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Mixed [, /H~, Control of MIMO
Systems via Convex Optimization

Mario Sznaier,Member, IEEE and Juanyu Bu

Abstract—Mixed performance control problems have been functions and similarity scaling of appropriate closed-loop
the object of much attention lately. These problems allow for transfer functions, in an attempt to cast the specifications into
capturing different performance specifications without resorting a single norm form, amenable to tools currently availdbte

1 7

to approximations or the use of weighting functions, thus elimi- . L ) .
nating the need for trial-and-error-type iterations. In this paper Hoo, L1). Although there exist some guidelines relating time

we present a meth0d0|ogy for designing rni)(e(jl/’}—(OQ controllers SpECiﬁcationS to the selection of Welghtlng functions [19], this
for MIMO systems. These controllers allow for minimizing the  process remains essentially an art. Hence, we can expect at best
worst case peak output due to persistent disturbances, while atthe 3 complex design procedure requiring considerable expertise
same time satisfying ar{..-norm constraint upon a given closed- and numerous trial-and-error-type iterations.

loop transfer function. Therefore, they are of particular interest . .
for applications dealing with multiple performance specifications Multiple performance control problems have been the object
given in terms of the worst case peak values, both in the time Of much attention lately (see [30] for references on recent
and frequency domains. The main results of the paper show work on multiobjective control). In particulat{s/H.. mixed
that 1) contrary to the 7> /.. case, thel, /H.. problem admits  control has been extensively investigated since its introduction
a sollutlon in iy, .and 2) rational suboptimal controllers can .be. gﬁee for instance [1], [16], [18], [20] and references therein).
obtained by solving a sequence of problems, each one consistin
of a finite-dimensional convex optimization and a four-blockH .. ore recentlyl; /Ho. [6], [27] and l;/H, control problems
problem. Moreover, this sequence of controllers converges in the have been formulated [33]. In this paper we concentrate
1; topology to an optimum. on discrete-time mixed, /*., controllers. These controllers
Index Terms—, . /H.., multiobjective control. allow for minimizing the worst case peak output due to
persistent disturbances, while at the same time satisfying an
‘H..-norm constraint upon a given closed-loop transfer func-
. INTRODUCTION tion. Therefore, they are of particular interest for applications
URING THE last decade a powerful robust controflealing with specifications upon the peak admissible values
framework has been developed addressing issues beth in the time and frequency domains.
stability and performance in the presence of norm-boundedit is well known that for stable systems the norm is an
model uncertainties. Robust stability and performance anpper bound of thé{., norm. Thus, in principle, this problem
achieved by minimizing a suitably weighted norm (eithegan be recast into a single-norm form, involving only the
Il - llo [12], [15], [34] or || - ||2 [9], [11], [17], [32]) of a norm, and can be solved using the techniques proposed in [11].
closed-loop transfer function. This framework has gained widdowever, it has recently been shown through examples in [31]
acceptance among control engineers since it embodies mémt this approach can introduce a great deal of conservatism.
desirable design objectives. Furthermore, the framework, Moreover, in some extreme cases, minimizing thenorm
in conjunction with u-analysis [21], has been successfullgan cause thé{., norm to increase rather than to decrease
applied to a number of hard practical control problems (s¢&l]. Thus, mixed!,/H., problems are true multiobjective
for instance [26]). problems that cannot be recast into a single norm form.
However, despite its significance, this framework is limited An alternative approach is to use the Youla parameteriza-
by the fact that in its context, performance must be measuredion to cast the problem into a (infinite-dimensional) convex
the same norm used to assess stability. Clearly, a single norropgimization form [5], [14], [23]. However, in order to obtain
usually not enough to capture different, and often conflicting, tractable problem, several approximations, such as replacing
design specifications, such as simultaneous rejection of disttlre infinite-dimensional{ ., constraint with a finite number of
bances having different characteristics (white noise, boundeshstraints obtained by sampling the unit circle, are required.
energy, persistent); good tracking of classes of inputs; satisfa¢vis may prevent finding a solution if the performance specifi-
tion of bounds on peak values of some outputs; closed-loogtions are tight. Moreover, it has been recently shown that, for
bandwidth, etc. Thus, designers are forced to use weightiaglass of problems, the approximations obtained by sampling

. . . the unit circle will fail to converge to a solution, even when
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system must be an finite impulse response (FIR) in order toGiven a bounded linear operatéf : {2, — (£ defined by
maintain convexity. Moreover, at the present time there is tioe usual convolution relatiop = H *u, its induced?, — 2,
known method to prespecify the order of the approximation imorm is given by
order to meet given approximation error bounds. q

The approach that we pursue in this paper evolves from the |H|1 = maxz | H (&, )]l
solution to the mixed; /H ., problem for single-input/single- R —t
output (SISO) systems presented in [27]. The generalization to .. .
a multi-input/multi-output (MIMO) four-block problem is not Given a sequence: = {a®,a%,2%,-} the truncation
straightforward but can be achieved by using some of the ideoapseratorP"(” 2 1) is defined as
in [27] and the formulas in [24]. As in [27], it will be shown Po(x) = {2° 2% 22, -, 2" 10,0, -}
that asuboptimalsolution to the mixed;/H., problem, i.e., .
a solution satisfying thé{., constraint aéd with performance ’CC’? denote_s the Lebesgu_e space of complex Va'“e_d r_natnx
arbitrarily close to the optimal, can be obtained by solving‘mc_tIons Wh'Ch are essentially bounded on the unit circle,
a finite-dimensional convex optimization problem followe quipped with the norm
by an unconstraine#/., minimization. Furthermore, stronger IG(N)||oo = ess sup o(G(N))
results will include the existence of an optimal solutionin [Al=1

(contrary to the mixed?>/H case where it has been showqyheres denotes the largest singular value. By (H) we

that the optimal closed-loop system does not belongdto denote the subspace of functionsdn, with a bounded ana-

[20]) and the convergence of the sequences of controllers apgk continuation inside (outside) the unit disk, denotes the

closed-loop systems in thig topology. subset ofH., functions continuous in thelosedunit disk. The
The paper is organized as follows: In Section Il we intronorm ont,, is defined bYIG(N)||s0 = esssupy <, G(G(N)).

duce the notation to be used and some preliminary resyio of interest is the spack., s of transfer matrices ifHo,

on functional and complex analysis. In Section Ill we shoyhich have analytic continuation inside the disk of radius

that the mixed!; /H.-control problem admits a minimizing s ~ 1 (usually § =~ 1). When equipped with the norm

solution in/; and that the optimal performance level CANG(N)||so,s = esssUp|y|<s 5(G(N)), Hoo,s becomes a normed

be approximated arbitrarily close with rational controllers. I8anach space.

Section IV we furnish a method for computing an optimizing Gjyen G()\) € Hoo One can write the formal seri€g(\) =

sequence of rational controllers such that the resulting clos%zo G;\'. The series converges pointwise for eadh< 1

loop systems approximate the optimum in theopology. I and uniformly inside any disk with radius smaller than one. It

Section V we indicate how to computesuboptimal solutions js a standard result the € I, if and only if 2, 1Gi < .

by solving a finite-dimensional convex optimization probleny, this case, the series converges uniformly also on the unit

and a standar®(., problem. In Section VI we briefly indicate gjgk.

how to extend these results to the continuous-time casegor 3 transfer matrixG(\), G~ = GT(1/)). In the sequel,

Section VIl illustrates our results with some simple desighoth the dependence on the complex variahleand the
examples. Finally, in Section VI, we summarize our resuligimensions of the transfer matrices will be omitted unless
and we present some concluding remarks. necessary for clarity.
Finally, throughout the paper we will use the prefixto
denote real rational transfer matrices, and packed notation to
Il. PRELIMINARIES represent their state-space realizations, i.e.,

A B
A. Notation G\) =\C(I - XA)'B+D=
C D

Given a matrix A, we denote byA; its ith row. For
x € R™ we define|z| as the vector with components;|.
We denote the one-norm &fz||; = .. ,|z;| and the . . i
infinity norm as ||z]|o = max; |z;]. I, denotes the space In this section we present the mathematical background

of absolutely summable sequendes= {;} equipped with required for establishing the existence of the solution to the
the norm||All;, = S22 |hi| < oc. L., denotes the spacemixed li/H. problem and to assess its properties. This
of bounded sequencgs — {h;} equipped with the norm material is standard either in functional analysis (such as [13])
il = sup;so|h] < oc. We denote byiz. the space of OF complex analysis textbooks (such as [22]) and is included
bounded vector sequencéa(k) € Rr}. In this space we here for ease of reference. .

define the normj|A||, = sup, ||hi(k)||es. Finally, by c, we 1) Preliminaries on Functional Analysistet X be a
denote the subspacoé of formed by sequences = {h; normed linear space. The space of all bounded linear
such thath; — 0. Given a sequenck € I, its A-transform is functl(?knals on.X is denoted byX*. Givenz € X and
defined asH(\) = 3°5°, hiAL. In the sequel we will denote ” €X g (z,r) denotes the v_alue pf the linear functionaht

by A the space of\ transforms of elements i, and by a - The induced norm ok* is defined as

slight abuse of notation we will sometimes use the notation Il = sup |(z,7)]

||H||» to denote||h||s, . zEBX

B. Background Materials on Functional and Complex Analysis
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where BX = {z € X:|jz|| £ 1}. 2) Preliminaries on Complex Analysid:et {f,} denote a
Definition 1: Let X be a Banach space with dual spa¢é. sequence of complex-valued functions defined in a suthsxt
A sequencdz, } € X converges weakly to € X if for every the complex plane. The sequenfcg,} converges pointwise in
z* € X* we have thatz,,,z*) — (z,z*). A to the limit function f if for eachz € A, f.(2) — f(%) as
Definition 2: Let X be a Banach space with dual spa¢é. a sequence of complex numbers. A sequehtg converges
A sequence{z)} € X* converges wedkto * € X* if for uniformly onA to f (f, = f) if for eache > 0 there exists
everyz € X we have thatz, z%) — (z,z%). N(e) such that|f,,(z) — f(z)| < e for eachn > N(e) for all
Definition 3: A set K € X* is said to be weakcompact =z € A (i.e., N(¢) does not depend o). Uniform convergence
if every infinite sequence ik contains a wedkconvergent is a strong property, and it is preferable to deal with a milder
subsequence. convergence criteria. Suppose that each funcfipis defined
It is a standard result that strong convergence (or convér-an open subsdt. The sequencéf,} converges normally
gence in the norm) implies weak convergence, which itseif U to f if {f,} is pointwise convergent t¢’ in U and
implies weak convergence. However, the converse are ntitis convergence is uniform on each compact subset/ of
true. The importance of weélconvergence is highlighted by The relevance of normal convergence is highlighted by the
the following theorem. following theorems.
Theorem 1 (Alaoglu—Banach).et X be a Banach space Theorem 4: Suppose that each function in a sequefife}
and denote its dual space By*, then the closed balls iX* is analytic in an open sét and that the sequence converges
. . ) ) normally in U to the limit function f. Then f is analytic in
BumX™ ={a" € X7« [|l27]| < M} U. Moreover, f{¥) — (®?1 normally in U for each positive

are weak compact for any positive//. integer k. _ o
This theorem will be used to establish the existence ofA family # of functions analytic inl/ is said to benormal

a solution to the mixed; /.. problem by constructing an if each sequencéf, } from ]-"_ contains at least one nqrmally
optimizing sequence of controllers such that all the closed-lo§NVergent subsequence. Given a sequence of funclifns
systems are inside a given ball in = (c,)* and exploiting €ach of whose terms is analytic in an open &gtit is of
weak compactness. However, this result itself is not enougzgteres" to know whetheff,.} is normal, i.e., if it is possible

to show that the sequence of suboptimal closed-loop systelfi€Xtract a normally convergent subsequence. An answer to

converges in thé; topology to the optimal. The latter will be S question is given by Montel’s theorem, which requires a
established by exploiting the following result. certain equi-boundedness assumption. A farsilis said to be

Theorem 2 [13, p. 296]:Weak and strong convergence ofocally bounded inU if its members are uniformly bounded

sequences il; are equivalent. on each compact sef i _
Corollary 1 [8, p. 219]: If ¢ € I, converges wedk to Theorem 5 (Montel’'s Theorem):et F be a family of func-

¢ € 1, and||¢"||. — ||¢]l., then ™ converges strongly to tions that are analytic in an open g6t Suppose thatF is

i no_ locally bounded in/. ThenF is a normal family in this set.
¢, ie. [|¢" — ¢l — 0.

Finally, we recall a theorem about the invertibility f !N particular, if 7 C Ho, is such thatf € 7 =
functions. This theorem will be used to establish that tHe |l < 1, then the theorem implies tha is normal inside
optimal controller is indeed i . the unit disk. Thus, every sequend¢;} € F contains a

Theorem 3 (Wiener-Gelfand [7, p. 483]pet A denote a normally convergence subsequence. This is the key fact that
commutative Banach algebra witr,w a unit. An elemenie A will be exploited in the sequel to establish convergence of the

is invertible in 4 if and only if f(x,) # 0 for all f € $,(.4), Proposed synthesis method.
where

Sp(A) ={f e A" - ||f|| = 1}. Hl. THE I;/H-, OPTIMAL CONTROL PROBLEM

Corollary 2: Let [;(Z) denote the Banach space of se- Consider the system shown i!’l Fig. 1, wheferepresents
quences{a,} : Y°°__|a,| < occ. Considerz € (%) the plant to be controlled. The signals,, € 5> (a bounded
and its b'ilateral)\-transformX()\) = 3% ___z,\". Then €nergy signal)w; € It (a persistent.. signal), andu €

n=

X(\)~! € 1,(Z) if and only if X(X) # 0 for all |\ = 1. [+ represent exogenous disturbances and the control action
Corollary 3: Let 17*%(Z) denote the Banach space oféSPectively; and., € ly", ¢, € 1%, andy € I represent
sequences of matrice§S, € RP*7} : maxj<i<p YL, the regulated outputs and the measurements, respectively.
o . " . Sl <= Then, the mixed, /M., multiobjective control problem con-
S, (1, . ConsiderS e IP*YZ). Ifits .- .~ " L/ 7hoo o
(2n—oo 19n (i, )]) < o € b (7) sists of finding an internally stabilizing controlléf such that

bilateral A-transformS(A) has full column rank onjA| = 1, .
then its left inverses! e 19°P( 7). Similarly, if S(\) has full worst case peak amplitude of the performance outpudue
L= ' : to signalsw; inside thel..-unity ball is minimized, subject to

row rank in|| = 1, then S, & 1{7(2) the constrain|; .. [l < 7.

P;OOf' Since 5(A) has full column rank onlA| = 1, Assume that the systerfi has the following state-space
det(5™5)(A) # 0 for all |A] = 1. From Corollary 1 we have realization (without loss of generality we assume that all
that (det(STS)(\)~! € 1,(Z). Thus (STS)~t € 11U Z)
and ST (\) = (S79)~1ST € 19°7(Z). The proof for the right
inverse follows along the same lines. O IHere f(¥) denotes the:th derivative off.
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Problem 1 (Mixed; /H, Control Problem): Find the op-

2‘” - S — g‘” timal value of the performance measure
u y W= qlzlg {1811 + S12Q821 |1 ¢ [|T11 + T12QT 21 |0 < 1}
1
®3)
and a controller) such that|®(Q)||1 = pand||¥(Q)]|eo < 1,
K or establish that none exists.
Problem 1 is a convex infinite-dimensional optimization
Fig. 1. The plant. problem for which no closed-form solution is known to

exist. Moreover, experience with similar problems has shown
that they may lead to closed-loop systems exhibiting some
undesirable properties. Specifically, while mixgd*, con-
A B B Bs trol problems lead to finite impulse response [33] (and thus
c, Dy Du Dis | (S) eﬁponen'ﬂally ﬁtable).cIOTed—.loop systems, it has t(;een recently
Cy Dy, Doy Dy shown that the optima mixed{s/Ho system does not
belong to.A,. Thus, in this later case the resulting closed-loop
Cs D31 D3z Dss ) . DA
) ) system is not exponentially stable (albeit it is still bounded-
It is well known (see for instance [12]) that the set of allyny/hounded-output stable). Moreover, the optimal controller
internally stabilizing controllers can be parameterized in term$,s 5 nonrational transfer function and cannot be uniformly ap-

weighting factors have been absorbed into the plant):

of a free paramete € Ho as proximated by a rational (and thus physically implementable)
K =F(J,Q) (1) controller. Thus, from an engineering standpoint it is relevant
) o to find out whether or not Problem 1 admits a minimizing
where J has the following state-space realization: solution inl;. The answer to this question, not trivial since
A+ B3EF + LC3 4+ LDssF ‘ —-L Bz + LD3; the set=2(Q) = {Q €y :||T11 + T12QT2 || < 1} is not
compact in theH., topology, is given by the following
r 0 ! theorem.
—(C3 + D33F) I —Ds3 ) Theorem 6: Assume thatS1,()\) and Sa;()) have full col-

and whereF and L are selected such that + B3 F and umn.and row ra}n.k ol - 1, respectively. Then Problem 1
%c_imns a minimizing solutior® € I;.

A+ LCj are stable. By using this parameterization, the close Proof: The proof is deferred until Section IV where we

loop transfer matrice$; ..., and; .., can be written as . ' .
give a constructive proof, based upon the construction of a
U =T we (A) = T11(A) + T12(M)Q(N)T21(N) sequence of minimizers that converges to an optimum in the
O =T w, (A) = S11(A) + S12(A)Q(N)S21(A) (2) ! topology.
. . Next we restrict our attention to the more meaningful (from
where 1;;,.5;; are stable rational transfer matrices. In th‘én engineering standpoint) spa&d;, and we show that the

sequel we wiII_make the following assumptiong. infimum of the performance index achievable in this space
Al) The pairs(A, Bs) and (C3, A) are stabilizable and coincides with the minimum achievable ovkr Notice that
detectable, respectively. Rl = R'Hoo. Hence the infimum over the spa@®#H .. will
A2) D,z and Ds; have full column and row rank, respec-q|sg be equal tqu.
tively. _ Lemma 1: Define i as
A—e®T  Bj A—el’T B
A3) | c D13] and | Cs D31] have full column ;. = inf {1511 +512Q8 |o ¢ [T + T12@T1 [l < 1)
and row rank, respectively, for all < 8 < 27. QERL (4)
Ad) infoerp |11 + T12QT01 ||oo = 7* < 7. Then pg = p.
Assumptions Al) through A3) are standard M., theory Proof: From the definition ofy it follows that given

[35]: Al) is necessary for the existence of stabilizing con- > 0 there existsQ; € [y such that

trollers; A2) guarantees that the,., portion of the problem

is nonsingular; and A3) guarantees tHat and 7%, do not i+ T2 @i anlloo < 1 ®)

have zeros on the unit circle| = 1 (thus the optimalH., .

performance level is achievable). Assumption A4) allows for [[S11 + S12Q1 8211 < o+ %. (6)

simplifying the exposition. It guarantees both the existen(l:_(?

of. suboptimalX., controllers and nontrivial solutions'to the Th1 + TiaQaTo |l < 1. Let O = (1 — Q1 + nQs. From

mixed/; /Ho problem. Moreover, from now on, we will als’o'c':onvexity, it f0||(l|\NS thatQ* € I, sa(\tisfies)

assume that = 1. This does not entail any loss of generality, €1

since the matrice®; and Dy, can be always scaled down so  [|S11 +512Q"S21[l1 < i + Y 7]|512(Q2 — Q1) 5211

this assumption holds. < €1
Transformation (1) allows for precisely stating the mixed Skt 2

l1/Ho problem as follows. 1711 + T12Q " To1|loo < 1 — €2 7)

and

om Assumption A4) there exist®, € RH., such that
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for somen,e; > 0, small enough. Sinc&)* € [, for structing ane-net [13], that the set
any ¢ > 0, we can find (for instance by truncating the

expansion ofQ*(\)) Q@ € Riy such that||Q* — Q|1 < e Z(Q) =1{Q € RHoos : IT11 + T12QTo1||loo,s <1} (9)

Thus b*y selecting such that|[S12(Q" — Q)52 < 3 and g compact in theH, topology. ThusQ* is well defined.

[T12(Q" = Q)Taufls < e, we have Remark 2: From the Maximum Modulus theorem it follows
1511 + S12Q821 1 < p+ e that any solution to Problem 2 is an admissible solution
|71y + T12QT51 ||oo < 1. (8) for Problem 1. It follows thatus is an upper bound fo..

In the sequel we will show that,s | © and that, under
some additional constraints, the sequence of controflgys
converges in thd; topology.
Next we show that the sequence of controllers generated
IV. PROBLEM SOLUTION in this way converges to an optimal controller. We begin
In principle, one can attempt to solve the infiniteby showing that the sequence &f norms converges to the
dimensional optimization Problem 1 following an approacfPtimum.
similar to the one in [14]. This entails a double approximation, Lemma 2: Consider a decreasing sequerf¢e| 1. Let
since the free parametér is approximated by a finite impulse@nd s, denote the solution to Problems 1 and 2, respectively.
response while the constraint is approximated by computidgen the sequences, | 1.
its value at a finite number of frequency points. Thus, there is Proof: From the Maximum Modulus theorem it follows
no guarantee that the solution obtained is feasible, nor that fhat for anyé > 1, any Qs feasible for Problem 2 is also
actual cost will be bounded above by the objective functioféasible for Problem 1. Thus, it follows that; > p. Let
Moreover, it has been recently shown in [31] that for a clads > 62 and consider the controlleps, that solves Problem 2
of problems the approximations obtained by sampling tH@r ¢ = 61. SinceQs, is feasible for Problem 2 withh = 6,,
unit circle will fail to converge to the solution, even wherit follows that yis, > s, > pu. Thereforep"™ = lims|y s
the number of sampling points tends to. This difficulty €Xists andu'™ > 4. Let ¢ > 0 be given; by definition of
can be avoided by using an LMI characterization of tig, Hr and proceeding as in Lemma 1, it is possible to construct
constraint [6]. This approach leads to tractable problems tHaf € R*Hoo such that
can be efficiently solved using LMI tools. However, it requires *
imposing that th):a closed—loog system must be an FIR |?1 order 1o+ 122Q" Ton [low < 1
to maintain convexity. Moreover, at the present time there is |S11 + S12Q" Sa1ll1 < pr + €. (10)

no known method Fo prespeufy the. order of the approxmatlcgy continuity (recall that all transfer functions involved are
in order to meet given approximation error bounds. now in RH..), it is possible to finds > 1 such that

In this paper we will pursue a different route, motivated by, . N
pap P i % € RHoos, || T11 + T12Q*To1 ||oo,s < 1 and|| Sy + Si2

Hence@ is a feasible solution for (4). 1t follows thatg <
1+ €1. Sincee; is arbitrary, the lemma follows. O

:Ee earlier r'ﬁSl;]ItS OtEtatTr?d fotr_ theI sm;pler SISO caze.fAs Sarlls < pir + . It then follows thatu!™ < s < jug + .
ere, we will snow that the optimal performance can beé Ioulg, .o i arbitrary,p"™ = pp. From Lemma 1 it follows that
by solving a sequence of modified problems. Additionally, wey,, O

will show that the sequence of solutions to these proble S\Nkﬁle'this lemma shows that the sequencelohorms

converges to an optimum, thus proving the existence of 3nverges to the optimum, it neither establishes that the

SOIUUO% 0 fP:lobIer.nl 1i tTodestabhsh ;Q_eseHresultsblwe. W Iptimum is achievable, nor does it show that the closed-loop
proceed as follows: 1) introduce a modified7{-, problem; systems (or controllers) approach the optimum. Next we show

2) show that the opt.lmal cost can be found'by solving that the infimum is achievable by showing that there exists a
a sequence of modified problems (Lemma 2); and 3) Sh%\'(‘fntrollerQ* € 1, such that|[Ty, + T12Q"Tor ||l < 1 and
that the corresponding sequence of controllers converges”g@11 b 8150 S| < p oo =

an optimum in thel; topology (Theorem 7). To this effect,
consider the following modified, /H., problem.

Problem 2 (Probleni; /H, 5): Given é > 1 and S;;()),
T;;(\) € RH oo 5 such thatl1z, T»; have full column and row
rank on the circlg\| = &2, find

Proof of Theorem 6:Consider a sequenc& | 1 and
let Qj € RHOO7(55', oI = Si1 + Sngj521, and W/ =
T, + T12Q7T», denote the optimal controller obtained by
solving Problem 2 and the corresponding closed-loop transfer
functions. Without loss of generality [by selecting appropriate

s = QE}?I%EW 1511 + S12QSa1 |1 FandL in (1)], it can be assumed thdi, and7%; are inner
subject to and co-inner, respectively. Then we have that
1111 4+ T12QT51 ||oo,s < 1 [0 < 1
and a controllery* € RH o, s such that|S11 +512Q* Sa1 (|1 = 1Q)loe < I T11]|o0 +1 = Mg

ps and [Ty + T12Q* Tat|oo,s < 1. ; J
Remark 1: Under Assumption A3) it can be easily shown, 1#7lo0 < [1S1tloo + [[S12]lool|€ ”00”521”?0
either by a slight extension of [25, Corollary 2] or by con- < IS1tlles + [1S12][colS21 ]l Ma = Mo (11)

2From Assumption A3) it follows by continuity that this can be accom-From Mont(?l"s theorem It fOHOV'VS t'hat botk ,and Q]. are
plished by selecting close enough to one. normal families in the open unit disk. Hencg' contains a
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normally convergent subsequen¢é?}. Let Q* denote its
limit. Normal convergence implies th&™* is analytic in the
open unit disk and that for any < 1

sup o(11; +T12Q* (M) 121) < 1
A<p

where the last inequality follows from the Maximum Modulus

theorem and uniform convergence & in |A\| < 1. This
establishes the fact th&™ is feasible.
Let M = ||S11 + S12Q°So1||1. From Lemma 2 it follows
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Proof: The proof follows by extending Corollary 1 to
row-vector sequences (see [8, Th. 12.2.5]) and applying it to
the rows ofg* satisfying||(¢*).|l1 = - O

Next we exploit this result to establish strong convergence
of the sequences of closed-loop systems and controllers, under
some additional assumptions. To this effect partitiip as

St
Si2 = (16)
Sty

that |®7||, < M. Hence, from the Alaoglu-Banach theoremWwheresSi, € 7, ™. With this notation we have the follow-

there existsp* € I; and a subsequencg — ¢* weak,
i.e., for everyr € cg, (z,¢%) — (z,¢*). Denote now by
®*()\) the A-transform of ¢*. For every A with [A] < 1,
the sequenceRe{\*} and Im{)\*} belong tocy. Therefore,
Re{®‘(\)} — Re{®*(\)} and Im{®‘(\)} — Im{®*(\)}.
Thus ®(\) — ®*(\) pointwise in the open unit disk. From
normal convergence af’ to Q* we have tha®? = S;; +
Sng*Sgl in |)\| <p <l Thus

O*(A) = S11 + 512Q" Sa1. (12)
Since ¢* € [; and S12 and Sy have full column and
row rank, respectively, offA| = 1, from the Corollaries
to Wiener—Gelfand’'s theorem it follows that=!(Q*)
ATLST, (@ — 511)S),] € 11.(Z). This, combined with the

fact that Q* € H., (and hence it admits a Taylor series

expansion*(\) =
that Q* e .

To complete the proof we need to show thiat*||, = p.
Assume that|¢*||1 > u. Then there exist > 0 and a natural

Ny such that

o @At convergent infA| < 1) shows

1Prng ()1 2 1o+ 2. (13)

Assume that the norm dPy, (¢*) is achieved by itsnth row,
Pn,[(¢*)m]. Then there exists € ¢,, ||z||lc = 1 such that
<z, Pny[(6%)m] = 1 + 2e. From the weak convergence of
¢' it follows that there existsV, such that

(@, P [(0")m]) = (2, P [(¢F)m])| < e,

Thus

7’L>N1.

16" lls = 128 (" )mllls = [{2, P [(¢7 )]}
> [, Py (%) m)] = [z, P [(¢7)m])
— (@, P [(¢7)m])|

> ute for all n > Ny (14)

against the hypothesis thigb™||; | 1. Thus||¢*||1 < p. Since
Q* is feasible, the fact thal¢*||; = 1 follows now from the

definition of z. O
Lemma 3: Denote by(¢*),, the mth row of ¢*. Then
Zh_glo ||(¢7)m — (¢ )mll1 =0 (15)

for all m such that||(¢* )m|l1 = p-

ing.

Theorem 7: Assume thatS},()\) has full rank on|\| = 1.
If the first n, rows of ¢* satisfy||(¢*)i|l1 = p, i =1, -+, n,
then the sequences® and Q™ converge strongly in thé,
topology to their respective limitg* and ¢*.

Proof: Let¢;, andg;. denote the submatrices¢f and
¢™ formed by the respective firgt, rows. From Lemma 3 we
have that$! converges strongly t@;, . Hence||S,(Q* —
Q™)S21|l1 — 0. From Wiener—Gelfand’s theorem and the fact
that thel; norm is submultiplicative we have thaip* —
Q"||1 — 0. It follows that ¢ = S;; + 512Q™S9; also
converges strongly t¢* = S11 + S12Q*So1. O

Corollary 4: In the SISO case¢p™ and (Q* converge
strongly to¢* and Q@*, respectively.

V. COMPUTING AN APPROXIMATE SOLUTION

A. An Upper Bound Leading to a
Finite-Dimensional Approximation

In Section IV we have shown (Lemma 2) thatcan be
computed by solving a sequence of convex optimization prob-
lems (Problem 1 with$; | 1). In principle, these optimization
problems arénfinite dimensionalHowever, in this section we
will show that the solution to Problem 2 can be approximated
arbitrarily close by the solution to finite-dimensionatonvex
optimization problem. In order to establish this result, we
need the following two results showing that, given> 0,
an e-suboptimal solution to Problem 2 can be obtained by
approximating the objective with a function that dependky
on the firstn(e) Markov parameters of).

It is well known (see for instance [35]) that it is possible
to select/” and L in such a way thai2()\) and 7> ()\) are
inner and co-inner, respectively, oveY| = &. Moreover, if
T15 (I31) is not square, it is possible to chodse,; (121.1)
such thatlis, = [T12 Ti21] (1216~ = [T21™ 12117 ]) is a
unitary matrix. With this notation we have the following.

Lemma 4: For everye > 0, there existsi(e, §) such that if
@ € H s satisfies the constraint

‘ (N
50,6

0
and it also satisfie§(/ — P (c5))(®)|1 < e
Proof: Since@ € H.. 5, ® is analytic in|A\| < § and

1

k= 5~
275 Jin=s

0

<
0 <1

17

Ti1(N) + Ti2q(N) [Q }TQM(A)H

B(AARFD N (18)
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where¢;, denotes the Markov parameters ®f Hence

¢l < vnro(br) < Vx| @lloo.s67
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Proof: s < py is immediate from the definition gis.
From the definition ofu} we have

ni oo
ny o> n n n s
maxid 33 gnli )] p < ZW’ I < 1/—”‘1’”005‘5 owp = @p], = max (Y 0D (i)

j:l k=n

(19)

SinceTi», and 75, are unitary ovelfi| = &, it follows that
IT12]loc,s = ||T21]lo0,s = 1 @and from (17) that

[Qlloc,s < 1+ [[T11locs- (20)
Since||.||s is submultiplicative, we have
[[loo,5
< IS1lloo,s + (112|006l @lloo,s |21 00,6
< [1911lls,5 + [[S12[l00,8 /1521 [[oo,6 (1 + | 111 ]| c0,6) = K.
(21)
The desired result follows by selecting
log \/mi K — loge(1 — 671
I [ og /N1 og «( )] 22)
log 6
|

Theorem 8: Consider the following optimization problem.

Problem 3:
Qc%lgloo,g | Prce,5)(S11 + S12QS21) 1
=  min ||8; + 512081 (23)
QiR XMy
0<i<n—1
subject to
0
Ty + T, @ To14 <1 (24)
0 0 0,0
where
Sy =[sity sty oo sl
Sip=[s21 s3ts oo sy
r QO 0 0
Q1 Qo 0
Q= :
Qn 1 QO
rs2L 0 .. 0
$21 21
51 50 0
Su=| (25)
311 1 sp"

n(e, 6) is selected according to (22), and whé}g, s 7 denote
the kth element of the impulse response Qf()\) 5 (A)

respectively. LetQ} denote the optimal solution and define

O = S11 + S512Q% 521, py = ||®F]l:i. Then the following
properties hold.
1) pws < py < pst e

2) |Q% — Qf|l1 — 0 asec — 0 (hence||®} — &3], — 0),

where @} is an optimal solution to Problem 2, and

OF = 511+ S12Q551.

j=1 k=0
ny n—1 ny oo
< max (1,7 + max (i, ]
< g j:MZ:OM( )|+ mz ;;m( )
ny n—1
Smiax |Z(L,J)| +€
7=1k=0
ny n—1
< max |[#2.(6,0)] ¢ +e
=1 k=0
ny oo
< max i, €= €. 26
< m: ;kgm( N p+e=ns+ (26)
This also shows that a8 — 0, then pu} — pus. From

(20) it follows that@™ is a normal family in|A| < &, and
therefore it has a subsequen€® normally convergent to
some Q; € H..s. Moreover, it can be easily shown that
1711+ T12Q5 121 ||o,s < 1 and thall|S11 +512Q5 521 (|1 = pe-
Thus@ is an optimal solution to Problem 2. Sin@¥, Qi €
Heo.s5, from (20) we have that, for anyv > 0

) my N—1
Q5 - Q; L Ssup SN |Qisliyd) — Qrs(is )]
j=1 k=0
6N

+ 2y/my (1 + ||T11||oo,6)ﬁ

(27)

From the normal convergence 6J? it follows that, given
n > 0, there existsV, such that forn > Ny, |Q7,(i,5) —
Qs )] < g3y k=0, N=1,1<i<ny,1 <5 <
m,. Therefore, by selectingy andN1 large enough, it follows
that Q7 — Q3lls < 7. O
Finally, we show that Problem 3 can be decoupled into a
finite-dimensionakonvex optimization and annconstrained
H problem. To this effect we recall a necessary and sufficient
condition for the feasibility of thé{., constraint when the first
n Markov parameters in the expansiGi{)) = @, + Q1A +
o4 Q1 A are fixed.
Consider again Problem 1. By choosing L, Ti-,,
and T3, such thatTis, = [T12 TlQJ_] and T51,”™
[T21~ T»1,™] are unitary,||¥||- can be reduced to

s+ 2,
(28)

where G = 15,111~ 1T12, € RHo, has a state-space real-
ization

[¥lloe =

0
T+ T2, [% O} Toia|| =

A ‘ B, B,
Ca Daa Dab (29)
Cy Dye Dy
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In the sequel, for notational simplicity we will call

C,
Be: Ba B P Der: Daa Da P Ce: 7
B, 5] [Dew Do) o
Do
D.. = |:Dba :| . (30)
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is given by (22) and wher®/5(Q,,) is obtained fromiV (Q,,)
in (33) by using the change of variable— §71A.
Proof: The proof follows from combining Lemmas 4 and
5 with Theorem 8. O
Remark 3: 1t can be easily shown that the change of vari-
able A — 61\ is equivalent to the following transformation

With these definitions, Problem 1 can be reformulated &8 the state-space realizationt: — A; = 6Ae, [Be Bo] —

follows.

Problem 4: Compute@ € I; such that||“:¥%" €12,

Ga1 Gz '™

< 1 and ||S]|1 is minimized.
Consider now the following Riccati equations:

X =4.XAT + B.BY + R,(I - D, D, — C,XCT)'RY
Y =ATYA. +CTC. +R,(I - DLD.. - BF'YB,) 'R}
(31)

where

R, =AXCY + B.DY

er?

R, = ATYB, + CTD,..

From [24], there exists  satisfying thestrict H., constraint
if and only if there exist positive-definite solutiod$ and Y

to these Riccati equations such th&fX'¥") < 1. This will be
assumed in what follows. For ease of notation et X1/2,

Yy = Y2,

Lemma 5: Let G have a state-space realization as in (29),

and letQrr(\) = Y74 Q: M. Then there exist®r., (\) €
H~ such that

G+ X5 QFAT +A7"Qi, (V)™ Gra
Gy G

if and only if (W (Qx))
at the bottom of the page.
Proof: This is [24, Th. 8].

Theorem 9:Given ¢ > 0 and § > 1, an e-suboptimal
solution to Problem 2 is given b@(\) = > 77 QN =
Qrr + \'Q:ail Where Qprr solves the following finite di-
mensional convex optimization problem:

<1 (32

oo

< 1, where we have (33), as shown

Bs = [6B. 6B,], X — X5, andY — Y5, where X and
Y5 denote the solutions to the Riccati equations (31) after the
transformationA — As and B — Bs.

B. Computing a Lower Bound of the Cost

In the last section we have shown that asuboptimal
solution to Problem 2 can be obtained by solving a finite-
dimensional convex optimization problem of sizde,§).
However, the estimate of provided by (22) can be very
conservative, leading to large optimization problems. Addi-
tionally, while this approach guarantees that the corresponding
suboptimal solution achieves a cdit}||; < ps + ¢, it does
not provide any information on its distance jto the optimal
solution to Problem 1. These difficulties can be circumvented
by simply solving (34) for increasing values of(obtaining a
decreasing sequence of suboptimal solutions) until the approx-
imation errore,, falls below a given threshold. Clearly, this
equires the ability to compute an upper boundeqnTo this
ffect in this section we introduce a procedure for computing
a lower bound of the cost;™, and a sequence of superoptimal
closed-loop systems with increasidg norms p™ 1 u. By
combining this lower bound with the upper bound derived
in the last section, we can obtain sequences of suboptimal
and superoptimal solutions and stop the optimization when
the difference between the upper and lower boupds: 1.,
is smaller than a prescribed tolerance.

Theorem 10: Consider the following optimization problem.

Problem 5:

pt = min [ (511 + 512 (@) 5211 S.L(W(Qa)) <1

(36)
qu)i_n||Pn(e,(s)(511 +512QFmrS21)|l1 St (Ws(Qy)) <1 (34) Where
4 n—1
and Q.. solves the unconstraingd.. optimization problem Q"(\) = Z QU+ A"QT ) = QR +A"Q7y  (37)
(35), as shown at the bottom of the next page, wheke6) =0
r yAlx yAZlea yA.B, yB, yAZleb yAe.By,  yBp T
C,,,Ag_la: C,,,AZ_QB,,, C,B, D, C,,,AZ_QBb C,By Dy
C’,,,AZ‘%: C’,,,AZ_?’B,,, D, 0 C’,,,AZ_?’Bb Dy 0
WQu =| Cur Daa 0 0 Day 0 - 0
CbAZ_la: CbAZ_QBa CyB, Dy, CbAZ_QBb Cy By QB
CbAZ_Qa: CbAg_?’Ba Dy, 0 CbAg_?’Bb QB Qi
L Gz Dya 0 0 Q4 Qf C

(33)
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andQ@”,, solves the unconstrainéd.,, approximation problem As in Theorem 6 this implies thap* € I;. Sincep ™ <

Oy A~ o ~ andQ* is feasible for Problem 1 it follows that'™ = ;, and

Gu+Yis (@ z) ATHATTQEA(N)T G <1 [¢*|h = . 0

G Gz [l Corollary 5: Assume thatS},()) has full rank onj\| = 1.

(38)  f the first n,, rows of ¢* satisfy||(¢*)ill1 = u, i =1,-- -, n,,
Assume thatS;» and S»; have full column and row rank on then the sequences® and P,(Q™) converge strongly in the

|A| = 1. Then the following properties hold. [, topology to their respective limitg* and Q"
1) p” — p.
2) P,(Q") — Q" normally in [\| < 1, whereQ* is an VI. THE CONTINUOUS-TIME CASE
optimal solution to Problem 1. In the previous sections we have shown that a discrete-time
3) & = B(S11 + S128,(Q7)S21) — ¢* € I weak, mixedl,/H.. problem can be solved by solving a sequence of
where ®* = S1; 4+ 512Q"S5;1. convex optimization problems. In this section we will briefly

Proof: We begin by showing that¢™||; — . Suppose address the continuous-time counterpart of the problem. The
that some? solves Problem 5 with horizoi+1. Then clearly main result of this section shows that suboptingdl/H..
Q is a feasible solution for the same problem with horizoft ~ controllers can be synthesized by solving a discrete-time mixed
follows thaty” < ;+. Moreover, from the definition ofix l1/Ho for an auxiliary discrete-time system. To this effect
and " and the fact thatiz = 4 it follows that i < ;1. Thus We introduce the discrete-time Euler Approximating System
4™ is a nondecreasing sequence, bounded above, and there&%ﬁes) [2], [3] and explore some of its properties.

has a limitu™ < .. Next we will show thag™ = ;. From Definition 4: Consider the continuous time syste(¥).
(20) we have tEaHQﬁH < |[Ti1lloe + 1 = Mg. Thus, Q" EAS is defined as the following discrete time system:

is a normal family in|A| < 1 and by Montel's theorem has I+7A ‘ 7By 7By TDj

a subsequencéQ™} that converges normally t&* € H.,

It can be easily shown thaltT}; + 712Q* T ||so < 1. Thus, Ch Dy D D | (EAS)

Cy Dy Dy Do

Q* is a feasible solution for Problem 1. Normal convergence
C(3 D31 D32 D33

of @™ in |A| < 1 implies uniform convergence in any closed
disk [\| < A\, < 1. Thus, givene > 0, there existsN > 0 Wherer > 0.

such that forn > N Next we recall some of the properties of the EAS, showing
o o that thel; and H., norms of the EAS are upper bounds of
olQ@™*(A) - Q" (V)] < ¢, VIAL< A, < 1. the corresponding continuous-time quantities. Moreover, these

Let Q7 denote the Markov parameters @f*. Proceeding as UPPer bounds are nonincreasing withand converge to the
in (18) it can be easily seen thatQ”) < ||Q"... Hence, €xact value as- — 0.

for [\ < A, we have Lemma 6 [3]: Assume tha{S) is asymptotically stable and
- consider a strictly decreasing sequenge— 0. Let T¢,,(s)
_ n . = n denote the transfer function ofS) and T7;%(A, ), the
L@ = @V < et o Z @i )‘] transfer function of the EAS correspondingto Then
n FAS
<ot Qoo ITeu(@)ls < [TE 0l
v 72507, < [T, 0>
< F+MQ1 . hm HTEU‘}S (A7 \1 = ||Tcw(s)|1- (40)
Thus, forn > max{N, (%ﬂ]} Lemma 7 [28]: Assume that(S) is asymptotically stable
- . . ’ and consider a strictly decreasing sequence 0. LetT,,(s)
G (QM)(N) - Q" (V)] <2, VA <A <1 denote the transfer function 0§) andZ2%(\, ;) the transfer
This implies thatP, (Q™) converges normally t@*. Consider function of the EAS corresponding tq. Then
now the corresponding sequenced®f’s. Since||®"||; < p, Tz 0(8)]lco < HTFAS )
it follows from Alaoglu—Banach’s theorem that there exist HTEAS s Hoo < HTEAS (A TJ’)HOO P>

¢* € I, and a subsequencé’ — ¢* weak. Proceeding AS
as in the proof of Theorem 6 it can be easily shown that ~ lim HT a AT oo = 1Tew(8)] oo (41)

* lim
1971l < ™ and that Combmmg the results of Lemmas 6 and 7 we have the
O () = S11 + S12Q% 521 (39) following result.

G+ Y7 QPN £ A "Q(N)~  Gho
G G2 008
<1 (35)

Qa1 = alg min
cH

oo, &
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Lemma 8: Assume thainfgeri .. || Tewwe (8)]loc = 7o <
~. Consider a strictly decreasing sequenge— 0 and the
corresponding EAS;). Let t

= ; (EAS)
pi= it [T
1T sowoe oo =7

po= _inf [T (9l @2)
1T¢ oo 00 oo <

Then the sequenge is nonincreasing and such that — 1° Fig. 2. Block diagram of the closed-loop system (Example 1).

Finally, we note that from the definition of the EAS it
is easily seen that the closed-loop transfer function obtaind
by applying the rational controllek(s) to (S) is the same
as the closed-loop transfer function obtained by applying Minimize |||,
the controllerK(%) to the EAS, up to the complex subject to|| ¥ || g, < 37.

transformation\ = %H Therefore, if a rational compensator

K()) yielding anl; /H., costpq is found for the EAS, then For this problem, the proposed synthesis procedure, described
K((rs+1)71) internally stabilizegS) and yields anC* /H.. in Sections V-A and V-B, yields|®|; = 72.6418 and
cost . < pg. It follows that a rational compensator can bew||, = 37.00. Table | shows a comparison of the optimal
synthesized using the EAS with a suitably smallThese ;, norms corresponding to several values &f with the
observations are formalized in the following lemma. corresponding closed-loop impulse responses shown in Fig. 3.

Lemma 9: Consider the mixed' /H, control problem for Here n(c, §) is calculated from (22) with the error bound
continuous time-systems. A suboptimal rational solution can= 0.001. Since as approaches one(c, 6) gets rather large,
be obtained by solving a discrete-time midgd* .. s control the controller synthesis was followed by a model reduction
problem for the corresponding EAS, with= (1 — 7%)7*.  step. The last column in Table I, shows the order of the
Moreover, if K(A) denotes thé, /H ., controller for the EAS, resulting controller.
the suboptimal’' /M., controller is given byK ((7s+1)"").  For comparison, Table Il lists the lower bounds of the cost,

Finally, we show that by taking — 0, the proposed design obtained by solving Problem 5 in Section V-B for increasing
method yields controllers with cost arbitrarily close to th@alues ofn. Asn gets largery” approaches the optimal value
optimal £!/H., cost. from below.

Theorem 11:Let -, — 0 be a strictly decreasing se- Example 2: Consider now the continuous-time SISO plant
quence. Denote by; the controller obtained using the designysed in [10] and [3]
procedure of Lemma 4 withr = 7, and by 7., (s, K;)
the corresponding closed-loop transfer function. Then the s—1
sequencey; = ||T%,w, (s, K;)|l1 is nonincreasing and such P(s) = s—2° (43)
that im; oo pt; = po.

Proof: The proof, omitted for space reasons, followShe controller that minimize§7’||; = ||[PC(1 + PC)7Y||; is

ge four-block MIMO!; /H, control problem of interest is

along the same lines of the proof of [28, Th. 4]. O given by
VIl. SOME SIMPLE EXAMPLES % (s — 2)(1.7071 — 4.1213~0-8814) (a4)
L= - S
Example 1: Consider the four-block unstable, nonminimum (s = 1)(=0.7071 4 4.1213¢~0-55142)
phase MIMO system shown in Fig. 2 where

and yieldsT(s) = 1.7071 — 4.1213¢ 088145 with || 7|, =

N Gl LU R 04 5.8284. It is easily seen tha$(s) = (1+ PC)~! = 0.7071 +
(1—-100)(1 - 0.54) 1—-0.6A 4.1213¢70-884  with ||S]|., = 4.8284. Given the difficulty
W, — 1-0.75) _ 0.0z of physically implementing a nonrational controller, in [3] we
2T 12025\ P T 1202 developed a method for synthesizing rational approximations
\ L : S
and K is the controller transfer function. Define the transfdP the optimal £ controller. The rational approximation
matrices® and U as follows: proposed there yields
Y1 n1 Yy r 1
where 1
S(s) = —0.8414 + 4.3423 ——— 45
() + (1+0.1s)° (45)

o—( (- PE)™'W, PK(1— PK)™'W,
T \0.1K(1 - PK)™'W; 0.1K(1- PK)™'W,
v (PEOQ- PK)™'  P(1-PK)™'W;
T\ K(1-PK)! PKQ1-PK)'W;)

with ||S||ec = 3.9 and ||T||; = 6.18. The H,, controller that
minimizes|| S| is given byC(s) = —3 and yields||S||.c =
3 and ||7||; = 10. Finally, a mixed£!/H., design yields
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Fig. 3.

input 1 Output 1

input 1 Output 2

Input 1 Output 1 Input 1 Output 2

Amplitude

05
0 5 10 15 20 5 10 15 0 5 10 15 20 0 5 10 15 20
No. of Samples No. of Samples No. of Sampies No. of Sampies
input 2 Output 1 Input 2 Output 2 Input 2 Output 1 Input 2 Output 2
30,
20
g g o g
<< < <
. -10
25 5 10 15 20 “o 5 10 15 2 5 10 15 20 “0 5 10 15 20
No. of Samples No. of Samples No. of Samples No. of Samples
(@) (b)
input 1 Output 1 Input 1 Output 2 Input 1 Output 1 Input 1 Output 2

Amplitude

5 .5 058

0 5 10 0 )] 5 [ S 10 15 20 0 5 10 15 20
No. of Samples No. of Samples No. of Sarmples No. of Samples
Input 2 Output 1 Input 2 Output 2 Input 2 Output 1 Input 2 Output 2

Amplitude

5
No. of Samples

(©)
Impulse responses of resulting systems (Example 1): (a) optimal controllér;=£b).1765; (c) 6 = 1.1111; and (d)6 = 1.0526.

5
No. of Samples

TABLE |
COMPARISON OF THEOPTIMAL SOLUTIONS CORRESPONDING TODIFFERENT 'S
6 lie]ls ¥l n{e, §) Na
1.1765 73.9412 36.96 87 21
1.1111 73.0260 36.95 136 14
1.0526 72.7859 36.93 288 14
optimal 72.6418 37.00 - 14
TABLE 1
LoweR BOUNDS FOR DIFFERENT VALUES OF THE HORIZON n
n 50 100 150 200 250
un 71.9572 72.1890 72.3827 72.5256 72.6145

(] 5 10 15 20 “o 5 10 15 20
No. of Samples No. of Samples

(d)

to construct a sequence of optimization problems and then
show that the sequence of solutions thus generated converges,
in the I; topology, to a solution of the original problem.
At each step, the optimization problems are convex and
have a structure which allows for efficient computations.
Additionally, our approach provides new insights into some
properties of the optimal solutions, in particular the facts that
the problem admits a minimizing solution & and, more
importantly from an engineering standpoint, that the optimal
performance can be approached arbitrarily close by a real-
rational controller. Moreover, from a practical standpoint, our
approach allows for finding exponentially stable suboptimal
solutions with a prescribed degree of stability, by selecting
6 > 1 in Problem 2.

[Tl = 6.41 and [|S]|c = 3.45. The different frequency  Finally, we want to point out that, although these results

responses fofS and the corresponding impulse responses fgeg| with mixed!; /H. control problems, they also provide
T are shown in Fig. 4.

VIIl. CONCLUSION

In this paper we present an iterative algorithm for solvingonbinding artificialH ., constraint (see [29] for details), does
a general mixed; /H., control problem. The main idea isnot necessitate obtaining the zero structur&oefandSz; and

an alternative to the delay-augmentation [8] method for solving
MIMO pure I; problems. This approach, based upon recasting
the I; problem into a mixed; /H., problem by adding a
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Frequency Response of S(s)
10° S — . ——T . .
Optimal £!
—— 7 OV VIV
2 Optimal Hoo
2 Mixed
210° | .
i Rational
5
-
-1 1 . N N N N
10 .
107" 10° 10' 10”
Frequency (rad/s)
Impulse Response of T(s)
5 1 T 1 T T
Q
9
2
;_a .
]
<
_15 L 1 1 1 1
0 0.5 1 1.5 2 25 3

Time (s)

Fig. 4. Impulse and frequency responses for different designs (Example 2).

computing the zero interpolation and the rank interpolatioiener—Gelfand’s Theorem and Theorem 6, to Prof. F. Blan-
conditions. Thus, it may provide a useful alternative to delaghini, University of Udine, for his suggestions regarding
augmentation, especially for cases where the number of inp8esction VI, and to the anonymous reviewers for many sug-
or outputs is not small. In these cases, delay augmentation wgiistions for improving the original manuscript.

tend to result in larger linear programming problems, and it
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