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Case i): If x, = 0, then x’(II, - II,)x = x;II,,x, I O  be- 

Case ii): If x ,  # 0, then 
cause n, 2 0. 

x ’ ( n o  - f i o ) x  = x’n,x - E X i X ,  

2 Eminx;x, - E X i X ,  

= (Emin - E ) X ; X ,  > 0. 

Theorem 3: Subject to 
i) ( A ,  C) is detectable, 
ii) no 2 0: 
iii) & A ,  B )  2 N[II,], 

then lim,,,P(t) = Ps, where P ( . )  is the solution of the RE with 
initial condition P(0) = no and Ps is the strong solution of the 
ARE. 

Proof: In view of Lemma 3, it is always possible to find 
f i l l  > 0 such that in the standard basis 

Consider now the reduced-order RE associated with the triple 
( A , , , B , ,  C,). The pair ( A , , ,  C,) is detectable and A , ,  has no 
( A  , , , B,)-unreachable boundary eLgenvalue. Then, by Theorem 2, 
P I ] ( * )  converges to PIIS, where P l l ( t )  denotes th: solution of the 
reduced-order RE with initial condition P ,  ,(O) = II , , , and PI  is 
the strong solution of the corresponding reduced-order ARE. Note 
that 

Ps= [Pb’” 01. 
Therefore, _denoting by p (  .) the solution of the RE (1)  with initial 
condition P(0) = II,, P ( * )  converges to Ps. 
- It is also always possible to find fitsuch that fi, 2 II, and 
II, 2 Ps. Then, by Theorem 1, letting P ( * )  be the solution of the 
RE (l), with initial condition P(0) = fi,, p(.) converges to Ps. 

Finally, Lemma 1 entails that &t) I P ( t )  I P ( t ) ,  t 2 0, so 
that the thesis follows. 

Corollary: If ( A ,  C) is detectable and no > 0, then 1imt+- 

Theorem 3 improves on existing convergence results in that it 
handles systems having possibly unreachable boundary eigenvalues. 
If we restrict our attention to the class of detectable systems with no 
unreachable boundary eigenvalues, a necessary and sufficient condi- 
tion for convergence to the strong solution is already available [4]. 
A comparison of [4] with our Theorem 3 shows that, for detectable 
systems with a nonnegative no, condition iii) of Theorem 3 is only 
sufficient. In conclusion, the search for a necessary and sufficient 
condition for convergence to the strong solution in the case of 
detectable systems is still an open question. 

P ( t )  = Ps. H 
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Norm Based Robust Control of State-Constrained 
Discrete-Time Linear Systems 

Mario Sznaier 

Abstract-Most realistic control problems involve some type of con- 
straint. However, to date, all the algorithms that deal with constrained 
problems assume that the system is perfectly known. On the other hand, 
during the last decade a considerable amount of time has been spent in 
the robust control problem. However, in its present form, the robust 
control theory can address only the idealized situation of completely 
unconstrained problems. In this note we present a theoretical framework 
to analyze the stability properties of constrained discrete-time systems 
under the presence of uncertainty and we show that this formalism 
provides a unifying approach, including as a particular case the well- 
known technique of estimating robustness bounds from the solution of a 
Lyapunov equation. These results are applied to the problem of design- 
ing feedback controllers capable of stabilizing a family of systems, while 
at the same time satisfying state-space constraints. 

I. INTRODUCTION 

A large class of problems frequently encountered in practice 
involves the control of linear systems with states restricted to closed 
convex regions of space. Several methods have been proposed 
recently to deal with this class of problems (see 111 for a thorough 
discussion and several examples), but as a rule, all of these schemas 
assume exact knowledge of the dynamics involved (i.e., exact 
knowledge of the model). Such an assumption can be too restrictive, 
ruling out cases where good qualitative models of the plant are 
available but the numerical values of various parameters are un- 
known or even change during operation. On the other hand, during 
the last decade a considerable amount of time has been spent 
analyzing the question of whether some relevant quantitative proper- 
ties of a system (most notably asymptotic stability) are preserved 
under the presence of unknown perturbations. This research effort 
has led to procedures for designing controllers, termed “robust 
controllers, ” capable of achieving desirable properties under vari- 
ous classes of perturbations. However, these design procedures 
cannot accommodate directly time domain constraints, although 
some progress has been made recently in this direction [2]-[4]. 
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In this note we present a theoretical framework to analyze the 
stability properties of constrained discrete-time systems under the 
presence of uncertainties and we apply this framework to the 
problem of designing feedback controllers capable of stabilizing a 
family of systems while at the same time satisfying state-space 
constraints. We believe that the results presented here will provide a 

where W = diag ( o1 , * * . , up). Then U( a )  defines a norm in R" and 
the set 9 can be characterized as 

9= {x:  J J X J )  ys l } ,  ( 5 )  
Proof: The proof of the lemma follows by noting that the 

constraint qualification hypothesis (3) implies that 
useful new approach for addressing more realistic control design 
problems. 

This note is organized as follows. In Section I1 we introduce the 
concepts of constrained stability and robust constrained stability and 
we use these concepts to give a formal definition of the robust 
constrained stability analysis and robust constrained stability design 
problems. The analysis problem is studied in Section 111 where we 
give necessary and sufficient conditions for constrained robustness 
and where we show that our approach includes as a special case the 
well-known technique of estimating robustness bounds from the 
solution of a Laypunov equation. In Section IV we apply the results 
of Section III to the design problem and we show that in cases of 
practical interest our approach yields a well-behaved optimization 
problem. Finally, in Section V, we summarize our results and we 
indicate directions for future research. 

II. DEFINITIONS AND STATEMENT OF THE PROBLEM 

In this section we introduce a formal definition of the robust 
constrained control problem. We begin by introducing the concept 
of constrained stability. 

Definition I: Consider the linear, time-invariant, discrete-time, 
unforced system modeled by the difference equation 

x , + ~  =AX,, k = 0 , l  (SI 

X E  Y E  R" (1) 

subject to the constraint 

where A ER"'" and where x indicates x is a vector quantity. The 
system (S) is constraint stable (C-stable) if for any point ZE 9, 
the trajectory xk(f) originating in f remains in 9 for all k. 

We proceed to introduce now a restriction on the class of 
constraints allowed in our problem. As it will become apparent 
later, the introduction of this restriction, termed the constraint 
qualification hypothesis, while not affecting significantly the number 
of real-world problems that can be handled by our formalism [5 ] ,  
introduces more structure into the problem. This addition structure 
is used in Lemma 1 to show that the constraints induce a norm in 
9. In turn, this norm will play a key role in Section 111 where we 

derive necessary and sufficient conditions for constrained stability. 

A .  Constraint QualiJication Hypothesis 
In this note, we will limit ourselves to constraints of the form 

X E  Y =  {xER":  (G(x)), 5 w,, i = 1 PI  (2) 
where O E  RP, w,  > 0 and where G: R" + R P  is a positive- 
definite sublinear function, i.e., it has the following properties: 

G(x), 2 0, i = 1 PVX 
G(x) = O O X = O  

C(x + y ) ,  5 G(x), + G(y),,  i = 1 . . .  PVX, Y 

G(Xx) = XG(x),O 5 X S  1. (3) 
In the next lemma we show that G ( - )  induces a norm, and we 

Lemma 1: Let 
characterize 9 in terms of this norm. 

llxll Y =  l l ~ - ~ ~ ~ ~ ~ l l c c  (6) 
satisfies the conditions for a norm in R". 0 

Next, we take into account uncertainty in the dynamics by 
extending the concept of constrained stability to a family of systems 
and we define a quantitative way of measuring the "size" of the 
smallest destabilizing perturbation. 

Definition 2: Consider the system (S). Let the perturbed system 
(SA) be defined as 

xk+l  = ( A  + ( S A )  

where A belong to some perturbation set 9 E R"*". The system 
(S) is robust constraint stable (RC-stable) with respect to the set 9 
if (SA) is C-stable for all perturbation matrices A E 9. 

be an operator norm defined in the set 
9, and define the set BAM as the intersection of 9 and the origin 
centered &norm unity ball in parameter space, i.e., 

Definition 3: Let I( . I( 

BAuN= { A €  9: I ( A ( ( , I  l}. 

The constrained stability measure with respect to the norms 11 . 11 Jy 

and )I * 11 Y, Q$, is defined as 

Q$ = max { p :  (SA) is C-stable with respect to pBAN) . 
In the particular case that the induced operator norm )I . 1) is used 
in the set 9, we will denote the constrained stability measure as Q~ 
and the set BA""as BA. 

With the concepts introduced in this section, we are now ready to 
give a formal definition to our problem: 

* Robust Constrained Stability Analysis Problem: Given the 
family of linear time-invariant discrete-time systems represented by 
(SA), compute the constrained stability measure Q$. 

* Linear Robust Constrained Stability Design Problem: Given 
the family of linear time-invariant discrete-time systems represented 
by 

Xk+, = ( A  -k A)Xk  + BUk 

find a constant feedback matrix F such that for the closed-loop 
system 

Xkfl  = ( A  + BF+ A)X, (SCl , )  

the constrained stability measure is maximized. 

III. THEORETICAL RESULTS 

In this section we present the basic results that are required to 
solve the analysis problem. These results will be used in Section IV 
to solve the design problem. We begin by presenting a necessary 
and sufficient condition for robust constrained stability of a family 
of systems. This result is then used to compute the actual value and 
lower bounds on the constrained stability measure introduced in the 
last section. 

Theorem I: The system (S) is RC-stable with respect to the set 
9 iff 

(7) (1 A + A ] (  s 1VA E 9 

where 1) 1) denotes the induced operator norm, i.e., 

IIA + A l l  8 =  m a r *  {IW + A)xll Y } .  (8) It x It 1- 
Proof: The proof follows immediately from Definition 1 and 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 7, JULY 1992 1059 

(5) by noting that Hence 

IIA + AI1 q s  1 e l l(A + A)x l l  ,I: 1Vllxll ss 1. (9) 
0 

Remark: Note that if 11 A + AI1 < 1 for all A E 9, then 
( A + A) is a contraction mapping and the system (SA) is asymptoti- 
cally stable [6]. 

Corollary 1: 

e$= min{l/AllA: ( / A  +All  q =  1 ) .  (10) 
A€ 9 

In the next lemma we introduce a lower bound of the constrained 
stability measure. In Theorem 2 we show that for unstructured 
perturbations (i.e., the case where 9 = Rn*") this lower bound is 
saturated. 

Lemma 2: 

e u r  1 - IIAII $9. (11) 

1 =  I I A + ~ l I I . ~ I t A I I . +  11AI119 (12) 

Proof: Let AI be such that 11 A + AI 11 = 1. Then 

A common technique in state-space robust analysis is to obtain 
robustness bounds from equation (18) [8], [9]. This case can be 
accommodated by our formalism by recognizing the fact that once 
P is selected, the system becomes effectively constrained to remain 
within a hyperellipsoidal region. It has been suggested [8], [9] that 
good robustness bounds can be obtained from (18) when P is 
selected such that Q = I .  In this case our approach yields 

which coincides with the robustness bound found by Sezer and 
Siljak [9]. Note, however, that our derivation shows this bound to 
be exact for the unstructured perturbation case. 

Example 2 (Unstructured Perturbation, A Semisimple): Con- 
sider the case where A is semisimple, i.e., 

Theorem 2: For the unstructured perturbation case, i.e., the case 

Proof: The proof follows from Lemma 2 by noting that for 

Then, the maximum of the stability measure eq  over all possible 
positive definite matrices P ,  is achieved for P = LTL. 

where 9 = R"*", condition (1 1) is saturated. Proof: From (17) and (22) we have 

x T~ T~~~ 
)IA112,=max ~ A O =  A (1 - I , . , ,  IIA11,)A x { xTPx 1 

X ~ L ~ L -  T ~ T ~ T ~ ~ ~ - I ~ ~  
= max 

A.  Quadratic Constraints Case = max I I L A L - ~ Y ~ ~ ;  

special case where the constraint region is an hyperellipsoid, i.e., 

II YIIZ' 1 In this subsection we particularize our theoretical results for the 
= 11 LAL-'IIi = u,&x(A). - (23) 

From (22) it follows that the case where 

G( x) = ( xTpx)" positive definite. (16) 

We will show that in this case our approach yields a generalization 
of the well-known technique of estimating the robustness measure 
by using quadratic based Lyapunov functions (see [7] and references 
therein) by obtaining robustness bounds previously derived in this 
context. Moreover, using our approach we will show that in some 
cases these bounds give the actual value of the constrained stability 
measure. 

Example I (Unstructured Perturbation): In this case, Theorem 
2 yields es = 1 - 11 A 11 where 

umaX(A) = max I A? I = p ( A )  
I 

where At denotes the eigenvalues of A and p ( . )  denotes the 
spectral radius. Since the spectral radius is always smaller than any 
other matrix norm [lo] we have that 

I IAI IMZP(A)  = IIAIILTL (25 1 
and therefore 

@LTL = 1 - II A It LTL 

2 eM = 1 - 11 A I I M V M ~ R " * " ,  positivedefinite. (26) - 
U 

B. Pobhedral Constraints 

In this subsection we consider the case where the region 9? is 
Consider now the case where eq  > 0. Then, there exists Q positive 
definite such that 

ATPA - P =  - Q  (18) 

Polyhedral, i.e., the case Where 

(27) G ( x )  = ( G x (  
where G E Rm*", rank(G) = n,  and the I I should be interpreted 
on a component by component sense. We begin by showing that in 
this case the induced norm of an operator M ,  11 M 11 can be 
expressed in terms of the infinity norm of an operator H linearly 
related to M .  

and 

. (19) 
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Lemma 3: Let MER"*" and define H 4 GM(GTG)- 'Gr .  
Then 

JIM11 i B =  llw-lHwll-. (28) 
Proof: The proof follows immediately from (6) and (8) by 

0 
The results of Lemma 3 can be used to efficiently compute e$ as 

the minimum of the solution of p linear programming problems as 
follows. 

Lemma 4: Let pf be the solution of the following optimization 
problem 

e:= min{l[AllM: I I W - ' ( H + A H ) W ( l ( l i ) 2  1 )  (29) 

where 11 MI( (li) indicates the 1, norm of the ith row of the matrix M 
and where H and A H  are defined as in Lemma 3. Then 

noting that GM = HG. 

A€ 9 

then (35) is equivalent to the following optimization problem: 

m,"" { e < ( F ) ) .  (37) 

Note that since the function defined is (36) is in general nondiffer- 
entiable, nonsmooth optimization techniques must be used to solve 
(37). Moreover, in general nothing can be stated about the existence 
of the local maxima of (36). Hence, a general nonsmooth optimiza- 
tion algorithm could conceivably get trapped at local extrema. 
However, in the next theorem we show that for a case of practical 
interest, (37) reduces to the well-behaved problem of finding the 
maximum of a concave function. 

Theorem 3: Consider the particular case where 9 is a cone with 
vertex at the origin, (i.e., A E 9 e AA E 9; A 1 0). Then e$(F) 
is a concave function. 

The proof of the theorem is given in the Appendix. Note that the 
class of sets considered in this theorem includes as a particular case 
set of the form 

rn 
Proof: Assume that the lemma is false and that there exist 5 pi L 0 ,  Ei given 

and A such that 

I(A +ill g =  1 ;  l~il~M= i;< e$. (31) which has been the object of much interest lately ([11]-[13]) and 

Since 11 A + 
i H ) w l l ~ i o )  = 1 ,  11 W - ~ ( H  + i H ) w l l y )  
implies (29) that e$. i; which contradicts (31). 

ing case: 

11 = 1 there exists io  such that (1 W - ' ( H  + 
1 ,  + io, but this 

(Unstructured Perturbation,: Consider the follow- 

references 
At the present time, we are investigating several methods of 

solving (37), and a future paper is planned to report the results. In 
this note, we will limit ourselves to the restricted case of unstruc- 
tured perturbations. In this case, from Theorem 2 we have that 
era = 1 - 11 A + BFll y. Hence, (37) reduces to solving the follow- 
ing convex minimization problem: 

F = argmax es = argmin ( 1  A + BF 11 y. 

Example 

A = ( o'8 0.5 ) G = ( : .! 2.0)  = ( 5.0 ) .  
(39) 

10 0 - 0.0208 0 SO83 1 5  2.0 
(32) F F 

In the remainder of this section, we will indicate how problem 
(39) can be solved for the particular cases of quadratic and polyhe- 
dral constraints. We begin by considering quadratic constraints. 

A .  Quadratic Constraints Case 

Then, from the definition of H ,  we have that 

H = ( 0.7583 o.o ) ,  1) ,411 = 0.7583 (33) 0.4167 0.55 

and, from Lemma 4, In this case (39) can be solved using standard results on matrix 
dilations [14]. Let P = L'L and assume that rank(B) = m .  Then, 
since the 2-norm is invariant under orthonormal transformations we = 1 i = 1 , 2 .  (34) 

j = 1  W i  I have that 

Casting the problems (34) into a linear programming form and 
solving we have that 

e,  = 0.2417, e2 = 0.2417 and eu  = min e; = 0.2417. 

= 0.2417 as shown in 
l s i s 2  

Note that in this case ey = 1 - ( 1  AI\ 
Theorem 2. 

IV. APPLICATION TO ROBUST CONTROLLERS DESIGN 
In this section we apply our formalism to solve the linear robust 

constrained stability design problem introduced in Section II. From 
Theorem 1 it follows that a full state feedback matrix F such that 
the constrained stability measure e$ of the closed-loop system is 
maximized can be selected by solving the following max-min 
problem: 

y(  pN]  (35) 

subject to 

Define 

) ) A + B F + A ) I , =  1 .  

e$(F)  min{ l [A l lM:  11 A + B F +  All y =  l }  
A€ 9 

(36) 

11 A + BFI( LTL = 11 L(  A + BF) L - ~ I I ~  = 11 A + bQ (40) 

where A = QLA(QL)-' ,  
Q is an orthonormal matrix such that 

= QLB, k =  F(QL)- ' ,  and where 

b = ( :) , B ,  invertible. 

Then 

tnd it follows that the optimal F is such that A ,  + B,f i  = 0, i.e., 
Fo = -B;'A", and that min,)lA + BF)),r,  = ~ ~ A 2 1 ~ z  = 

%JA2). 
Example 4: Consider the system 

P = ( .  1.0 0.0 + = I .  
0 0  1 0  

A direct application of (42) yields 

Fo = (0.4 - 1.2), 11 A + BFoII, = 0.9434, el = 0.0566. 
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B. Polyhedral Constraints 

following format: 
When the constraints are polyhedral, (39) can be cast in the 

min E (43) 

(4.4) 

F 

subject to 
11 A + BFII q s  E .  

By using (28), the inequalities (43) can be transformed into 

I G ( A  + B F ) ( G T G ) - ~ G ~ I U S  € U .  (45) 
The optimization problem defined by (43) and (45) can be cast into a 
linear programming problem and solved using the simplex method. 
Note that a similar design algorithm was proposed by Vassilaki et 
al. [15], although in their case the goal was to find admissible linear 
controllers for systems under polyhedral constraints, without taking 
into account robustness considerations. 

Example 5: Consider the following system: 

Using linear programming we get 

F = (0.3792 -0.6917) 

A,, = ( O ”  
- 0.0208 0 SO83 

11 A,,Il (B = 0.7583 = p (  A )  

where A,, denotes the closed-loop matrix, eig ( A,,)  its eigenval- 
ues, and p( A )  its spectral radius. Hence, we have 

eg = 1 - 11 A,,Il 9 = 0.2417. 

V. CONCLUSIONS 

The ultimate objective in control design can perhaps be summa- 
rized as [2]: “achieve acceptable performance under perhaps sub- 
stantial system uncertainty and under design constraints.” This 
statement looks deceptively simple, but up-to-date design techniques 
focus either only on the uncertainty issue or only on the constraint 
satisfaction issue. In this note we presented a theoretical framework 
capable of simultaneously addressing both issues. Since most physi- 
cally generated constraints have a natural expression in time do- 
main, our analysis focuses on state-space robustness analysis. 

In Section 11, we introduced the concept of robust constrained 
stability and we introduced a quantity, the constrained stability 
measure, that measures the “size” of the smallest destabilizing 
perturbation. In Section III we presented necessary and sufficient 
conditions guaranteeing constrained robust stability and we showed 
that our formalism provides a unifying approach, including as a 
particular case the well-known technique of estimating robustness 
bounds from the solution of a Lyapunov equation. Finally, in 
Section IV, we considered the design problem. There, we showed 
that a full state feedback matrix that maximizes the stability measure 
of the closed-loop system can be found as the solution of a game-like 
problem. Although the properties of this problem are still unknown 
for the general case, we proved that in a specific case that has been 
the object of much attention lately, it leads to the well behaved 
problem of finding the maximum of a concave function. Finally, we 
considered the particular case of unstructured perturbations and we 
showed that in this case the problem reduces to the simpler case of 

finding the minimum of a convex (albeit perhaps nondifferentiable) 
function. 

We believe that the results presented here will provide a valuable 
new approach to the problems of robust controllers analysis and 
design for linear systems. Further, since our approach is based 
purely upon time-domain analysis, we have reasons to believe the 
theory could be extended to encompass nonlinear systems in a much 
more direct fashion than other currently used techniques. 

Perhaps the most severe limitation to the theory in its present 
form, arises from the fact that the design procedure is limited to 
constant linear feedback. However, it is clear that only a fraction of 
the feasible constrained problems admits a constant linear feedback 
solution. It is our goal to extend the theory to include the nonlinear, 
optimization-based controllers that were the subject of [5]. 

APPENDIX 
PROOF OF THEOREM 3 

The following preliminary lemma is introduced without proof. 
Lemma 5: Let p1 > 0, pz > 0, and 0 I A I 1 be given num- 

bers and assume that 9 is a cone with vertex at the origin. Consider 
the following sets: 

Then 

p B A  C Xp,BA + (1 - X)p2BA. 

Proof of Theorem 3: Given two matrices F, and Fz,  consider 
a convex linear combination F = W, + (1 - X)Fz. Then 

max IIA + B F +  All 

s max IIX(A + BF, + A , )  + (1 - X ) ( A  + B F z + A z )  qy 

A s p B A  

A I @ P , B A  
A 2 ~ z  B A 

Consider now the case where p,  = Q$(F,) and p2 = e$(F2). Then 
it follows from the definition of e$ that both maximizations on the 
right-hand side of (A2) yield 1 and therefore 

Hence, from the definition of e<: 
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Local Convergence Analysis of Conjugate Gradient 
Methods for Solving Algebraic Riccati Equations 

Ali R. Ghavimi, Charles Kenney, and Alan J .  Laub 

Abstract-Necessary and sufficient conditions are given for local 
convergence of the conjugate gradient (CG) method for solving symmet- 
ric and nonsymmetric algebraic Riccati equations. For these problems, 
the Frobenius norm of the residual matrix is minimized via the CG 
method, and convergence in a neighborhood of the solution is predi- 
cated on the positive definiteness of the associated Hessian matrix. For 
the nonsymmetric case, the Hessian eigenvalues are determined by the 
squares of the singular values of the closed-loop Sylvester operator. In 
the symmetric case, the Hessian eigenvalues are closely related to the 
squares of the closed-loop Lyapunov singular values. In particular, the 
Hessian is positive definite if and only if the associated operator is 
nonsingular. The invertibility of these operators can be expressed as a 
noncancellation condition on the eigenvalues of the closed-loop matri- 
ces. For example, the stability of the closed-loop matrix, for the positive 
semidefinite Riccati solution, ensures the invertibility of the Lyapunov 
operator and hence the convergence of the CG method in a neighbor- 
hood of that solution. 
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I. INTRODUCTION 

When minimizing a scalar function f via the conjugate gradient 
(CG) method, local convergence is equivalent to the Hessian of f 
being positive definite at the point of minimization [l]. Moreover, 
Kantorovich-type error bounds show that the speed of convergence 
is intimately connected to the Hessian eigenvalue structure. 

Our main result is that for the problem of minimizing the 
Frobenius norm of the Riccati residual matrix, the Hessian matrix is 
positive definite if and only if the associated closed-loop operator 
(Sylvester or Lyapunov) is nonsingular. Further, there is a close 
correspondence between the squares of the singular values of the 
closed-loop operator and the Hessian eigenvalues. These results are 
presented in the next two sections and are followed by a discussion 
of general matrix problems. The remainder of this section is devoted 
to a synopsis of the CG method. 

General CG methods for minimizing smooth functions f :  W k  + 

W, extend the classical CG theory for quadratic functions and can 
take many forms. In the following, we use the CG method described 
by Luenberger in [l]. Letting V f  denote the gradient of f ,  the 
general CG algorithm is then defined as follows. 

Step 1: Given x ,  E R k ,  compute go = V f  ( x , )  and set do = 

-go. 
S t e p 2 : F o r i = O , l ; . . , k -  1: 

a) Find ai minimizing f ( x i  + adi)  over all cr ER. 
b) Set = xi + a id i  and gi+l = V f ( x i + l ) .  
c) Unless i = k - 1, set di+l  = -gi+l + Pidi where p i  is 

Step 3: If V f ( x , )  is sufficiently small in norm then stop, 

The constants p i  in Step 2 can be chosen in a variety of ways, 

a constant whose choice is described below. 

otherwise replace x ,  by xk and go back to Step 1. 

including 

(1) 
p .  = (&+I - gi)Tgi+l 

(gi+ I - g i )  Tdi 
due to Hestenes and Stiefel [2 ] ,  

due to Fletcher and Reeves [3], and 

(3) 

due to Polak and Ribikre [4]. All three expressions reduce to the 
standard formula for pi in the quadratic case. However, for non- 
quadratic minimization, numerical experiments indicate that the 
Polak-Ribikre method gives better results [5 ] .  

In order to discuss the speed of convergence of the CG method, 
suppose that the objective function f has a local minimum at X ,  

with associated Hessian matrix, Q = (a2 f /axi axj) .  Assume that 
Q is positive definite at x* with eigenvalues XI 2 X, 2 * . 1 Xk 

> 0. For the error function 
1 

2 
e ( x >  = - ( x  - x . ) ~ Q ( x  - x , )  (4) 

the standard Kantorovich-type error bound for the quadratic case is 
V I  
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