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@ L - l ( T ) I  dT, 

@O (7) 

D21D;I = I T  [ ; (r)]l*b(l) - - .  P;-,(~)]dr. 
@“-l 

With the two symmetric matrices E:2E1z and E21Eh1 computed, 
there are many choices for El2 and E21; for example, we can take 
them as the square roots or Cholesky factors of the two symmetric 
matrices respectively. 
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An Exact Solution to General SISO Mixed 
‘Ha/’H, Problems via Convex Optimization 

Mario Sznaier 

Absftact-The mixed ‘Ha/‘Hm control problem can be motivated as 
a nominal LQG optimal control problem, subject to robust stability 
constraints, expressed in the form of an ‘H, norm bound. A related 
m d e d  problem consisting on ’ ’ lg an upper bound of the 
‘H2 cost subject to H, constraints was introduced in [l]. Althwgh 
there presently exist ef6ci-t metbeds to solve this modilied problem, 
the original problem “pins, to a large extent, still open. In this 
paper we propose a method for solving general discretetime SISO 
‘H2/’H, problems. This method involves solving a sequence of problems, 
each one consisting of a Mtedimensional convex optimization and an 
unconstrained Nehari approximation problem. 

* * 

I. INTRODUCT~ON 
During the last decade, a large research effort has been devoted to 

the problem of designing robust controllers capable of guaranteeing 
stability in the face of plant uncertainty. As a result, a powerful 
Hm framework has been developed, addressing the issue of robust 
stability in the presence of norm-bounded plant perturbations. Since 
its introduction, the original formulation of Zames [2] has been 
substantially simplified, resulting in efficient computational schemes 
for finding solutions. Of particular importance is [3] where a state- 
space approach is developed and an efficient procedure is given to 
compute suboptimal ‘H, controllers. Since these controllers are not 
unique, the extra degrees of freedom available can then be used to 
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Fig. 1. The generalized plant 

optimize some performance measure. This leads naturally to a robust 
performance problem: Design a controller guaranteeing a desired 
level of performance in the face of plant uncertainty. In spite of a large 
research effort [4], however, this problem has not been completely 
solved. 

Altematively, the extra degrees of freedom can be used to solve 
a problem of the form nominal performance with robust stability. 
In this case the controller yields a desired performance level for the 
nominal system while guaranteeing stability for all possible plant 
perturbations. A problem of this form that has been the object of much 
attention lately is the mixed 'F12/ 'FI,  control problem: Given the 
system represented by the block diagram in Fig. 1, where the scalar 
signals U ' ,  (an l 2  signal) and w 2  (white noise) represent exogenous 
disturbances, U represents the control action, <= and cz represent 
regulated outputs, and where represents the measurements; find an 
internally stabilizing controller I / ( - )  = IC( :)y( 2 )  such that the root 
mean square (RMS) value of the performance output (2 due to (1'2 is 
minimized, subject to the specification IITc, l l . lc ( : ) / I x  5 1. 

Different versions of this problem have been studied recently. 
Bernstein and Haddad [ I ]  considered the case where 11'2 = U'= 
and obtained necessary conditions for solving the modified problem 
of minimizing an upper bound of /(TtL71~L112, subject to the 2, 
constraint. In [5] and [6] the dual problem of minimizing this upper 
bound for the case (1'2 # U',, C2 = CX was considered and sufficient 
conditions for optimality where given. Finally, in [7] these conditions 
where shown to be necessary and sufficient. These conditions involve 
solving several coupled Riccati equations, however, and at this 
point there are no effective procedures for achieving this. In [8], 
Khargonekar and Rotea (see also [SI for the discrete-time version) 
showed that the modified problem can be cast into the format of 
a constrained convex optimization problem over a bounded set of 
matrices and solved using nondifferentiable optimization techniques. 

The approaches mentioned above provide a solution to the modified 
problem. At this time, however, there is no information regarding the 
gap between the upper bound minimized in the modified problem 
and the true 7-12 cost. Very little work has been done concerning the 
original problem, which remains, to a large extent, still open. In [IO],  
Rotea and Khargonekar addressed a simultaneous 'H2/ 'HX state- 
feedback control problem and showed that a solution to this problem, 
when it exists, also solves the mixed 'Hr/'HH, problem. Although 
this provides some insight into the structure of the problem, there are 
cases (most notably the case where I31 = &) where the simultaneous 
problem provides little help in solving the original problem. Recently, 
mixed 7-12/3-I, control using fixed-order controllers was analyzed us- 
ing a Lagrange multipliers-based approach and necessary conditions 
for optimality were obtained [ 1 1 1 .  These conditions involve solving 
coupled nonlinear matrix equations and finding the neutrally stable 
solution to a Lyapunov equation, which leads to numerical difficulties. 
Moreover, in [lo] it was shown that even in the state-feedback case, 
the optimal controller must be dynamic, and it is conjectured that in 
the general case it may have higher order than the plant. This makes 
a fixed-order approach less attractive, since there is little a priori 
information on the order of the optimal controller. 

In this paper we propose a solution to general discrete-time single- 
input single-output (SISO) mixed 'H~2/2~ problems. The main result 
of the paper shows that these problems can be exactly solved by 
solving a sequence of modified problems, each one requiring the 

solution of a finite dimensional convex, constrained optimization 
problem, and an unconstrained Nehari approximation problem. This 
approach, which follows the spirit of [12], [13], represents a sig- 
nificant departure from other convex optimization-based approaches 
(e.g., [ 141) where several approximations are required to obtain a 
tractable mathematical problem. 

The paper is organized as follows: In Section I1 we introduce the 
notation to be used and some preliminary results. Section I11 contains 
the bulk of the theoretical results and the proposed solution method. In 
Section IV we present a simple design example. Finally, in Section V, 
we summarize our results and indicate directions for future research. 

11. PRELIMINARIES 

A. Notation 

By 1" we denote the space of real sequences q = {u t } ,  
equipped with the norm llqllP = Iqilp)i  < x. C, 
denotes the Lebesgue space of complex valued transfer functions 
which are essentially bounded on the unit circle with norm 
l / T ( ~ ) l / ~  2 s u p l z I = ,  IT(.)/. 3-1, (2;) denotes the set of stable 
(antistable) complex functions G(:) E C,, i.e., analytic in 1 - 1  2 1 
(1.1 5 1). 2 2  denotes the space of complex transfer functions square 
integrable in the unit circle and analytic in 1 - 1  > 1, equipped with 
the norm 

Given R E C,, TIT( R )  denotes its maximum Hankel singular value. 
Given a sequence g E 11 we will denote its --transform by Q ( 2 ) .  It 
is a standard result that q E R11 iff Q( t )  E R X F t , .  Throughout the 
paper we will use the prefix R to denote real rational transfer matrices 
and packed notation to represent their state-space realizations, i.e., 

Given two transfer matrices T = (;ti ;::) and Q with appropriate 
dimensions, the lower linear fractional transformation is defined as: 
K ( T .  Q) A T I I  + TllQ(I - T L ~ Q ) - ' T ~ ~ .  Finally, for a transfer 
matrix ~ ( t ) ,  G- 2 G I  ( ( I / > ) ) .  

B. Problem Transfomation 

Assume that the system S has the following state-space realization 
(where without loss of generality we assume that all weighting factors 
have been absorbed into the plant) 1 1 3 1  Bz B s )  

DII  0 1 2  0 1 3  (3 
CP D21 Dm DZR 
C3 D : ~ I  0 3 2  0 0 3  

where D1l has full column rank, D:jl has full row rank, and 
where the pairs ( A .  & )  and (C3. -4) are stabilizable and detectable, 
respectively. It is well known (see, for instance, [4]) that the set of 
all internally stabilizing controllers can be parameterized in terms of 
a free parameter Q E '% as 

Ii = Fl(J .  C)) (1) 

where J has the following state-space realization 
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and where F and L are selected such that A + B3F and A + LC3 
are stable. By using this parameterization, the closed-loop transfer 
functions Tcmwm and Tczw2 can be written as 

Tcmwm(z) = TlW(z) + TF'(z)Q(z) 
T c z w z ( z )  = TI(-z) +T2(z)Q(z)  (2) 

where T,, Tp" are stable transfer functions. Moreover (see, for 
instance, [4], [13]), it is possible to select F and L in such a way that 
TF(z )  is inner (i.e., T2,"TZm = 1). By using this parameterization 
the mixed 7&/H, problem can be now precisely stated as the 
following. 

Problem 1: Find the optimal value of the performance measure 

subject to 

where { t i }  and {qI} are the coefficients of the impulse responses of 
TcsWz and Q, respectively. 

Remark I: In the sequel we will assume that infQERn, IITp" + 
TzwQllw = y* < y. This assumption guarantees both the existence 
of suboptimal 3-1, controllers and nontrivial solutions to the mixed 
H z / N ,  problem. 

A 

III. PROBLEM SOLUTION 
In this section we show that the mixed 'H2/H, problem can be 

solved by solving a sequence of problems, each one requiring the 
solution of a finite dimensional convex optimization problem and an 
unconstrained Nehari extension problem. To establish this result we 
will proceed as follows: 

i) introduce a modified H Z / H ,  problem, 
ii) show that the original problem can be solved by solving a 

sequence of modified problems (Lemma l), 
iii) show that an approximate solution (arbitrarily close to the 

optimum) to each modified problem can be found by solving a 
truncated problem (Lemma 3), 

iv) show that solving the truncated problem entails solving a 
finite dimensional convex optimization problem and a standard, 
unconstrained, H, problem (Theorem 2). 

A. A Modijied H 2 / H w  Problem 

Given s < 1, define the space  RH,,^ E 
RH,: Q(z) analytic in 121 2 S}, equipped with the norm 
11Q110D,6 = S U ~ ~ , ~ , ~  IQ(z)l, and consider the following modified 
H 2  13.1, problem. 

P r o b k ? m % ~ / H , , a :  Given TI(z), Tz( z ) ,  Tl,(z), T?(z) E 
RH,,&, find 

P 

subject to 

Remark 2: From the maximum modulus theorem, it follows that 
any controller Q that i s  admissible for 'Hz/'H,, 6 is also admissible 
for HZIH,. It follows that pg is an upper bound for p". 

Remark 3: Problem ?-lz/H,, 6 can be thought as solving problem 
HZ / E ,  with the additional Constraint that all the poles of the closed- 
loop system must be inside the disk of radius S. A parameterization 
of all achievable closed-loop transfer functions, such that T,, Tp" 
satisfy this additional constraint can be obtained from (1) by simply 
changing the stability region from the unit-disk to the 6-disk using the 
transformation z = 6.2 before performing the factorization. Further- 
more, by combining this transformation with the inner factorization, 
the resulting Tzw(z) satisfies Tzw(Sz)Tzw((l/Sz)) = 1. It follows 
then that the constraint IITlw(z) + Tzw(z)Qll,,6 I y is equivalent 
to llR + Q11,,6 5 y where R e Tp"(z)T,"(z)" is analytic in the 
disk IzJ 5 S. 

Next we show that a rational suboptimal solution to H2/7tm,  

with cost arbitrarily close to the optimum, can be found by solving a 
sequence of truncated problems, each one requiring consideration of 
only a finite number of elements of the impulse response of Tczwa. 
To establish this result we will show that: i) 'Flz/7-lH, can be solved 
by considering a sequence of modified problems &/H,, 6 ;  and ii) 
given E > 0, a suboptimal solution to 'Flzl 'FI, ,  6 ,  with cost p i  such 
that pg 5 p$ 5 p :  + E can be found by solving a truncated problem. 
Lemma 1: Consider an increasing sequence 6, + 1. Let po 

and p ,  denote the solution to problems ' H z / I f ,  and 'F12/7fw,6,, 

respectively. Then the sequence p 8  + po. 
Proof: See Appendix A. 

Lemma 2: For every E > 0, there exists N ( E ,  6) such that if 
Q E RH,,6 satisfies the constraint llR(z) + Q(z)llm,6 I y, it 
also satisfies l tk12  5 2,  where t k  denote the coefficients of 
the impulse response of Tczw2 = TI + T2Q. 

Proof: Since Q E RH,,&, Tc2w2 is analytic in 111 2 6 and 

Hence 

Since 1) . ]I,, 6 is submultiplicative, we have 

IITC2wz(z>IIw.6 5 llTillm,6 llTz1100, ~IIQIIW, 6 

<_ 11Ti!100,6 + l l T z 1 1 ~ , 6 ( ? +  IIRllw,a) K .  (6) 

The desired result follows by selecting N 2 No = (l/2)((logeZ(l- 
6 2 )  - logK~)/logS). 0 
Lemma 3: Consider the following optimization problem 

where 
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and where q ~ .  f!,? denote the kth element of the impulse response 
of Q ( r ) .  T , ( t )  respectively. Let Q* and T;,,,, denote the optimal 
solution and define = ~ ~ T ~ * , ~ t , ~ ~ ~ .  Then f i x  5 p i  I b i z  + t .  

Proof px I p i  is immediate from the definition of p z .  
Denote by T;,,,, and T,",,, the solution to problems 'H2/  H ;  and 

impulse 

2 
f 

0 
By combining the results of Lemmas 1, 2, and 3, the following 

Lemma 4 .  Consider an increasing sequence 4, -+ 1 Let ji' 

result is now apparent. 

and p i z  denote the solution to problems ' H L / H ,  and 
respectively Then the sequence p : ,  has an accumulation point 
such that [ I "  I f i e  5 p o  + e 

B. The 'H Constraint 

In the last section we showed that ' H 2 / ' H z  can be solved by 
solving a sequence of truncated problems. In this section we show 
that each problem 'HHP/ 'H:,  can be exactly solved by solving a 
finite dimensional convex optimization problem and an unconstrained 
Nehari approximation problem. Moreover, since the solution to this 
Nehari approximation problem is rational, it follows that the solution 
to 3 - / 2 / ' H I ,  is also rational. The key to establish this result is to 
note that: i) the objective function of the truncated problem involves 
only the first S terms of the impulse response of Q,  and ii) if the 
tirst -\- terms of the impulse response of 4 are fixed, the existence of 
4 such that 1 )  R + Q 1 I x .  6 5 7 is equivalent to a finite dimensional 
convex constraint on these elements. 

Theorem I :  Let R ( x )  E R'H,,, and Q,. = x>=i'qt:Y' be 

given. Assume that G(t) 2 R(4 t ) "  has a minimal state space 
realization 

G =  (*) 
with controllability and observability gramians L,, and L o ,  respec- 
tively. Then, there exist Qrr E R'HH,, 6 such that IIR + Q F  + 
. -.\- - 4 4 1 r . h  I 7 if and only if 1 1 & 1 1 . ~  I 1 where 

Prooj 'For simplicity, we will consider the case where h = 1. 
The case h < 1 follows by using the transformation 2 = h t .  Given 
Q f i . ,  there exist Q R  E R'H, such that IIR + QF + z-'YQ~112 I -, 

I While this paper was under review, an independent proof and equivalent 
formulas appeared in (151. 

iff the corresponding unconstrained I block Nehari approximation 
problem has a solution, i.e., if 

iiiiii I I R  + Q ~ -  + ~ - - " Q H I I ~  
Q R € R H ,  

- - mill \I:.'(R + Q/.) + Q H I I ~  
( I f f t R H ,  

Q n t R H ,  
inin l l x - - \ - ( ~  + Q F )  + ~ R l l ~  

- - 

= TH[;--'(G + Ql..)] I -, (9) 

where we used the fact that 2.' is an inner function. To compute Trr 
we need a space-state realization for the stable part of 2 Y r (  G+4;  ). 
Standard space-state manipulations [4] yield 

where 

The similarity transformation 

where I-  is the unique solution to the Sylvester equation 

yields 

Si mil arl y 

where cy = ( q . ~ - 1  . . . 4" ). Hence 

where H 2 cT + d, j f !v  - c,17 2 ( h l . . . h ! v )  . It can be 
easily shown, by successive right multiplications by the columns 
of the identity that the solution to (12) is given by:2 I- = 

b ,  . . . -4 ; ' b ) .  Substituting this explicit expression 
for 1- into (15) yields 

( q Y b  4-(!v-l) . 

F =  -5 1 A4\:by) 

h ,  = q z - ,  - ,~,.4~(Y-t+1) b ,  l < i S A V - l  
11.y = yo + (1, - cy.4y1b,. (16) 

*Since R ( ; )  is antistable, it$ conjug,ate C; is stable and has no poles at the 
origin. Hence .-I; is well defined. 
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To compute the approximation error we need to compute the ob- 
servability and controllability gramians of F.  For the controllability 
gramian we have 

Solving for each of the blocks of the gramian yields LFl = L z ,  
LF2 = Y ,  and Lg2 = IN, where L z  is the solution of the following 
Lyapunov equation 

AgLFA$ - LF = -A,"b,b$A," (18) 

and where the expression for LE was obtained from the correspond- 
ing equation by successive right multiplications by the columns of 
the identity. Similarly, for the observability gramian we have 

=-(iz 2;). (19) 

Solving for each of the blocks of the gramian yields Lyl = Log, 
Ly2 = d'H', and L:2 = 'H'H' where 

hN hN-1 m . 0  ... 
hN hN-1 . * *  

'H= A [ ... 7. (20) 

hiv hlv-1 
hnr 

= (A:-"c$ A:-"c$. c$). 

Finally, simple computations show that Log satisfies 

Log - M' = A',NLogA: (21) 

and that L: - Y Y '  = Lcg, the controllability gramian of G. Using 
these facts we get the following explicit expressions for the gramians 
of F 

(" O ) ( L o g  d ) ( "  0 )  
0 'H A' IN 0 'H' L,F = 

Define 

where p indicates the spectral radius. Note that since M is a linear 
function of the coefficients of Q F ,  the constraint (24) is convex in the 
variables q, . Although the expression M can be used to establish the 
desired result, it may result in numerically illconditioned problems, 
since it involves powers of A ,  ', which has all its eigenvalues outside 
the unit circle. To obtain an alternative expression that avoids this 
illconditioning, consider again the similarity transformation (1 1). 

L- 
a 

Fig. 2. The ACC robust control benchmark problem. 

Since the spectral radius of L o ~ L c ~  is invariant under a similarity 
transformation, it follows that M can be replaced by 

0 0 0 ... ... 
+ [; 0 qo 0 q1 f * . *  1:) 

. .  
Qo 0 0 0 ... 

Hence r H ( F )  I Y U I IQllz I Y. 0 
Combining Lemma 3 and Theorem 1 yields the main result of this 

Theorem 2: A suboptimal solution to 'H2/'HH,, 6 ,  with cost p6 I 
+ E is given by Q" = Q> + z - ~ Q &  where Q> = 

qN-1)'  solves the following finite di- 

section. 

pz 5 

mensional convex optimization problem 

N - 1  qiz-*, go = (qo 

and Q R  solves the unconstrained approximation problem 

Q&(z)  = argmin llR(z) + Q$ + z - ~ Q R ( z ) I I . , , ~  (27) 
Q R E R Z - ,  6 

where N ( E ,  8 )  is selected according to Lemma 2, tl and T are defined 
in (7), and Q is defined in (8). 

Remark 4: By using the transformation z = S i  we have that 

llR(Z) Z - N Q R ( Z ) l l ~ , 6  

= IIR(Si) + Q g ( 8 i )  + S - N i - N Q ~ ( S i ) l l w  

A IIh(2) + &(i) + i - N O R ( i ) l l w  

= IIiN(h(i) + Q$( i ) )  + & ~ ( i ) l l ~ .  

It follows that the approximation problem (27) is equivalent to the 
following standard Nehari approximation problem 

that can be readily solved (see, for instance, [16, p. 641). 
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I I I 

(b) 

Fig. 3. 
(b) the standard form. 

(a)  Block diagram with the uncertainty "pulled out" of the system, 

C. S y r i r h r ~ i ~  Algorirhrn 

Combining Theorem 2 and Lemma 4, it follows that a suboptimal 
solution to ' H 2 / H , ,  with cost arbitrarily close to the optimum, can 
be found using the following iterative algorithm. 

Data: An increasing sequence h ,  + 1, F > 0, v > 0. 
Solve the unconstrained ' H j  problem (using the standard 'HZ 
theory). Compute llTL, I I X .  If llTc,,r, ) I x  5 -; stop, else 
set i = 1. 
For each i ,  find a suboptimal solution to problem ' H J / ' H ~  A ,  

proceeding as follows: 

a) Obtain T ! ( : ) .  I,"(;) E 'R'H, A , ,  with T2&(: )  inner 
in 'R'H,. This can be accomplished by using the 
change of variable : = h , f  before performing the 
factorization ( 1 ). 
Compute .\-( 6 .  6, ) from Lemma 2. 
Find Q ( : )  using Theorem 2. 

b) 
c )  

Compute llT~,t,.m(:)llx. If llT~xLrz(:)llx 2 ; - U set 
IC = .F,(J. Q )  and stop, else set i = i + 1 and go to 2. 

Remark 5: At each stage the algorithm produces a feasible so- 
lution to ' H 2 / ' H , ,  with cost p ,  which is an upper bound of the 
optimal cost I ! " .  

1V. A SIMPLE EXAMPLE 

Consider the simple system shown in Fig. 2, consisting of two 
unity masses coupled by a spring with constant 03 5 k 5 2 but 
otherwise unknown. A control force acts on body 1 and the position 
of body 2 is measured, resulting in a noncolocated sensor actuator 
problem. This system has been used as a benchmark during the last 
few years at the American Control Conference [17] to highlight the 
issues and trade-offs involved in robust control design. Assume that 
it is desired to design an internally stabilizing controller subject to 
the following specifications: i )  the closed-loop system must be stable 
for all possible values of the uncertain parameter k E [0.5. 21, and ii) 
the RMS value of the control action I /  in response to a white noise 
disturbance acting on t i t 2  should be minimized. 
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Fig. 4. T.,,, impulse response for the 'Hx, ' H r  and ' H 2 / ' H H ,  cont 

TABLE I 
llT,rllx AND IITt,illr kOK THE EXAMPLE 

To fit the problem into the ' H ,  framework, the uncertain spring 
constant k is modeled as k = k<, + 1 (with k,, = 1.25 and 

5 0.75) and, following a standard procedure, A is "pulled out" 
of the system, as shown in Fig. 3. The problem can be stated now 
as the problem of minimizing ~ ~ T v t ~ . ~ ~ ~  over the set of all internally 
stabilizing controllers, subject to the constraint llT,l.ll.r 5 +. 

To tit the problem into our framework, the system was discretized 
using sample and hold elements at the inputs and outputs, with a 
sampling time of 0.1 seconds. Finally, to remove the ill-conditioning 
caused by the poles on the unit circle, a bilinear transformation was 
used, constraining the poles of the closed-loop system to lie inside the 
1 - 1  5 0.95 disk (i.e.. h = 0.95) and the proposed design procedure 
was used with llTcc [ I b  5 1.G and S = 100, resulting in a controller 
with 204 states. 

Fig. 4 shows the control action in response to an impulse dis- 
turbance acting on n12 for the optimal ' H x  central controller, the 
optimal ' H j  and the mixed ' H r / ' H H ,  controllers. These results are 
summarized in Table I. 

Note that the actual value IIT,,.llx obtained with the mixed 
'Hr/'HH, controller is 1.29. This is due to the fact that IIT<L.ll~ is 
an upper bound of IITirllx. 

Table I1 show a comparison between the optimal mixed ' H . L / ' H ,  
controller and several reduced order controllers. It is interesting to 
notice that the controller can be reduced to tenth order with virtually 
no performance loss. Further reduction to a third-order controller 
only entails about 10% increase in the ' H r  cost. These results seem 
to support the conjecture of ( I  I ]  that the mixed '& / 'H ,  control 
problem results in controllers having higher dimension than the plant. 

V. CONCLUSIONS 

In this paper we provide a suboptimal solution to discrete-time 
mixed ' H j / ' H ,  problems. Unlike previous approaches, our method 
yields a global minimum of the actual ' E r  cost rather than of an upper 
bound, and it is not limited to cases where either the disturbances or 
the regulated outputs coincide. Although here we considered only the 
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simpler SISO case, we anticipate that the results will extend naturally 
to multi-input multi-output problems. 

Perhaps the most severe limitation of the proposed method is that it 
may result in very large order controllers (roughly 2 N ) ,  necessitating 
some type of model reduction. Note, however, that this disadvantage 
is shared by some widely used design methods, such as p-synthesis 
or I1 optimal control theory, that will also produce controllers with no 
guaranteed complexity bound. Application of some well-established 
methods in order reduction (noteworthy, weighted balanced trunca- 
tion) usually succeed in producing controllers of manageable order. 
The example of Section IV suggests that substantial order reduction 
can be accomplished without performance degradation. Research is 
currently under way addressing this issue. 

APPFNDIX A 
PROOF OF LEMMA 1 

P r o o f o f ~ m m a  1: From the maximum modulus theorem, it fol- 
lows that a controller Qz that is admissible for %2/%,, 6 ,  is also 
admissible for %z/%,, Thus, the sequence p, is nonincreasing, 
bounded below by the value of llTcZW2112 obtained when using the 
optimal %Z controller. It follows then that it has a limit p 2 po. We 
will show next that p = po. Assume by contradiction that po < p 
and select po < b < p. Since infgszx, llR + Qll, < 7, it 
follows that there exists QI E RH, such that IIR + &Ill, < y. 
From the definition of po it follows that, given q > 0, there exists 
Qo E R%m, IIR + Qollm I Y. such that ~l~~zw2(Q~)11z I po + 7) .  

Let Q e Qo + E(QI - QO). It follows that 

II~c2wz(Q)11z I PO + II + Wz(Q1 - Q0)IIz 
IIR+ Qllm I 4 R +  &Ill- + (1 - E)IIR+ Qollm < Y- 

Since Q EAR%, it follows that there exists 61 < lAsuch that 
TT + TzmQ is analytic in IzI 2 SI. Since IITlw + TpQllm < y. 
it follows $om continuity that there exists 62 < 1 such that 
llTlm +T?Qllm, 62 5 y. Therefore, by taking E and 7 small enough 
and 6 e my(61, 6 2 )  < 1 we have that IITlm + T2m$llm,6 I y 
and llTcZW2(Q)112 < j i .  Hence for 6, 2 6, p, < b. This contradicts 
the fact that the sequence p, is nonincreasing and that ji < p = 
limsZ-+l pz.  0 
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‘H, Control of Nonlinear Systems via Output 
Feedback Controller Parameterization 

Wei-Min Lu and John C. Doyle 

Abssfmct-The standard state space solutions to the 31, control 
problem for Linear time invariant systems are generplized to nonlinear 
time-invariant systems. A class of l a d  nonlinear (output feedback) 31,- 
controllers are parameterized as nonlinesr fractional transformations on 
contractive, stable nonlinear parrrmcters. As in the linear case, the 31, 
control problem is solved by its redudion to state feedback and output 
eslhation problems, together with a separation argument. SOtaeient 
conditions for ‘H,control problem to be l d y  solved are also derived 
with this machinery. 

I. INTRODUCTION 

Linear %, control theory has a simple state space characterization 
[3] ,  which has clear connections with traditional methods in optimal 
control. These facts have stimulated several attempts to generalize the 
linear %, results in state space to nonlinear systems [2] ,  [13], [6] ,  
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