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becomes exact and being made exclusively by the RED �������� � ��,
which implies that ����� � �� �� � �� . In this case, an ISL is formed
and applying [8, Lemma 1] to system (38)–(40), with ���� satisfying
(8), one can conclude that the error state � will converge exponentially
to zero and 	 becomes identically zero after some finite time.
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Abstract—This technical note addresses the problem of set membership
identification of Wiener systems. Its main result shows that even though
the problem is generically NP-hard, it can be reduced to a tractable convex
optimization through the use of risk-adjusted methods. In addition, this
approach allows for efficiently computing worst-case bounds on the iden-
tification error. Finally, we provide an analysis of the intrinsic limitations
of interpolatory algorithms. These results are illustrated with a non-trivial
problem arising in computer vision: tracking a human in a sequence of
frames, where the challenge here arises from the changes in appearance
undergone by the target and the large number of pixels to be tracked.

Index Terms—Risk-adjusted relaxations, Wiener systems identification,
worst-case nonlinear identification.

I. INTRODUCTION

Identification of Wiener systems from time domain data has received
considerable attention in the past decade. Stochastic approaches based
on the use of white Gaussian inputs include [1]–[4]. More general in-
puts have been considered in [5]–[7], at the price of additional assump-
tions on the nonlinearity (either invertibility or a special structure). Set
membership techniques [8], [9] provide an attractive alternative, since
they require few additional assumptions about the nonlinearity or noise
sets. Moreover, these approaches furnish hard bounds on the values of
the unknown parameters of the plant in a form that can be directly used
by robust control synthesis techniques. However, as recently shown in
[10], set membership identification of Wiener systems is generically
NP hard.

To avoid this difficulty, in this technical note we propose a risk-ad-
justed convex relaxation, where, in return for an (arbitrarily) small risk
of not being able to establish consistency of the data, the problem is
reduced to a convex optimization problem whose complexity scales
linearly with the data. In addition, this approach allows for efficiently
computing worst-case bounds on the identification error. Finally, we
also provide an analysis of the convergence properties and intrinsic lim-
itations of interpolatory algorithms. These results are illustrated with a
non-trivial problem arising in computer vision: tracking a human in a
sequence of frames. The challenge here arises from the changes in ap-
pearance undergone by the target and the large number of pixels to be
tracked. By using the proposed identification method, we show that the
problem can be solved by modelling the plant as a Wiener system. This
formalizes some recent conjectures [11] where it has been argued that
this motion can be explained by considering linear dynamics in a low
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dimensional manifold, accounting for the physics of the motion, fol-
lowed by a static non-linearity that accounts for appearance changes in
the target.

II. PRELIMINARIES

For ease of reference, next we summarize the notation used in the
technical note.

���� Maximum singular value of matrix �.

� � � � is positive semidefinite.

�� � �� Metric space of elements in � equipped with the metric
����� ���.

���� Diameter of � � � � ����
�
� ���

�����
���� ��.

�� ��� Closed �-ball in a normed space �� � ���� � �� ��� �
�� 	 � � ���� 
 ��.

	� Extended Banach space of vector valued real sequences
equipped with the norm: ����

�
� ���� �����.

���� Space of transfer functions analytic in �
� 
 �, equipped
with the norm ������

�
� �� �������� ����
��. The

case � � 	 will be simply denoted ��.

���
� Set of ��  	��� order FIR transfer matrices

that can be completed to belong to ���, i.e.
���

�
�
� ���
� � �� 
 ��
 
 � � � 
 ����


��� �
��
�

���
� 	 ���� �� ��� ��
� 	 ���.
In cases where it is clear from the context, we
will use ���

� also to denote the finite sequence
������� � � � ������.

�� Lower triangular block Toeplitz matrix associated with
any finite sequence ��	� � � �� 	� � � � � �  	�, or any
column vector � � ���� ��� � � � � �
���

� :

�� �

�� � � � � �

�� ��
. . . �

...
. . .

. . . �

�
�� �
�� � � � ��

�

Given a Linear Time Invariant (LTI) system � , we will denote by � its
impulse response sequence (Markov parameters) and by�� the corre-
sponding Toeplitz matrix. Finally, when dealing with finite sequences
of length N, we will use �� and��

� to denote the truncated sequence
and the corresponding � �� upper left sub-matrix of ��.

III. PROBLEM STATEMENT

Consider the Wiener system shown in Fig. 1 consisting of the inter-
connection of a LTI system��
� and a memoryless nonlinearity����.
The corresponding equations are given by

�	 ������	� 
 ���	

���	 ��� � ��	 (1)

where � denotes convolution and the signals � 	 �
 and � 	 �


represent the experimental data: a known input and its corresponding
output, corrupted by unknown but norm-bounded measurement noise
�. Our goal is to, given experimental data consisting of � measure-
ments of the input/output sequences ��	� �	�

�

	�� and some a priori
information about the plant, establish whether they are consistent, and

Fig. 1. Wiener system structure.

if so, find a model that interpolates the experimental data within the
measurement error level.

In the sequel, we will make the following standard assumptions
about the a priori information:

A1.- The linear portion of the plant belongs to the set�
�
� ���
� �

��
� � ��
� 
 � �
��, where ��
� 	 �
�
�
� ��������, and

� �
� 	 ��
�
� �� �
� � �����
�� � 	 � � �� �, where

the �� components �� �
� of vector ���
� are known, linearly
independent functions.
A2.- The measurement noise satisfies: � 	 �

�
� �� � ��	�� 


��.
A3.- � 	 � , a family of equi-bounded, uniformly equi-contin-
uous functions.

Remark 1: Assumptions [A1.-] and [A2.-] are standard [12]. As-
sumption [A3.-], required in order to guarantee convergence of any in-
terpolatory algorithm as the information is completed, is automatically
satisfied in cases where the nonlinearity can be expressed as a bounded
combination of a finite set of known, continuous basis functions:1

�
�
� ������ � ���� � ���� � ������ � � � � �
 ���

�
�

����������� 	 � � �

 �


�

In principle the continuity assumption seems too strong, ruling out,
among others, relay nonlinearities. However, note that these nonlinear-
ities render all plants whose response to the given input has the same
zero-crossings indistinguishable. Further, since the domain of the non-
linearity is restricted to a compact subset of �
 , it can be approx-
imated arbitrarily close by a continuously differentiable function. In-
deed, it can be argued that such smooth models provide a better repre-
sentation of physically realizable nonlinearities.

Under assumptions [A1–A3], the problem under consideration can
be precisely stated as:

Problem 1: Given the a priori information ��� �� and the exper-
imental data ��	� �	�

� ��
	��

:
1) determine whether the information is consistent, i.e., the consis-

tency set � ������ �
�
� �� 	 � � �	 � �������	�
�	� � �

��� � � � �  	 �� ��� � 	 � ��� ��� �������� �		 ��
is nonempty.

2) If � ������ � �� �, find a nominal model �������� that inter-
polates the data.

IV. A POLYNOMIAL TIME RELAXATION

Unfortunately, as recently shown in [10], Problem 1 above is NP
hard both in the number of inputs to the nonlinearity � and the number
of experimental data pairs ��� ��, even in cases where the nonlinearity
���� is known. To circumvent this difficulty, in this section we pro-
pose a polynomial time relaxation. The main idea is to exploit recently
introduced results on sampling systems in ��� to sample the set of
candidate linear plants � , thus reducing the problem to a (noisy) inter-
polation problem in� . To solve the latter problem, we will assume that

1Since � has a finite � induced norm, for a given input, the signal �, and
hence the domain of � belong to a compact subset of� . Uniform equicon-
tinuity and equiboundedness follow from continuity and finiteness of the family
�� �.
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� is spanned by a known basis �������. This assumption, standard in
the field (see for instance [3], [5], [7]), is justified by the fact that, since
� � ���

�
��� and � is bounded, the range and domain of � are

compact, and thus each of its components can be approximated there
arbitrarily close for instance by a polynomial. These ideas are formal-
ized in the following algorithm:

Algorithm 1:

1.- Generate �� samples ����������� of the set

���

������ by using the algorithm proposed in [13]
to sample ���

�
, followed by the transformation

���� � �����	
� ���� ���� � � � � ���� ���� � �����. Generate ��

uniformly distributed samples �	���
��� from the set �. Set 
 � 
.

Let �� � ����  	� ��. Solve the following optimization
problem:

����� � ���
�

� ����� �
�

�
�

�

(2)

where � � 	����� ����� � � � �	����
 ,����� known.
If ����� 	  or 
 � ��, stop. Otherwise, set 
 � 
  
 and go
back to step 2.

The algorithm finishes either by finding one feasible pair ����� or
after �� steps, in which case the a posteriori experimental data is
deemed to invalidate the a priori information. As we show next, if the
number of samples �� is large enough, the risk of incorrectly con-
cluding that 
 ����	�� � � � can be made arbitrarily small.

Lemma 1: Let ��� �� be two positive constants in (0, 1). If �� is
chosen such that

��  ���
���

�� �
��
� ���
(3)

then, with probability greater than 
� �, the probability of not finding
a feasible pair ����� when one exists is smaller that � .

Proof: Note that 
 ����	�� � �� � if there exists at least one
� � � such that ���� 	 . Direct application of the results in [14]
shows that if the number of samples is at least �� then

���	 ���	 �� � ���

��� � ���� 	  ���

�����
�

���
�  	 �  �
� �� (4)

which yields the desired result.
Remark 2: Note that as � � �, the number of samples (and hence

the computational time) �� � �. This is consistent with the fact
that the problem is NP hard and therefore no polynomial time exact
solutions should be expected.

V. CONVERGENCE ANALYSIS

In this section we briefly analyze the convergence properties of the
proposed algorithm as the information is completed, that is � � and
�	 � �. To this effect, we will prove a more general result con-
cerning the intrinsic limitations of any interpolatory algorithm.2 Con-
trary to the case of linear plants, in the case of Wiener systems conver-
gence to the true plant (in the sense that 
 ����	�� �� ����) is no

2In the context of this technical note, interpolatory algorithms are those such
that the linear portion of the true plant � � � ���� �� �.

longer guaranteed (except in special cases, e.g. invertible nonlineari-
ties). Rather, any interpolatory algorithm �� will converge to the set


 ���� �
� �� � � � � � ����� � ��� � � �� 
� � � � �

��� ���� ��� � ��

e.g., the consistency set in case of complete and uncorrupted experi-
mental information. The diameter of this set �����

�
� ��
 ���� defines

an intrinsic local worst-case error for Wiener systems, in the sense that
this is the best that can be achieved by any interpolatory algorithm.

Theorem 1: Assume that � �
� �����. Then as the information is

completed

���
� ������


 ����	� � � 
 �����

Proof: The proof proceeds by showing that �
 ����	� 	��,
the sequence of consistency sets indexed by ��	� 	�, converges to

 ����. From the continuity assumption on ���� and the fact that �
is closed, it follows that the sets 
 ����	� 	� and 
 ���� are closed.
Consider now sequences ��	 � �� 	 � �� as � � �. The corre-
sponding sequence 
 ����	� 	� satisfies


 ����	��� 	��� � 
 ����	� 	��� � 
 ����	� 	�� (5)

Therefore its limit ���	�� 
 ����	� 	� exists and equals
�	��
 ����	� 	� ([15], page 19).

If the identification problem is well posed, i.e. 
 ���� �� �, then

�	��
 ����	� 	� � �	��
 ����	� �� � 
 ����

where we have used the fact that � � � . Consider now an arbitrary
plant �� � �	��
 ����	� 	�. Since �� � 
 ����	� 	���, it
follows that for each � there exists at least one nonlinearity�	 � �
and an admissible noise sequence �	 � � such that � � �	�� �
���  � , � � �� 
� � � ��	 � 
. Moreover, given any  � �, there
exists some ���� such that for all � � ����

�� ����	 ��� � ��� 	 

�
� � � �� 
� � � � � �	� (6)

By assumption [A.3-] the family of nonlinearities � is equibounded
and equicontinuous, hence it follows from Arzela Ascoli’s Theorem
that it containts a convergent subsequence ��� � ��. Thus, there
exists some ���� such that for all � � ����, ��	��� � ������ 	
����. Thus, for all � � ������� ��� we have that

�� � ���� ��� � ��� 	 � � � �� 
� � � � � �	 � 
� (7)

Since�	 � � and  is arbitrary, this implies that �� � ��	��������� ��
and hence �� � 
 ����. It follows that �	��
 ����	� 	� � 
 ����,
which together with (6) establishes the equality.

Remark 3: Note that assumption [A.3] plays a key role in the proof
above. Without the sequential compactness on � induced by this hy-
pothesis, it is not hard to build counterexamples where convergence to

 ���� fails. For instance, consider the following family of non-linear-
ities:

� � ������ � ����� �

�
�
���������� �  
 (8)

and experimental data � � 
���, � � �. Clearly 
 ���� � ���.
However, all plants of the form � � � are in 
 ����� � for all �
and all  � �. Thus 
 ���� � �	��
 ����	� 	�.
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Applying the result above to Algorithm 1 leads to the following re-
sult:

Corollary 1: Denote by �� the actual plant and let �� �
���� ��� �����. Then, given any � � ��, there exists a pair ���� 	��
such that if �� � �� output measurements are collected with a noise
level 	 
 	� and the number of samples �� is selected according to
(3), Algorithm 1 will generate, with probability greater than � � � , a
plant ��� such that ���� ���� 
 �.

VI. COMPUTING BOUNDS OF THE IDENTIFICATION ERROR

In this section we briefly address the problem of computing bounds
on the identification error. In the case of linear plants, this error can
be bounded by the local and global diameters of information. In turn,
depending on the characterization of the set � , these quantities or upper
bounds can be computed by solving a convex optimization problem.
On the other hand, this approach is no longer feasible here, due to the
existence of the nonlinearity. Indeed, in the case of Wiener systems,
three different quantities are relevant:

1) �������� �
�
� ���

� 	� �� ��	
	� �

��� � ���, that is the worst

case identification error for the linear portion of the plant.
2) �������� �

�
� ���

� 	� �� ��	
	��

�� � ��, where

��
�
� ������ denotes the identified nonlinearities corre-

sponding to the linear portion ��.
3) �������� �

�
�

���
� 	� �� ��	
	��

���	��� � ��
�

���	��� � ��

�

�, that is the

prediction error at some future time � � � .
In principle, computing these errors (or suitable upper bounds) leads

to challenging infinite dimensional non-convex optimization problems.
However, the same risk-adjusted approach used in Section IV can be
used to obtain computationally tractable relaxations with risk-adjusted
optimality certificates, as follows. Begin by noting that since �� �
	
�	����, ������ � ����. It follows that:

����� � �

��

���

��	��� ��
�

�
����� ��
�

Hence by selecting � large enough, ���	� ���	��� can be ap-
proximated by ����


� � �

� �. This observation allows for com-

puting the identification errors ��, �� , �� as follows:

Algorithm 2

0.- Given 	 � , set � � ������� �� � �������������. Set
�� � , �� � , �� � .
1.- Generate �� samples ������




��� of the set � ������� ��	
using Algorithm 1
2.- For each sample ��� , find a matrix ����

�
�

	������
�
� � � � � ����
�
 �

�


�

such that ��
�
� 	�����

�
�����

�

 �

	




�	���� by proceeding as in step 2 of Algorithm 2 in [13].
3.- Set ��� � ��� � ��� � 
4.- For � � �� � � � � �� � � and � � �� �� � � � � �� do:

4.1 set ��� � �������� ��
�
� � ���� � �� � ������

4.2 Let:

��	�� � ��� �� ��� ������� �� �

�� ����� ��� � ��� � ���� � � � �� � � � � �� � �

�� ����� ��� � ��� � ��� (9)

Set ��� � ������� � ��	�� �
4.3 Let

��	�� � ��� ���� ��� � ��� ����� ��� � ���

������� �� �

�� ����� ��� � ��� � ���� � � � �� � � � � �� � �

�� ����� ��� � ��� � ��� (10)

Set ��� � �������� �
�	�
� �

As before, if �� is chosen according to (3) then:

���� ���� ����� � �� � ������� � ��



���

� �� � ���  �� (11)

where ���� �� and ����� �� denote the true worst case errors and their es-
timates, respectively.

VII. APPLICATION: HUMAN MOTION MODELLING AND TRACKING

The problems of modelling and tracking human motion using as
input images from a sequence of video frames has been the subject
of extensive research in the computer vision community (see for in-
stance [11], [16], [17] and references therein). A difficulty with ex-
isting approaches stems from the high dimensionality of the data: even
using small size images requires processing hundreds of pixels from
each frame. In [11] it has been conjectured that the problem can be de-
coupled into a linear tracking problem in a low dimensional manifold,
accounting for the dynamics of the motion, and a nonlinear, static map-
ping that accounts for the changes in appearance of the target. However,
no formal proof of this conjecture is available. In this section we will
show that this is indeed the case, by recasting the problem of human
motion modelling and tracking into a Wiener systems identification
form.

The starting point is to postulate that human motion can be modeled
as the impulse response of a Wiener system whose output is the ob-
served image sequence. The proposed framework can then be used to
substantiate this hypothesis by establishing consistency of the a priori
assumptions and the a posteriori experimental data, and to find a suit-
able model. In order to accomplish this, we will make the following
assumptions concerning the a priori information:

1.- The output of the LTI part, !, evolves in a 3-dimensional space
(this hypothesis is motivated by the work in [17] on estimating the
dimension required for human motion modelling).
2.- The static nonlinearity ��!� is given by ��!� �

�	"��! � #���� "��! � #���� �� !
� 

�

with "��� � ����������
and

	#� #�
 �

����� ���  !

��" !� �"##�

���� ���

This hypothesis is motivated by the bases proposed in [11], [17]
to map human silhouettes to lower dimensional spaces.
Measurements of the pixels values are corrupted by measurement
noise of up to 10% of their peak value. (This accounts for both
actual measurement noise and errors in establishing pixel corre-
spondences across frames).

The experimental data, partially shown in Fig. 2(a), consists of the
first 20 frames of a human walking on a treadmill, each having 1728
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Fig. 2. (a) Top: Frames 19 through 22 of a walking person video sequence (Frames 21 and 22 were not used in the identification). Bottom: Frames 19 through 22
predicted by the identified system. (b) Surface of � for the nonlinear part of the model.

TABLE I
ACTUAL IDENTIFICATION ERROR VERSUS WORST CASE BOUND

pixels,3 taken from the CMU MOBO database. Applying Algorithm 1
with �� � ��� ����	
�, which yields a probability of 99% of estab-
lishing consistency with confidence 99% led to a feasible pair �����
and hence a model explaining the experimental data. Model reducing
the central interpolant found using the formulae in [18] leads to the fol-
lowing ��� order system for the linear portion of the model:

��� �

������ ������ ������ ������ �����������

� ������ ������ ������ ���	
������

������ ������ ������ ������ ����
������

� ������ ������ ������ ���	
������

����� ����	� ����
� ������ �����������

� ������ ������ ������ ���	
������

�

(12)

The corresponding static output nonlinearity is given by ��, where
a surface plot of the matrix � is shown in Fig. 2(b). Here the �, �
axes correspond to the index of the matrix and the � axis to the matrix
value. In most cases, the rows of � are sharply peaked around one or
two values, indicating that these pixels can be explained using fewer
elements of the bases ���	 .

The impulse response of the identified system is shown in Fig. 2(a).
As illustrated there, the system is able to correctly predict the appear-
ance of the target in frames 21 and 22, not used for training. Table I
shows a comparison between the actual identification errors in the pre-
dicted image and the worst-case bounds computed using Algorithm 2.

VIII. CONCLUSION

In this technical note we propose an algorithm for set membership
identification of Wiener systems using time-domain data. As shown in
the technical note, although the problem is known to be generically
NP hard, exploiting recently introduced results on sampling of transfer
functions leads to a tractable convex optimization, at the price of an
arbitrarily small probability of mis-identifying the plant. These results
were illustrated with a problem that has been the object of considerably
attention in the computer vision community: modelling the evolution

3The measurements vector �, of dimension 1728, was constructed by row-
wise stacking the values of the pixels in each frame.

of human motion in a sequence of two-dimensional images. By mod-
elling this evolution as the impulse response of a Wiener system, we
were able to establish that the problem can be indeed decoupled into
two simpler subproblems: (i) tracking the trajectory of an LTI system
in a low dimensional subspace and (ii) finding a nonlinear static map-
ping that accounts for appearance changes. By decoupling the intrinsic
dynamics of the target from changes in its appearance, this decompo-
sition is the first step towards designing faster, more robust trackers.
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Uniform Global Asymptotic Stability of a Class
of Adaptively Controlled Nonlinear Systems

Frédéric Mazenc, Marcio de Queiroz, and Michael Malisoff

Abstract—We give a new explicit, global, strict Lyapunov function con-
struction for the error dynamics for adaptive tracking control problems,
under an appropriate persistency of excitation condition. We then allow
time-varying uncertainty in the unknown parameters. In this case, we con-
struct input-to-state stable Lyapunov functions under suitable bounds on
the uncertainty, provided the regressor also satisfies an affine growth con-
dition. This lets us quantify the effects of uncertainties on both the tracking
and the parameter estimation. We illustrate our results using Rössler sys-
tems.

Index Terms—Adaptive control, input-to-state stability, Lyapunov func-
tions, uniform asymptotic stability.

I. INTRODUCTION

Consider a nonlinear system

�� � ���� �� �� �� (1)
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where � is a vector of uncertain constant parameters. The adaptive
tracking control problem for (1) is: Given a sufficiently smooth ref-
erence trajectory �����, find a dynamic feedback

� � ���� �� ����
��� � � ��� �� ��� (2)

where �� is the estimate of �, that ensures that ����������� � as ��
� while keeping all closed-loop signals bounded. In general, solving
the adaptive tracking problem does not guarantee that �� ������ � as
� � �; i.e., parameter identification is not assured. In fact, one does
not know in general whether �� even converges to a constant vector [5].

Persistency of excitation (PE) has been linked to the asymptotic sta-
bility of adaptive systems [13]. PE establishes that a necessary (and
sometimes sufficient) condition for parameter identification is that the
reference trajectory be sufficiently rich so that the regressor satisfies a
PE inequality [3] along the reference trajectory. For large classes of
systems, PE implies that tracking error convergence can only happen
when the adaptation law identifies the actual parameters [15]. The rela-
tionship between parameter identification, uniform asymptotic stability
and PE was first shown for linear systems, and has been established for
certain types of nonlinear systems as well. (Uniformity with respect to
initial times has important implications for robustness. For example,
this property ensures stability in the face of persistent disturbances [2]
and provides rate of convergence information [12]. In general, PE is
neither necessary nor sufficient for uniform asymptotic stability [13].)
One notable example is the nonlinear dynamics of robot manipulators,
where PE ensures asymptotic parameter error convergence under the
Slotine-Li adaptive controller [15]. Recently, PE was shown to be nec-
essary and sufficient for uniform global asymptotic stability (UGAS)
of a class of nonlinear systems that includes the manipulator dynamics
[6], [7].

When an adaptive controller does not yield GAS, this means that
the corresponding closed-loop system does not admit a strict Lyapunov
function (as defined precisely in the next section). However, even when
the controller yields UGAS, the classical Lyapunov approach does not
give an explicit strict Lyapunov function. Explicit strict Lyapunov func-
tions are generally more useful than nonstrict ones when computing
stability gains or quantifying the effects of uncertainty.

The present work provides a global, explicit, strict Lyapunov func-
tion construction for the error dynamics for adaptive tracking problems
under a PE condition. It belongs to a family of results that transform
nonstrict Lyapunov functions into explicit strict Lyapunov functions;
see [9], [10] for constructions of this type for large classes of time-in-
variant systems. The paper [11] contains a very general result on con-
structing strict Lyapunov functions for nonlinear time-varying systems
for which so-called auxiliary functions are known; i.e., the strict Lya-
punov function construction in [11] is nonexplicit, unless the auxiliary
functions are known.

By contrast, this note provides explicit expressions for auxiliary
functions, which make our Lyapunov function completely explicit.
The Lyapunov functions we obtain here are much simpler than the
ones that would be obtained by applying [11]. Finally, the Lyapunov
functions we provide here are lower bounded near 0 by positive
definite quadratic functions, while the Lyapunov function construction
of [11] would not have this property. We also use the idea of weighting
functions, which have been used in other contexts [1], [4], [19]. The
global strict Lyapunov-based framework can potentially generalize
the UGAS proofs for adaptive systems. This note takes the first step
towards this generalization.
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