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IV. CONCLUSIONS 
In this paper we have considered optimal routing policies that 

make use of limited state information, in queueing systems with finite 
capacities. There are two motivations for studying such policies. First, 
it is not always realistic to assume that the queue lengths are observed. 
In this case, the system’s manager has to specify a control policy at 
time zero, i.e., prior to the system’s initiation time. Second, it is not 
always necessary to have complete state information to make optimal 
routing decisions. Since, in addition, it is typically expensive to obtain 
this information, it is important to know whether there exist policies 
that use minimal state information and yet optimize the system’s 
performance. 

We have shown that the simple RR policy maximizes departures 
and minimizes losses in different classes of queueing systems. On one 
hand, when service times are exponential and capacities are equal, 
the RR policy outperforms all policies that do not use queue length 
information. On the other hand, when service times are deterministic 
and capacities are finite and equal, a simple MRR policy was shown to 
be optimal, provided that rejections are observed. This is information 
available in typical communication networks. Moreover, we have 
shown that the MRR policy coincides with the S U W  policy. Note 
that the SUW policy is not optimal in systems with asymmetric (in 
terms of the service rate) queues (see for example [3]). In fact, it is 
very hard to prove optimality of policies under such settings and effort 
is usually focused on determining policies that perform ‘adequately 
well.’ 

Interestingly, the SUW policy is not always optimal in systems 
with deterministic service times and unequal capacities. This makes 
the buffer allocation problem (i.e., the problem of distributing a fixed 
number of buffers among the queues) more difficult to attack. It 
can be shown (see [13]), however, that more balanced allocation 
schemes provide a better performance in the following sense. Given 
two allocations C’ and C2 such that C’ 4 C2,  then for any policy 
n2 employed in C2 there exists a policy n1 employed in C1 that 
outperforms rr2 (in the sense of optimization of the loss and the 
departure processes) provided that the two systems start from the 
same state. The proof (which is omitted because of space limitations) 
consists of constructing a policy p employed in C’ that copies n2 
and allows for idling in a way that preserves a majorization ordering 
of queue lengths between p and n 2 .  Since idling does not improve 
the system’s performance the result then follows. 
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Feedback Control of Quantized Constrained Systems 
with Applications to Neuromorphic Controllers Design 

Mario Sznaier and Athanasios Sideris 

Absfruct- During the last few years there has been considerable 
interest in the use of trainable controllers based upon the use of neuron- 
like elements, with the expectation being that these controllers can be 
trained, with relatively little effort, to achieve good performance. Good 
performance, however, hinges on the ability of the neural net to generate 
a “good” control law even when the input does not belong to the training 
set, and it has been shown that neural nets do not necessarily generalize 
well. It has been proposed that this problem can he solved by essentially 
quantizing the state space and then using a neural net to implement a 
table lookup procedure. There is little information on the effect of this 
quantization upon the controllability properties of the system. In this 
paper we address this problem by extending the theory of control of 
constrained systems to the case where the controls and measured states 
are restricted to finite or countably infinite sets. These results provide the 
theoretical framework for recently suggested neuromorphic controllers, 
but they are also valuable for analyzing the controllability properties of 
computer-based control systems. 
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I. INTRODUCTION 
During the last few years considerable attention has been focused 

on the use of neural net-based controllers, the expectation being 
that these controllers can be trained to achieve good performance. 
In particular, these controllers could be very useful for complex 
problems that do not admit a closed-form solution. Such is the 
case of constrained systems. In this case, of considerable practi- 
cal importance for applications ranging from aerospace to process 
control, the problem of steering the system from a given initial 
condition to a desired target set usually does not admit a linear 
feedback control law as a solution. Therefore, control engineers have 
to resort to a number of schemas that include (in increasing order of 
sophistication) switching between several linear controllers, nonlinear 
controllers and on-line optimization based techniques ([ 1-31 and 
references therein). Clearly, a trainable, neural net-based controller 
could provide a welcome addition to the handful of techniques 
available for dealing with constrained systems, with the added bonus 
that such a controller could achieve good performance even in the 
face of poor or minimal modeling. As an example, we can mention the 
neuromorphic controller used by Anderson [4] to control an inverted 
pendulum when the control force is restricted to have bounded 
magnitude. 

The basic idea justifying the use of neural nets as controllers for 
dynamical systems is that the controller can be trained to generate a 
desired output for a given input. The underlying assumption is that 
the neural net has good generalization properties, therefore being 
capable of generating an appropriate output even when the input is 
not a member of the training set. It has been shown [ 5 ] ,  however, 
that neural nets do not necessarily generalize well. Therefore, it 
follows that the asymptotic stability properties of systems utilizing 
neuromorphic controllers are generally unknown, and this is a major 
stumbling block preventing their use. 

This difficulty can be solved by realizing the fact that the neural 
net essentially implements a lookup table, and that generalization 
can be achieved by discretizing the input vectors and mapping them 
to a fixed number of “cells” in such a way that inputs that are 
“close” in some sense get mapped to the same cell [6] .  This idea 
is based on the idea of “boxes” [7] and has been used several 
times in connection with neuromorphic controllers. None of the 
work available to date addresses the effects of this “quantization” 
upon the controllability properties of the system and the question 
of how to select a cell size that would allow the system to reach a 
“desirable” target set. Clearly, this problem is similar to the problem 
of investigating the controllability properties of a constrained system 
when the available state measurements are quantized, i.e., when the 
only information available at a given instant is that the state of the 
system belongs to a given “cell.” Although the theory of control of 
constrained systems is well known and the original results due to 
Lee and Marcus [8] on the controllability of systems under control 
constraints have been extended in a number of ways to account 
for different types of constraints (see, for example, [9]), all these 
extensions always assume that the set of possible control laws is a 
dense subset of R” and that the initial condition of the system is 
perfectly known. 

Traditionally, quantization effects have been treated by adding 
noise sources to the system [lo]. This type of analysis provides 
upper bounds on the errors due to quantization effects, but it is 
not suitable for extending the theoretical results already known for 
nonquantized systems to the quantized case. Moreover, recent work 
by Delchamps [ 111 showed that quantized systems under linear 
feedback control exhibit chaotic behavior, which is significantly 
different from the behavior predicted by the conventional additive 
noise model. 

In [ I ]  we presented a theoretical framework capable of handling 
the case where the control is restricted to a finite or countably 
infinite set, for systems under both state and control constraints. In 
this paper we extend these results to the case where the available 
measurements are also restricted to a finite or countably infinite set, 
and we apply the theory to the problem of designing suboptimal 
neuromorphic controllers for constrained systems. Our approach 
follows the spirit of [ l l ]  in explicitly modeling quantization as 
a set-membership constraint. The main motivation for this paper 
is to provide a theoretical framework for some recently suggested 
neuromorphic controllers [6]. The results presented here, however, 
also address the need (grown from the increased use of computer- 
based controllers in recent years) for a general theory of con- 
strained controllability capable of accommodating the quantization 
effects that may result from the use of a computer in the feedback 

The paper is organized as follows: In Section I1 we introduce the 
concepts of quantization and quantized controllability. In Section I11 
we use these concepts to characterize regions of state space that can 
be steered to a desired target set. The main result of the section is a 
necessary and sufficient condition guaranteeing the reachability of a 
convex open domain containing the origin and a relationship between 
the size of this domain (in terms of a Minkowsky functional) and the 
size of the quantization. In Section IV we use an example to illustrate 
the application of these theoretical results to the problem of designing 
suboptimal controllers based upon a partition of state space. Finally, 
in Section V, we summarize our results, and we indicate directions 
for future research. 

loop. 

11. DEFINITIONS 

Dejinition 1: Consider a closed set Q R” . A family S of closed 
sets S,  is called a closed cover of Q if Q = U, S,. 

Definition 2: Consider a closed set Q C R” and a closed cover 
S = {St}. A quantization X of is a set X = { z z }  containing 
exactly one element from each set S,. 

Definition 3: Given a quantization X of a set Q, the size of the 
quantization with respect to some norm ,Qr defined in Q is defined as 

where L?(zz. r )  indicates the &--norm ball centered at z ,  and with 
radius r .  A quantization X with size s will be denoted as Xs. 

Consider now the case where the sets of the family S that defines 
a quantization X have painvise disjoint interiors (i.e., int ( S , )  n 
int (S,) = @, i # j). In this case, S induces an equivalence relation 
in Q as follows. 

Dejinition 4: Consider a closed cover S of Q with pairwise disjoint 
interiors, and two points .cl, sa E Q. .cl and z2 are equivalent 
modulo S if 3 i  such that T I  and xz E int(S,) .  To complete the 
partition of Q into equivalence classes, we assign the points that are 
in S ,  f? S, (i.e., in the common boundary) arbitrarily to either one 
of the classes. Two points equivalent modulo S will be denoted as 
s1 = .r2. 

Dejinition 5: Consider a quantization S-, = {z t }  of a given set 
Q. It follows from Definitions 2 and 4 that for any point z E 
there exists an element z E ,U, such that z = z. We will define the 
operator that assigns x -+ i as the quantization operator, and we will 
denote it as: i = X s ( . r ) .  

In the following definitions we deal with the controllability aspects 
of the problem and, in particular, with the effects of quantizing 
the state and control spaces. Consider the constrained linear, time 
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invariant, discrete system modeled by the difference equation 

Zk+l = Azk + B U k ,  k = 0, I , . . .  

uk E R R“, xk E B C R” (1) 

where R and B are closed convex regions containing the origin in 
their interior and Q is compact. 

Definition 6: The system (1) is control quantized null controllable 
in a region C c G if, for any open set 0 C B containing the 
origin, there exists a number su(C, 0) E R+ such that for all 
the quantizations 0, of R with s 2 su, there exists a sequence 
of quantized controls uk E a, such that the system can be steered 
from any initial condition 20 E C to 0 without violating the state 
constraints. 

Consider now the case where state space is quantized. This 
situation can be modeled by assuming that the only information 
available to the controller are the quantized state measurements 
Zk = xS(xk), where Xs(.) is the quantization operator associated 
with a given closed-cover S of Q. In the sequel, we will denote a 
control strategy of the form 

where f is a (possibly nonlinear) memoryless map, as an admissible 
control law. 

Definition 7: The system (1) is state quantized null controllable 
in a region C c B if, for any open set 0 c 0 containing 
the origin, there exists a number s,(C, 0) E R+ such that for 
all the quantizations X, of 0 with s 2 s ,  and for any initial 
condition x, E C, there exist a finite number n and a sequence 
of admissible controls U k  = f ( & . ( z k ) )  E 0, k = 1, 2 . . . n ,  such 
that Zk = &(zk)  E 8,  k = 0, 1.. . n, and zn E 0. 

Finally, we consider the case where both state and control space 
are quantized. 

Definition 8: The system (1) is completely quantized null control- 
lable if there exists a number SO such that (1)  is state quantized null 
controllable when the controls are restricted to a quantization Cl, of 
R with size s 2 SO. 

Remark I: Note that the situation where both the states and 
the controls are quantized is particularly important for the case 
of neuromorphic controllers since, in addition to the state-space 
quantization induced by the “cell” structure, a finite set of control 
actions is usually required by the controller learning algorithm. 

Following previous work in this area [1]-[3], we proceed now to 
restrict the set B to be balanced [I21 (i.e., z E G ax E B for all 
real a, la1 5 1). This restriction, while not effecting significantly the 
number of real world problems that can be handled by our formalism, 
introduces more structure into the problem. This additional structure 
will become essential in showing constrained controllability. 

Definition 9 [12]: The Minkowsky Functional (or gauge) p of a 
convex set B containing the origin in its interior is defined by 

p ( z )  = inf { T : E 4 ) .  
r > O  (3) 

A well-known result in functional analysis (see, for instance, [12]) 
establishes that if G is balanced, then p defines a seminorm in R”. 
Furthermore, when B is compact, this seminorm becomes a norm. In 
the sequel, we will denote this norm as 

11xIlG 4? P ( X ) .  (4) 

Remark 2: The set B can be characterized as the unity ball in 
1 1  . 119. Hence, a point z E Giff IIzlIp 5 1. 

In.  THEORETICAL RESULTS 

Theorem I :  If 

min{llAx + B z l l ~ }  < lVx: llxllp = 1 (5 )  
UER 

then the system (1) is control quantized null controllable in 8. 
Proof: The proof of the theorem is a straightforward extension 

of Corollary 7-1 in [2]. 
Condition (5) implies that for any initial condition in the boundary 

of the admissible region, there exists at least one control that brings 
the system to its interior. It follows that if the problem of controlling 
the system (1) to the origin without exceeding the constraints is 
feasible (as it should be in a well posed problem), then the only 
effects of (5)  is to rule out the possibility of the system staying on 
the boundary for consecutive sampling intervals. 

Lemma I: Let 0 c B be an open set containing the origin and 
consider the region B - 0. Let 

A = x € G - O  min {A > 0: ( t z )  E EG} 

where d B  denotes the boundary of the set B. Then 

Remark: Note that A is the minimum of the Minkowsky functional 
of B in the region 0 - 0. Since this region is compact, it follows 
that A is well defined. Furthermore, the right-hand side of (7) gives 
a lower bound on the maximum amount that the norm of the present 
state of the system ( ~ ~ z ~ ~ ~ )  can be decreased in one stage. 
Lemma 2: Let 0 be an open set containing the origin. If 

A 
then, for any quantization X, = { z ; }  of B with size s 1 so = (1 + 
I IA~IG)/~A and for any point zo E G - 0 such that Z, = Xs(zo) E 
B - 0, there exists an admissible control uo = f(Xs(z,)) E 0 
such that llzlllp < llzollp where z1 = &(Ax, + Bu,), and 
where I lAll~ denotes the induced operator norm (i.e., IlAllp = 
maXII111~=1 IIA.ll0). 



1500 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 7, JULY 1994 

Proof: From the hypothesis and Lemma 1 it follows that 

max{llzollG - IIAZO + B U l l G >  
UER 

= l l z o l l ~  - min{llAzo  bull^> 
UER 

= AS. (10) 

Define 

Hence, if 

then llz1llG - l l z ~ l l ~  = p < 0. 0 
In the next theorem we use the results of Lemma 2 to show 

that condition (9) is a sufficient condition for state quantized null 
controllability. 

Theorem 2: Equation (9) is a sufficient condition for the system 
(1) to be state quantized null controllable in C. 

Proof: To show state quantized null controllability, we have to 
show that for any open set 0 C G containing the origin, there exists 
a number so such that for all the quantizations X, of B with size 
s 2 SO, and for any initial condition LCO E G, there exists a sequence 
of admissible control laws U = { U O ,  U I  . . . u n } ,  where n is a finite 
number, such that 

Z k = X s ( Z k ) E 6 ,  k = o ,  1 . ” n  

z ,  E 0. (14) 

Define s o  A (l+IIA(IG)/(SA) and consider an arbitrary quantization 
2, with T 2 SO. Let io be an arbitrary initial condition in G - 0 .  From 
the definition of quantization, it follows that there exists zo E X, such 
that 20 E zo. Obviously, if zo E 0 the theorem is trivial, so consider 
the case where 20 0. Then, from Lemma 2 it follows that, as long 
as z k  6 0, there exists a sequence U = { U O ,  u1 . . .} such that 

I lz l I IG < IIZOl lG - CL 

where p > 0 and 2, = X T ( x L )  = XT(Ax,--l + Bu,-l) .  It follows 

Finally, in the next theorem we show that (9) is a sufficient 
condition for complete quantized null controllability. 

Theorem 3: Equation (9) is a sufficient condition for the system 
(1) to be completely quantized null controllable in g. 

Proof: Since IJBulls is a continuous function of U ,  it follows 
that there exists T such that l lB<u\l~ I ( h S / 2 )  for all Cu E 
B(0 ,  r )  C Cl where B(0,  T )  denotes a ball in some arbitrary norm 
defined in 12. The proof follows now from the proof of Theorem 2 

Corollary: The size of the quantization introduced in Theorems 
2 and 3 is inversely proportional to A .  Hence, as the size of the 
target set gets smaller, the number of cells increases, while their size 
decreases. Note, however, that the target set 0 is achieved through a 
sequence of intermediate sets O,, i = 1, 2 .  . . , n with 01 int ( G )  
and 0, E 0. Since .I in (6) can be thought of as a lower bound of 
the ratio of the norm of the next state of the system to the norm of 
the present state, it follows that to guarantee complete quantized null 
controllability, it is enough to choose 

then that there exists no such that zn0 E 0. 0 

by substituting (A6/2) for AS. 0 

where 0 denotes the closure of 0. 
Remark: From (16) it follows that if the sequence of intermediate 

stages 0, is chosen so that A = A, V i  (i.e., the sets 0, all have the 
same “shape”) then the number of cells in each set roughly decreases 
as -1”. Alternatively, using the same number of cells at each stage 
results in a “retina” like structure, having coarser resolution far from 
the target set and increasingly finer resolution closer to the target. 
Note that this increased resolution could be achieved essentially 
having only one set of boxes, whose function adaptively changes 
with the state of the system. 

IV. APPLICATIONS TO SUBOPTIMAL CONTROLLERS DESIGN 
As a example of the potential applications of our theory to the 

optimal control of constrained systems, we will use it to address the 
problem of determining a “cell size” that guarantees controllability 
to a given target set. Since in this case the quantization of state space 
is introduced as an artifact to simplify the search for an optimal 
trajectory, we will assume that any hardware imposed quantization 
effects are negligible. 

Once a lower bound so on the size of the quantizations that 
guarantee controllability to the desired target set is determined, 
a suboptimal controller can be implemented as a table lookup 
schema by essentially finding and storing an optimal control law 
associated with each cell. Moreover, since neural nets are known 
to implement table lookup schemas very efficiently [6],  it follows 
that this suboptimal control law could be implemented successfully 
with a neuromorphic controller, without any assumptions on the 
generalization properties of the neural net and with guaranteed 
asymptotic stability of the closed-loop system. This idea is formalized 
in the following conceptual algorithm. 

Algorithm L (Optimal Control Using a lookup Table) 

Begin. 
1 )  Determine a lower bound so on the size of the quantizations 

that guarantee controllability to the target set 0 using (13) 
and (16). Alternatively, determine the number of boxes to be 
used with changing resolution, as discussed in the corollary to 
Theorem 3. 
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2) Choose a pairwise interior-disjoint closed cover S = { S, } of G 
with size s 2 so. Form a quantization X, = { z z }  by selecting 
one representative element from each equivalence class. 

3) For each element 2, E X, find the optimal (in some previously 
defined sense) control law U : ,  subject to the constraint JJz,JJ, - 
llAzs + Bupll, 2 116, and store it. 

4) While z ,  = Xs(zz) $! 0 use as the next control law, the 
control law associated with 2% 

End. 
Next, we show how to apply Algorithm L to a simple example. 

Since in this paper we are concentrating on the theoretical controlla- 
bility issue, we will assume that a table lookup procedure is available. 
The issues concerning the implementation of this procedure by means 
of a neural net, too extensive to consider here, are left for a future 
paper on the subject. 

A Simple Example 

Fig. 1. Selecting the size of the cells. 

3 and its corollary it follows that 1 should be selected (see Fig. 1 )  
such that 

Consider the problem of bringing the angular velocity of a spinning 
space station with a single axis of symmetry from an initial condition 
T,, 1 1 ~ ~ 1 1 2  = R, to a final state such that Ilx:fllz 5 R f .  This situation 
can model the case where a sophisticated, nonconventional controller 
is used to bring a system in minimum time to some region (for 
instance a region where the constraints are not binding) where some 
relatively easy to design controller can take over. The system can be 
represented by [3], [12] 

COST s i n T )  sin T (1 - cos T )  

= ( -sinT COST (COST - 1) sinT 
A =  ( 

15 Rz - ARz = R z ( l  - A).  (23) 

Hence, the region 11~112 5 cy (which is the region where the 
constraints are not binding) can be reached, with a degree of stability 
A, by using a quantization such that 

In our case selecting T = 2.5 sec. and R, = 20 yields cy = 
1.898‘1 = 0.937 and 1 = 1.258. 

where T is the sampling interval, Let 
B T B  = c y 2 1  and 

4 2(1 - cos Then the time-optimal control law has an explicit expression, we simulated 
the table lookup by computing at each instance the optimal control 
law associated with the center of the box that contains the present 
state of the system. Note the proximity between the quantized and 
true time-optimal trajectories, indicated respectively by “0’ and “+.” 
This proximity suggests that the results of Theorem 2 are overly 
conservative. In fact, experimenting with this problem we have 
obtained convergence to the region 11z1)2 5 cy even when 2 = f i a  
(the largest 1 such that at least one square box will fit entirely within 

11~h+111;  = 11~hll; + 2zTATBu + uTBTBu 
= 11XkJl; + 2 z T B T u  + a’11.11;. ( 1  8) 

Hence, by selecting U = ( -Bzk / l lBz~ . I I~)  we have 

l lzk+l l lg = l l x k l l z  - 2cy11xk112 + 0’ = (11xk112 - cy)’. (19) the target set). 

From (19) it follows that 

6 = 1 1 ~ k I l G  - Il.Ck+l IIS 

(20) 
1 cy 

- -(Il.k112 - llzk+11(2) = -. R, RZ 
- 

Since in this case 1 1  . 11, is simply the euclidian norm scaled by R, 
it follows that IlAll~ = 1. Hence, from (13) we have that 

Assume that we want to use a covering formed by square boxes of 
side 1 .  Then, by choosing the center of each box as the representative 
element we have 

Moreover, since the norm of the present state of the system can be 
decreased at each stage by cy (in the region 11~112 2 cy) from Theorem 

v. CONCLUSION 

During the last few years, there has been considerable interest in 
the use of trainable controllers based upon the use of neuron-like 
elements. These controllers can be trained, for instance by presenting 
several instances of “desirable” input-output pairs, to achieve good 
performance, even in the face of poor or minimal modeling. The 
use of neuromorphic controllers has been hampered, however, by the 
facts that good performance hinges on the ability of the neural net 
to generalize the input-output mapping to inputs that are not part 
of the training set. Through examples [5 ] ,  it has been shown that 
neural nets do not necessarily generalize well. Therefore, it follows 
that the stability properties of the closed-loop system are unknown. 
Moreover, it is conceivable that poor generalization capabilities may 
result in limit cycles or even in destabilizing control laws. In this 
paper we address these problems by proposing a neural net-based 
controller that results in a schema similar to tabular control and then 
carefully investigating the properties of such a controller. Perhaps the 
most valuable contribution of this paper results from the qualitative 
aspects of (13) that identify the factors that affect any controller based 
upon the quantization of state space (independently of the specific 
implementation of the look up schema). Most notably, through the 
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Polynomial Solution of the Standard 
Multivariable Z~-Optimal Control Problem 

K. J. Hunt, M. Sebek, and V. KuEera 

Abstract-h this work we solve the standard multivariable ‘HZ -optimal 
control problem using polynomial matrix techniques. 

I. INTRODUCTION 
Fig. 2. Time optimal (+) and quantized (0) trajectories for the simple 
example. 

There are at least three significant approaches to the design of linear 
‘ H z  (or linear quadratic (LQ)-) optimal controllers for multivariable 
plants. The basic regulator problem has been studied using a time- 

norm of the operator that appears in (13), it is possible to formalize the 
idea of “poor” modeling and to design a “robust” controller capable 
of accommodating modeling errors and disturbances. 

There are several questions that remain open. Since one of the 
main reasons for using neural net-based controllers is their ability 
to yield good performance with imperfect models, the robustness of 
these controllers to plant perturbations should be investigated. At 
this point we are working in a neural net implementation of the ideas 
presented in this paper, and we are investigating their robustness 
properties. Future articles are planned to report the results of this line 
of research. Finally, as we noted in the paper, the results of Theorem 
2 that guarantee quantized null controllability can be overly restrictive 
in some cases, since they result from a “worst case” type analysis. A 
relaxed version of these conditions will be highly desirable. 
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domain approach in the state space (see, for example, Kwakernaak 
and Sivan [I]), and a frequency-domain approach using transfer 
function matrices and Wiener-Hopf theory [2]. As an alternative, a 
polynomial equation approach has been developed by KuEera [3] 
which is based on the algebra of polynomial matrices, and this 
approach provides the distinguishing feature of our presentation. For 
LQ-type problems, controller synthesis reduces to polynomial spectral 
factorization and the solution of linear polynomial equations. A deep 
analysis of the relationship between polynomial (transfer-function) 
and state-space control synthesis methods may be found in KuEera 
[4]. An overview of polynomial methods in optimal control and 
filtering problems is presented in Hunt [ 5 ] .  

Since many different control tasks are encountered in practice, 
the basic regulator problem solution was later extended to more 
complex control structures (such as reference tracking [6], [7] and 
measurement feedforward [8]-[ IO]) or various types of costing (e.g.. 
including dynamic weights and sensitivity functions [ 1 I]). 

During practical design work, it may be necessary to perform the 
synthesis for every particular structure at hand. It is undesirable, 
however, to have a number of theories with each being specific 
to only one control structure. Instead, one “general” solution is 
desirable which can be simplified (adjusted) for every particular 
practical design. A solution of such generality has been obtained 
and is presented in this work; it is known as the standard problem. 
A preliminary solution of this problem was presented in [12], and an 
alternative polynomial solution can be found in [13]. 
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