverse follows along the same lines.

2) Preliminaries on Complex Analysis:Let denote a
sequence of complex-valued functions defined in a subsetof
the complex plane. The sequence converges pointwise in

to the limit function if for each as
a sequence of complex numbers. A sequence converges
uniformly on to if for each there exists

such that for each for all
(i.e., does not depend on). Uniform convergence

is a strong property, and it is preferable to deal with a milder
convergence criteria. Suppose that each functionis defined
in an open subset . The sequence converges normally
in to if is pointwise convergent to in and
this convergence is uniform on each compact subset of.
The relevance of normal convergence is highlighted by the
following theorems.

Theorem 4: Suppose that each function in a sequence
is analytic in an open set and that the sequence converges
normally in to the limit function . Then is analytic in

. Moreover, 1 normally in for each positive
integer .

A family of functions analytic in is said to benormal
if each sequence from contains at least one normally
convergent subsequence. Given a sequence of functions,
each of whose terms is analytic in an open set, it is of
interest to know whether is normal, i.e., if it is possible
to extract a normally convergent subsequence. An answer to
this question is given by Montel’s theorem, which requires a
certain equi-boundedness assumption. A familyis said to be
locally bounded in if its members are uniformly bounded
on each compact set in .

Theorem 5 (Montel’s Theorem):Let be a family of func-
tions that are analytic in an open set. Suppose that is
locally bounded in . Then is a normal family in this set.

In particular, if is such that
, then the theorem implies that is normal inside

the unit disk. Thus, every sequence contains a
normally convergence subsequence. This is the key fact that
will be exploited in the sequel to establish convergence of the
proposed synthesis method.

III. T HE OPTIMAL CONTROL PROBLEM

Consider the system shown in Fig. 1, whererepresents
the plant to be controlled. The signals (a bounded
energy signal), (a persistent signal), and

represent exogenous disturbances and the control action
respectively; and , and represent
the regulated outputs and the measurements, respectively.
Then, the mixed multiobjective control problem con-
sists of finding an internally stabilizing controller such that
worst case peak amplitude of the performance outputdue
to signals inside the -unity ball is minimized, subject to
the constraint .

Assume that the system has the following state-space
realization (without loss of generality we assume that all

1Heref (k) denotes thekth derivative off .
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Fig. 1. The plant.

weighting factors have been absorbed into the plant):

(S)

It is well known (see for instance [12]) that the set of all
internally stabilizing controllers can be parameterized in terms
of a free parameter as

(1)

where has the following state-space realization:

(J)
and where and are selected such that and

are stable. By using this parameterization, the closed-
loop transfer matrices and can be written as

(2)

where are stable rational transfer matrices. In the
sequel we will make the following assumptions.

A1) The pairs and are stabilizable and
detectable, respectively.

A2) and have full column and row rank, respec-
tively.

A3) and have full column

and row rank, respectively, for all .
A4)

Assumptions A1) through A3) are standard in theory
[35]: A1) is necessary for the existence of stabilizing con-
trollers; A2) guarantees that the portion of the problem
is nonsingular; and A3) guarantees that and do not
have zeros on the unit circle (thus the optimal
performance level is achievable). Assumption A4) allows for
simplifying the exposition. It guarantees both the existence
of suboptimal controllers and nontrivial solutions to the
mixed problem. Moreover, from now on, we will also
assume that . This does not entail any loss of generality,
since the matrices and can be always scaled down so
this assumption holds.

Transformation (1) allows for precisely stating the mixed
problem as follows.

Problem 1 (Mixed Control Problem): Find the op-
timal value of the performance measure

(3)

and a controller such that and ,
or establish that none exists.

Problem 1 is a convex infinite-dimensional optimization
problem for which no closed-form solution is known to
exist. Moreover, experience with similar problems has shown
that they may lead to closed-loop systems exhibiting some
undesirable properties. Specifically, while mixed con-
trol problems lead to finite impulse response [33] (and thus
exponentially stable) closed-loop systems, it has been recently
shown that the optimal mixed system does not
belong to . Thus, in this later case the resulting closed-loop
system is not exponentially stable (albeit it is still bounded-
input/bounded-output stable). Moreover, the optimal controller
has a nonrational transfer function and cannot be uniformly ap-
proximated by a rational (and thus physically implementable)
controller. Thus, from an engineering standpoint it is relevant
to find out whether or not Problem 1 admits a minimizing
solution in . The answer to this question, not trivial since
the set is not
compact in the topology, is given by the following
theorem.

Theorem 6: Assume that and have full col-
umn and row rank on , respectively. Then Problem 1
admits a minimizing solution .

Proof: The proof is deferred until Section IV where we
give a constructive proof, based upon the construction of a
sequence of minimizers that converges to an optimum in the

topology.
Next we restrict our attention to the more meaningful (from

an engineering standpoint) space , and we show that the
infimum of the performance index achievable in this space
coincides with the minimum achievable over. Notice that

. Hence the infimum over the space will
also be equal to .

Lemma 1: Define as

(4)
Then .

Proof: From the definition of it follows that given
there exists such that

(5)

and

(6)

From Assumption A4) there exists such that
. Let . From

convexity, it follows that satisfies

(7)
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for some , small enough. Since , for
any , we can find (for instance by truncating the
expansion of ) such that .
Thus by selecting such that and

, we have

(8)

Hence is a feasible solution for (4). It follows that
. Since is arbitrary, the lemma follows.

IV. PROBLEM SOLUTION

In principle, one can attempt to solve the infinite-
dimensional optimization Problem 1 following an approach
similar to the one in [14]. This entails a double approximation,
since the free parameter is approximated by a finite impulse
response while the constraint is approximated by computing
its value at a finite number of frequency points. Thus, there is
no guarantee that the solution obtained is feasible, nor that the
actual cost will be bounded above by the objective function.
Moreover, it has been recently shown in [31] that for a class
of problems the approximations obtained by sampling the
unit circle will fail to converge to the solution, even when
the number of sampling points tends to. This difficulty
can be avoided by using an LMI characterization of the
constraint [6]. This approach leads to tractable problems that
can be efficiently solved using LMI tools. However, it requires
imposing that the closed-loop system must be an FIR in order
to maintain convexity. Moreover, at the present time there is
no known method to prespecify the order of the approximation
in order to meet given approximation error bounds.

In this paper we will pursue a different route, motivated by
the earlier results obtained for the simpler SISO case. As in
there, we will show that the optimal performance can be found
by solving a sequence of modified problems. Additionally, we
will show that the sequence of solutions to these problems
converges to an optimum, thus proving the existence of a
solution to Problem 1. To establish these results we will
proceed as follows: 1) introduce a modified problem;
2) show that the optimal cost can be found by solving
a sequence of modified problems (Lemma 2); and 3) show
that the corresponding sequence of controllers converges to
an optimum in the topology (Theorem 7). To this effect,
consider the following modified problem.

Problem 2 (Problem ): Given and
such that have full column and row

rank on the circle 2, find

subject to

and a controller such that
and .

Remark 1: Under Assumption A3) it can be easily shown,
either by a slight extension of [25, Corollary 2] or by con-

2From Assumption A3) it follows by continuity that this can be accom-
plished by selecting� close enough to one.

structing an -net [13], that the set

(9)

is compact in the topology. Thus is well defined.
Remark 2: From the Maximum Modulus theorem it follows

that any solution to Problem 2 is an admissible solution
for Problem 1. It follows that is an upper bound for .
In the sequel we will show that and that, under
some additional constraints, the sequence of controllers
converges in the topology.

Next we show that the sequence of controllers generated
in this way converges to an optimal controller. We begin
by showing that the sequence of norms converges to the
optimum.

Lemma 2: Consider a decreasing sequence . Let
and denote the solution to Problems 1 and 2, respectively.
Then the sequence .

Proof: From the Maximum Modulus theorem it follows
that for any , any feasible for Problem 2 is also
feasible for Problem 1. Thus, it follows that . Let

and consider the controller that solves Problem 2
for . Since is feasible for Problem 2 with ,
it follows that . Therefore
exists and . Let be given; by definition of

and proceeding as in Lemma 1, it is possible to construct
such that

(10)

By continuity (recall that all transfer functions involved are
now in ), it is possible to find such that

and
. It then follows that .

Since is arbitrary, . From Lemma 1 it follows that
.

While this lemma shows that the sequence of-norms
converges to the optimum, it neither establishes that the
optimum is achievable, nor does it show that the closed-loop
systems (or controllers) approach the optimum. Next we show
that the infimum is achievable by showing that there exists a
controller such that and

.
Proof of Theorem 6:Consider a sequence and

let and
denote the optimal controller obtained by

solving Problem 2 and the corresponding closed-loop transfer
functions. Without loss of generality [by selecting appropriate

and in (1)], it can be assumed that and are inner
and co-inner, respectively. Then we have that

(11)

From Montel’s theorem it follows that both and are
normal families in the open unit disk. Hence contains a
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normally convergent subsequence . Let denote its
limit. Normal convergence implies that is analytic in the
open unit disk and that for any

where the last inequality follows from the Maximum Modulus
theorem and uniform convergence of in . This
establishes the fact that is feasible.

Let . From Lemma 2 it follows
that . Hence, from the Alaoglu–Banach theorem,
there exists and a subsequence weak ,
i.e., for every . Denote now by

the -transform of . For every with ,
the sequences and belong to . Therefore,

and .
Thus pointwise in the open unit disk. From
normal convergence of to we have that

in . Thus

(12)

Since and and have full column and
row rank, respectively, on , from the Corollaries
to Wiener–Gelfand’s theorem it follows that

. This, combined with the
fact that (and hence it admits a Taylor series
expansion convergent in ) shows
that .

To complete the proof we need to show that .
Assume that . Then there exist and a natural

such that

(13)

Assume that the norm of is achieved by its th row,
. Then there exists such that

. From the weak convergence of
it follows that there exists such that

Thus

for all (14)

against the hypothesis that . Thus . Since
is feasible, the fact that follows now from the

definition of .
Lemma 3: Denote by the th row of . Then

(15)

for all such that .

Proof: The proof follows by extending Corollary 1 to
row-vector sequences (see [8, Th. 12.2.5]) and applying it to
the rows of satisfying .

Next we exploit this result to establish strong convergence
of the sequences of closed-loop systems and controllers, under
some additional assumptions. To this effect partition as

(16)

where . With this notation we have the follow-
ing.

Theorem 7: Assume that has full rank on .
If the first rows of satisfy
then the sequences and converge strongly in the
topology to their respective limits and .

Proof: Let and denote the submatrices of and
formed by the respective first rows. From Lemma 3 we

have that converges strongly to . Hence
. From Wiener–Gelfand’s theorem and the fact

that the norm is submultiplicative we have that
. It follows that also

converges strongly to .
Corollary 4: In the SISO case and converge

strongly to and , respectively.

V. COMPUTING AN APPROXIMATE SOLUTION

A. An Upper Bound Leading to a
Finite-Dimensional Approximation

In Section IV we have shown (Lemma 2) that can be
computed by solving a sequence of convex optimization prob-
lems (Problem 1 with ). In principle, these optimization
problems areinfinite dimensional. However, in this section we
will show that the solution to Problem 2 can be approximated
arbitrarily close by the solution to afinite-dimensionalconvex
optimization problem. In order to establish this result, we
need the following two results showing that, given ,
an -suboptimal solution to Problem 2 can be obtained by
approximating the objective with a function that dependsonly
on the first Markov parameters of .

It is well known (see for instance [35]) that it is possible
to select and in such a way that and are
inner and co-inner, respectively, over . Moreover, if

( ) is not square, it is possible to choose ( )
such that is a
unitary matrix. With this notation we have the following.

Lemma 4: For every , there exists such that if
satisfies the constraint

(17)

and it also satisfies .
Proof: Since is analytic in and

(18)
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where denotes the Markov parameters of. Hence

(19)

Since and are unitary over , it follows that
and from (17) that

(20)

Since is submultiplicative, we have

(21)

The desired result follows by selecting

(22)

Theorem 8: Consider the following optimization problem.
Problem 3:

(23)

subject to

(24)

where

...
...

...
. . .

(25)

is selected according to (22), and where denote
the th element of the impulse response of
respectively. Let denote the optimal solution and define

. Then the following
properties hold.

1) .
2) as (hence ),

where is an optimal solution to Problem 2, and
.

Proof: is immediate from the definition of .
From the definition of we have

(26)

This also shows that as , then . From
(20) it follows that is a normal family in , and
therefore it has a subsequence normally convergent to
some . Moreover, it can be easily shown that

and that .
Thus is an optimal solution to Problem 2. Since

, from (20) we have that, for any

(27)

From the normal convergence of it follows that, given
, there exists such that for

. Therefore, by selecting and large enough, it follows
that .

Finally, we show that Problem 3 can be decoupled into a
finite-dimensionalconvex optimization and anunconstrained

problem. To this effect we recall a necessary and sufficient
condition for the feasibility of the constraint when the first

Markov parameters in the expansion
are fixed.

Consider again Problem 1. By choosing
and such that and

are unitary, can be reduced to

(28)

where has a state-space real-
ization

(29)
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In the sequel, for notational simplicity we will call

(30)

With these definitions, Problem 1 can be reformulated as
follows.

Problem 4: Compute such that

and is minimized.
Consider now the following Riccati equations:

(31)

where

From [24], there exists a satisfying thestrict constraint
if and only if there exist positive-definite solutions and
to these Riccati equations such that . This will be
assumed in what follows. For ease of notation, let

.
Lemma 5: Let have a state-space realization as in (29),

and let . Then there exists
such that

(32)

if and only if , where we have (33), as shown
at the bottom of the page.

Proof: This is [24, Th. 8].
Theorem 9: Given and , an -suboptimal

solution to Problem 2 is given by
where solves the following finite di-

mensional convex optimization problem:

s.t. (34)

and solves the unconstrained optimization problem
(35), as shown at the bottom of the next page, where

is given by (22) and where is obtained from
in (33) by using the change of variable .

Proof: The proof follows from combining Lemmas 4 and
5 with Theorem 8.

Remark 3: It can be easily shown that the change of vari-
able is equivalent to the following transformation
on the state-space realizations:

and where and
denote the solutions to the Riccati equations (31) after the

transformation and .

B. Computing a Lower Bound of the Cost

In the last section we have shown that an-suboptimal
solution to Problem 2 can be obtained by solving a finite-
dimensional convex optimization problem of size .
However, the estimate of provided by (22) can be very
conservative, leading to large optimization problems. Addi-
tionally, while this approach guarantees that the corresponding
suboptimal solution achieves a cost , it does
not provide any information on its distance to, the optimal
solution to Problem 1. These difficulties can be circumvented
by simply solving (34) for increasing values of(obtaining a
decreasing sequence of suboptimal solutions) until the approx-
imation error falls below a given threshold. Clearly, this
requires the ability to compute an upper bound on. To this
effect in this section we introduce a procedure for computing
a lower bound of the cost, , and a sequence of superoptimal
closed-loop systems with increasing norms . By
combining this lower bound with the upper bound derived
in the last section, we can obtain sequences of suboptimal
and superoptimal solutions and stop the optimization when
the difference between the upper and lower bounds, ,
is smaller than a prescribed tolerance.

Theorem 10:Consider the following optimization problem.
Problem 5:

s.t.

(36)
where

(37)

...
...

...
. . .

...
...

...
. . .

...

...
...

...
. . .

...
...

...
. . .

...

(33)
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and solves the unconstrained approximation problem

(38)

Assume that and have full column and row rank on
. Then the following properties hold.

1) .
2) normally in , where is an

optimal solution to Problem 1.
3) weak ,

where .

Proof: We begin by showing that . Suppose
that some solves Problem 5 with horizon . Then clearly

is a feasible solution for the same problem with horizon. It
follows that . Moreover, from the definition of
and and the fact that it follows that . Thus

is a nondecreasing sequence, bounded above, and therefore
has a limit . Next we will show that . From
(20) we have that . Thus,
is a normal family in and by Montel’s theorem has
a subsequence that converges normally to .
It can be easily shown that . Thus,

is a feasible solution for Problem 1. Normal convergence
of in implies uniform convergence in any closed
disk . Thus, given , there exists
such that for

Let denote the Markov parameters of . Proceeding as
in (18) it can be easily seen that . Hence,
for we have

Thus, for

This implies that converges normally to . Consider
now the corresponding sequence of’s. Since ,
it follows from Alaoglu–Banach’s theorem that there exist

and a subsequence weak . Proceeding
as in the proof of Theorem 6 it can be easily shown that

and that

(39)

As in Theorem 6 this implies that . Since
and is feasible for Problem 1 it follows that and

.
Corollary 5: Assume that has full rank on .

If the first rows of satisfy
then the sequences and converge strongly in the

topology to their respective limits and .

VI. THE CONTINUOUS-TIME CASE

In the previous sections we have shown that a discrete-time
mixed problem can be solved by solving a sequence of
convex optimization problems. In this section we will briefly
address the continuous-time counterpart of the problem. The
main result of this section shows that suboptimal
controllers can be synthesized by solving a discrete-time mixed

for an auxiliary discrete-time system. To this effect
we introduce the discrete-time Euler Approximating System
(EAS) [2], [3] and explore some of its properties.

Definition 4: Consider the continuous time system .
EAS is defined as the following discrete time system:

(EAS)

where .
Next we recall some of the properties of the EAS, showing

that the and norms of the EAS are upper bounds of
the corresponding continuous-time quantities. Moreover, these
upper bounds are nonincreasing withand converge to the
exact value as .

Lemma 6 [3]: Assume that is asymptotically stable and
consider a strictly decreasing sequence . Let
denote the transfer function of and , the
transfer function of the EAS corresponding to. Then

(40)

Lemma 7 [28]: Assume that is asymptotically stable
and consider a strictly decreasing sequence . Let
denote the transfer function of and the transfer
function of the EAS corresponding to. Then

(41)

Combining the results of Lemmas 6 and 7 we have the
following result.

(35)
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Lemma 8: Assume that
. Consider a strictly decreasing sequence and the

corresponding EAS . Let

(42)

Then the sequence is nonincreasing and such that .
Finally, we note that from the definition of the EAS it

is easily seen that the closed-loop transfer function obtained
by applying the rational controller to is the same
as the closed-loop transfer function obtained by applying
the controller to the EAS, up to the complex
transformation . Therefore, if a rational compensator

yielding an cost is found for the EAS, then
internally stabilizes and yields an

cost . It follows that a rational compensator can be
synthesized using the EAS with a suitably small. These
observations are formalized in the following lemma.

Lemma 9: Consider the mixed control problem for
continuous time-systems. A suboptimal rational solution can
be obtained by solving a discrete-time mixed control
problem for the corresponding EAS, with .
Moreover, if denotes the controller for the EAS,
the suboptimal controller is given by .

Finally, we show that by taking , the proposed design
method yields controllers with cost arbitrarily close to the
optimal cost.

Theorem 11:Let be a strictly decreasing se-
quence. Denote by the controller obtained using the design
procedure of Lemma 4 with and by
the corresponding closed-loop transfer function. Then the
sequence is nonincreasing and such
that .

Proof: The proof, omitted for space reasons, follows
along the same lines of the proof of [28, Th. 4].

VII. SOME SIMPLE EXAMPLES

Example 1: Consider the four-block unstable, nonminimum
phase MIMO system shown in Fig. 2 where

and is the controller transfer function. Define the transfer
matrices and as follows:

where

Fig. 2. Block diagram of the closed-loop system (Example 1).

The four-block MIMO control problem of interest is

Minimize

subject to

For this problem, the proposed synthesis procedure, described
in Sections V-A and V-B, yields and

. Table I shows a comparison of the optimal
norms corresponding to several values of, with the

corresponding closed-loop impulse responses shown in Fig. 3.
Here is calculated from (22) with the error bound

. Since as approaches one gets rather large,
the controller synthesis was followed by a model reduction
step. The last column in Table I, , shows the order of the
resulting controller.

For comparison, Table II lists the lower bounds of the cost,
obtained by solving Problem 5 in Section V-B for increasing
values of . As gets larger, approaches the optimal value
from below.

Example 2: Consider now the continuous-time SISO plant
used in [10] and [3]

(43)

The controller that minimizes is
given by

(44)

and yields , with
. It is easily seen that

, with . Given the difficulty
of physically implementing a nonrational controller, in [3] we
developed a method for synthesizing rational approximations
to the optimal controller. The rational approximation
proposed there yields

(45)

with and . The controller that
minimizes is given by and yields

and . Finally, a mixed design yields
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(a) (b)

(c) (d)

Fig. 3. Impulse responses of resulting systems (Example 1): (a) optimal controller; (b)� = 1:1765; (c) � = 1:1111; and (d)� = 1:0526.

TABLE I
COMPARISON OF THEOPTIMAL SOLUTIONS CORRESPONDING TODIFFERENT�’s

TABLE II
LOWER BOUNDS FOR DIFFERENT VALUES OF THE HORIZON n

and . The different frequency
responses for and the corresponding impulse responses for

are shown in Fig. 4.

VIII. C ONCLUSION

In this paper we present an iterative algorithm for solving
a general mixed control problem. The main idea is

to construct a sequence of optimization problems and then
show that the sequence of solutions thus generated converges,
in the topology, to a solution of the original problem.
At each step, the optimization problems are convex and
have a structure which allows for efficient computations.
Additionally, our approach provides new insights into some
properties of the optimal solutions, in particular the facts that
the problem admits a minimizing solution in and, more
importantly from an engineering standpoint, that the optimal
performance can be approached arbitrarily close by a real-
rational controller. Moreover, from a practical standpoint, our
approach allows for finding exponentially stable suboptimal
solutions with a prescribed degree of stability, by selecting

in Problem 2.
Finally, we want to point out that, although these results

deal with mixed control problems, they also provide
an alternative to the delay-augmentation [8] method for solving
MIMO pure problems. This approach, based upon recasting
the problem into a mixed problem by adding a
nonbinding artificial constraint (see [29] for details), does
not necessitate obtaining the zero structure ofand and
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Fig. 4. Impulse and frequency responses for different designs (Example 2).

computing the zero interpolation and the rank interpolation
conditions. Thus, it may provide a useful alternative to delay
augmentation, especially for cases where the number of inputs
or outputs is not small. In these cases, delay augmentation will
tend to result in larger linear programming problems, and it
may require a large number of trial-and-error-type iterations
(reordering inputs and outputs) in order to satisfy the sufficient
conditions for convergence of the upper bound.

Perhaps the most severe limitation of the proposed method is
that it may result in very large-order controllers (roughly),
necessitating some type of model reduction. Note, however,
that this disadvantage is shared by some widely used design
methods, such as-synthesis or optimal control theory, that
will also produce controllers with no guaranteed complexity
bound. Application of some well-established methods in order
reduction (noteworthy, weighted balanced truncation) usually
succeed in producing controllers of manageable order.

Recent results show that in the state-feedback case, the same
cost achieved with a linear dynamical controller, can be

achieved with nonlinear memoryless feedback [4]. Since it is
well known that the same results hold for controllers, this
raises the issue of using static nonlinear controllers, rather than
high-order dynamical controllers, to solve the mixed
problem. Research is currently under way addressing this issue
and the issue of model reduction in the presence of mixed
performance objectives.
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