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ii) It follows from Lemma 1 that �(Fs (�); F (�; so(�))) =
�(Fs (�); (1 � �)�1Fs (�))� �(1 � �)�1M(so(�)),
where M(so(�)) � M1 < 1 for all � 2 (0; 1),
hence �(Fs (�); F (�; so(�))) ! 0 as � & 0. Note that
so(�)!1 as�& 0. SinceF (�; so(�)) � F1 � Fs (�)

for all � 2 (0; 1) and Fs (�) ! F1 as �& 0, we conclude
that F (�; so(�)) ! F1 as � & 0.

APPENDIX III
PROOF OF THEOREM 3

We refer to the proof of Theorem 2 for the definition of M1. Let
" > 0 and recall that 0 < M1 < 1 and Fs � F1 for all s 2 .
Since Fs and F1 are convex and contain the origin, it follows that
�(1 � �)�1Fs � �(1 � �)�1F1 for any s 2 and � 2 [0; 1).
Note that the inclusion �(1 � �)�1F1 � n

p (") is true if �(1 �
�)�1M1 � " or, equivalently, if � � "(" +M1)�1. Hence, (8) is
true for any s 2 and � 2 [0; ��], where ��

�
= "("+M1)�1 2 (0; 1).

Clearly, (4) is also true if we choose � 2 (0; ��] and s = so(�). This
establishes the existence of a suitable couple (�; s) such that (4) and
(8) hold simultaneously.
Let (�; s) be such that (4) and (8) are true. Since F (�; s) = (1 �

�)�1Fs is a convex and compact set that contains the origin,F (�; s) =
(1� �)�1Fs = (1 + �(1 � �)�1)Fs= Fs � �(1� �)�1Fs. Since
Fs � F1 � F (�; s) � Fs �

n

p (") � F1 �
n

p ("), it follows that
F (�; s) is an RPI, outer "-approximation of the mRPI set F1.
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[16] S. V. Raković, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne. (2004,
Jan.) Invariant approximations of robustly positively invariant sets for
constrained linear discrete-time systems subject to bounded distur-
bances. Dept. Eng., Univ, Cambridge, Cambridge, U.K. [Online] Tech.
Rep. CUED/F-INFENG/TR.473, http://www-control.eng.cam.ac.uk

[17] K. Hirata and Y. Ohta, “"-feasible approximation of the state reachable
set for discrete time systems,” in Proc. 42nd IEEE Conf. Decision and
Control, Maui, HI, 2003, pp. 5520–5525.

[18] K. I. Kouramas, “Control of linear systems with state and control con-
straints,” Ph.D. dissertation, Imperial College of Science, Technology
and Medicine, Univ. London, London, U.K., 2002.

[19] Geometric Bounding Toolbox (GBT) for MATLAB, S. M.
Veres.http://www.sysbrain.com [Online]

[20] M. Kvasnica, P. Grieder, M. Baotić, and M. Morari, “Multi Para-
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An Algorithm for Sampling Subsets of With
Applications to Risk-Adjusted Performance

Analysis and Model (In)Validation

Mario Sznaier, Constantino M. Lagoa, and Maria Cecilia Mazzaro

Abstract—In spite of their potential to reduce computational complexity,
the use of probabilistic methods in robust control has been mostly limited
to parametric uncertainty, since the problem of sampling causal bounded
operators is largely open. In this note, we take steps toward removing this
limitation by proposing a computationally efficient algorithm aimed at uni-
formly sampling suitably chosen subsets of H . As we show in the note,
samples taken from these sets can be used to carry out model (in)validation
and robust performance analysis in the presence of structured dynamic
linear time-invariant uncertainty, problems known to be NP-hard in the
number of uncertainty blocks.

Index Terms—Model (in)validation, risk-adjusted control, robust perfor-
mance, sampling, structured uncertainty.

I. INTRODUCTION

Many problems arising in robust control have poor computational
properties. Examples are validating a system model and assessing its
robust performance properties in the presence of structured linear time
invariant dynamic uncertainty, both NP-hard in the number of uncer-
tainty blocks [4], [19]. Tractable relaxations are available, but can be
arbitrarily conservative [18].
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Given these difficulties, during the past few years considerable at-
tention has been devoted to the use of probabilistic methods [2], [3],
[5], [8], [14], [16], where the computational burden grows moderately
with the size of the problem [12].
However, at the present time, the domain of applicability of proba-

bilistic techniques has been largely restricted to the finite-dimensional
parametric uncertainty case.1 The main reason for this limitation is that
up to now the problem of sampling causal bounded operators has been
largely open. In the first part of this note, we propose an algorithm to
remove this limitation when the set to be sampled, D, consists of op-
erators that can be completed to belong to balls inH1. By combining
matrix dilation and Carathéodory–Fejér interpolation results, we show
that the problem of generating operators uniformly distributed over
these sets can be reduced to that of generating finite-dimensional vec-
tors uniformly distributed over a convex set. In general, this is also a
hard problem.Most of the solutionmethods available require designing
a random walk whose stationary distribution is the required one [9].
However, as we show here, for the class of subsets of H1 considered
in this note, use of Parrot’s Theorem allows for solving the problem by
simply sampling a sequence of intervals, leading to a computationally
efficient algorithm.
In the second part of this note, we exploit these results to develop

a risk-adjusted framework that allows for validating a given system
model from experimental data, and to assess its finite-horizon robust-
ness properties in the presence of structured uncertainty.

II. NOTATION

In the sequel,H1 denotes the subspace of transfer matrices analytic
in jzj < 1 and essentially bounded on jzj = 1, equipped with the
norm: kGk1

:
= ess supjzj<1 �(G(z)), where �(:) denotes maximum

singular value. BH1 and BHn
1 denote the unit ball inH1 and the set

of (n�1)th order FIR transfer matrices that can be completed to belong
to BH1, i.e. BHn

1
:
= fH(z) = H0 +H1z + . . . + Hn�1z

n�1 :

H(z)+znG(z) 2 BH1; for some G(z) 2 H1g, respectively.

III. SAMPLING THE CLASS BHn
1

Using a risk-adjusted approach to perform model (in)validation and
to assess robust performance requires solving the following problem.

Problem 1: Given n, generate suitably distributed samples from a
finite dimensional representation of the convex set BHn

1.
In the aforementioned problem, n is given by the specific application

under consideration: for model invalidation problems, n is given by
the number of experimental data points; for performance analysis, n
corresponds to the horizon length of interest.
In principle, sampling general convex sets is a hard problem. How-

ever, as we will show in the sequel, in the case under consideration
here, the special structure of the problem can be exploited to obtain a
computationally efficient algorithm.

A. Reducing the Problem to Sampling Finite Dimensional Sets

We begin by showing how Problem 1 can be reduced to the
problem of sampling a finite-dimensional convex set. From the
Carathéodory–Fejér Theorem (see, for instance, [1]) it follows that
given the first nMarkov parametersHi 2 R

s�m, i = 0; 1; . . . ; n� 1

1An exception is the work of Zhou [21], [22] using boundary N–P interpola-
tion theory to estimate the probability that a given model is not (in)validated by
a set of frequency-domain experiments.

of a matrix operator H(z) 2 H1, the corresponding H(z) 2 BHn
1

if and only if �(Tn
H) � 1, where

T
n

H(H0;H1; . . . ;Hn�1)
:
=

Hn�1 � � � H1 H0

Hn�2 � � � H0 0
...

...
H0 0 � � � 0

:

Thus, a natural representation for BHn
1 in Problem 1 is the set CH

:
=

ffHig
n�1
i=0

: �(Tn
H) � 1g. This leads to the following problem.

Problem 2: Given n > 0, generate uniform samples over the
convex set CH .
Remark 1: Is worth emphasizing that uniformly sampling CH is

not equivalent to uniformly sampling either BHn
1 or BH1. Rather,

it assigns the same probability to each equivalence class in these sets
formed by transfermatrices having the same firstnMarkov Parameters.
This is natural in the context of the applications addressed in this note,
model (in)validation and finite horizon performance assessment, where
the property in question depends only on these parameters.
In the sequel, we present an algorithm for generating uniform sam-

ples over arbitrary finite dimensional convex sets and we solve Problem
2 as a special case.

B. Generating Uniform Samples Over Convex Sets

Given an arbitrary convex set C � Rn define its projection and
section, respectively, by

Projl(C)
:
= x 2 Rl : [xTyT ]

T

2 C; for some y 2 Rk�l

SkC (y)
:
= x 2 Rk : [yT xT ]

T

2 C : (1)

Finally, given x 2 C, partition the vector conformably to some given
structure in the following form x = [xT1 x

T
2 � � � xTm]

T
, where xi 2

Rn and m

i=1
ni = n. Consider now the following algorithm.

Algorithm 1

1) Let . Generate samples,
, , uniformly

distributed over the set
.

2) Let . For every generated
sample , let

Ck x
l

1;x
l

2; . . . ;x
l

k�1
:
=SnC x

l

1

T

x
l

2

T

� � � xlk�1
T

T

Ik x
l

1;x
l

2; . . . ;x
l

k�1
:
=Projn (Ck)

with . Generate
samples uniformly

over the set , where is an
arbitrary positive constant.

3) If , go to step 2). Else,
stop.

Remark 2: Note that each set generated by this algorithm contains
N1 independent samples. As we will show in Section IV, this allows for
exploiting the results in [16] to obtain bound on the number of samples
required to guarantee that a property holds with a given probability. In



412 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 3, MARCH 2005

contrast, these results cannot be used for samples generated using for
instance Markov Chain based methods, since they are not independent.
Next we show that the probability distribution of the samples gen-

erated by this algorithm converges, with probability one, to a uniform
distribution as N1 ! 1.

Theorem 1: Consider any set A � C. For a given N1, denote by
nst(N1) and nsA(N1)2 the total number of samples generated by
Algorithm 1 and the number of those samples that belong to A, re-
spectively. Then

nsA(N1)

nst(N1)

w:p:1
�!

vol(A)

vol(C)
: (2)

Proof: See Appendix A.
Remark 3: Themain reason that prevents the estimate of probability

produced by the samples generated by Algorithm 1 from being unbi-
ased is that, in general, at step s

N1�svs X
k
1 ;X

m
2 ; . . . ;X

n
s�1

N1

6=�svs X
k
1 ;X

m
2 ; . . . ;X

n
s�1

where vs(:)
:
= vol[Is(X

k

1; . . . ;X
n
s�1)], due to the rounding. Indeed,

for any union of hyper-rectangles A � C satisfying

N1�svs X
k
1 ;X

m
2 ; . . . ;X

n
s�1

N1

=�svs X
k
1 ;X

m
2 ; . . . ;X

n
s�1

it can be shown that, for any value of N1

E[NA]

E[Nt]
=

vol(A)

vol(C)
:

Unfortunately, this equality is not true in general. However, as shown
next, the difference between these values can be made very small even
for relatively small values of N1.

Theorem 2: Consider a set A � C. Then, there exist constants k1,
k2 and k3 such that, for any N1

E[NA]

E[Nt]
�

vol(A)

vol(C)
�

1

N1

k1

k2 +
k

N

:

Proof: See Appendix B

C. BHn
1 as a Simpler Case

In the case of general convex sets C, Algorithm 1 requires knowledge
of the volume of the projection sets up to a multiplying constant. How-
ever, as we show in the sequel, for sets of the form CH

:
= ffHig

n�1
i=0 :

�(Tn
H) � 1g it is possible to analytically find these quantities. Since

these are precisely the sets arising in the context of Problem 1, and
since the linear spacesRs�m andRsm are isomorphic, it follows that
this problem can be efficiently solved by applying Algorithm 1.
Given fH0;H1; . . . ;Hk�1g, 1 � k � n, consider the problem of

determining the set

Projn (Ck(H0;H1; . . . ;Hk�1))
:
= fHk : (H0; . . . ;Hk�1;Hk;Hk+1; . . . ;Hn�1) 2 CH ;

for some(Hk+1; . . . ;Hn�1)g : (3)

From Parrott’s Theorem [20, p. 40], it follows that the set (3) is given
by

Hk : � T
k+1
H (H0;H1; . . . ;Hk) � 1 :

2Note that both ns and ns are random variables.

An explicit parameterization of this set can be obtained as follows.
Partition

T
k+1
H (H0;H1; . . . ;Hk) =

Hk B

C A
(4)

and let the matricesY and Z be a solution of the linear equations

B =Y(I�AT
A) (5)

C =(I�AAT ) Z (6)

�(Y) � 1 �(Z) � 1: (7)

Then

Hk : �(T)k+1H � 1 = Hk : Hk = �YAT
Z

+(I�YYT ) W(I� ZTZ) ; �(W) � 1 :

Hence, generating uniform samples over the set (3) reduces to the
problem of uniformly sampling the set fW : �(W) � 1g. Algorithms
to do sampling over such sets are readily available (see, for instance,
[5]). In addition, this parameterization allows for easily computing,
up to a multiplying constant, the volume of the set Projn (Ck),
required in step 2) of Algorithm 1. This follows from the fact that
Projn (Ck(H0;H1; . . . ;Hk�1)) is a linear transformation of the set
M(fW : �(W) � 1g) and, thus

J(H0;H1; . . . ;Hk�1)

=
vol (Projn (Ck(H0;H1; . . . ;Hk�1)))

vol (M (fW : �(W) � 1g))

where

J(H0;H1; . . . ;Hk�1) = (I�YYT )
m

(I� ZTZ)
s

(8)

is the Jacobian of the previous transformation (see [5], Appendix F).
Combining these observations leads to the following algorithm for
solving Problem 1.

Algorithm 2

1) Let . Generate samples
uniformly distributed over the set

fH0 : �(H0) � 1g :

2) Let . For every gener-
ated sample , par-

tition as in (4), and find a
solution and to (5). Generate

samples uni-
formly over the set
and for each of those samples ,
take

H
i
k = �YAT

Z+ (I�YYT ) Wi(I� ZTZ) :

3) If , go to step 2). Else,
stop.

IV. APPLICATIONS

In this section, we apply our theoretical framework to the problems
of model (in)validation and finite horizon performance analysis.
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Fig. 1. Model (in)validation setup.

A. Application 1: Risk-Adjusted Model (In)Validation

Consider the lower LFT interconnection, shown in Fig. 1, of a known
modelM and structured dynamic LTI uncertainty�. The blockM

M
:
=

P Q

R S
(9)

consists of a nominal model P of the actual system and a descrip-
tion, given by the blocks Q, R, and S3 of how uncertainty enters the
model. The block � is known to belong to a given set ���st(
)

:
=

f� : � = diag(�1; . . . ;�l); k�ik1 � 
;8i = 1; . . . ; lg. Fi-
nally, the signals u and y represent a known test input and its corre-
sponding output, respectively, corrupted by measurement noise ! 2
N = f! 2 `mp : k!k` � �tg. Given the time-domain measure-
ments u

:
= fu0;u1; . . . ;ung, y

:
= fy0; y1; . . . ;yng, the goal is to

determine if they are consistent with the assumed a priori information
(M , N ,���st), i.e., whether the consistency set

T (y) = f(�; !) : � 2���st; ! 2 N and

yk = (Fl(M;�) � u+ !)
k
; k = 0; . . . ; n (10)

is nonempty.
It is well know that this problem is NP-hard in the number of uncer-

tainty blocks [19]. In the sequel we propose to avoid this difficulty by
pursuing a risk-adjusted approach. The basic idea is to sample the set
���st in an attempt to find an element that, together with an admissible
noise, explains the observed experimental data. If no such uncertainty
can be found, then we can conclude that, with a certain probability, the
model is invalid. Note that, given a finite set of n input–output mea-
surements, since� is causal, only the first nMarkov parameters affect
the output y. Thus, we only need to generate uniform samples of the
first n Markov parameters of elements of the set���st. Combining this
observation with Algorithm 2, leads to the following model (in)valida-
tion algorithm.

Algorithm 3
Given , select and take

samples of , , ac-
cording to the procedure described in
Section III-C.
1) At step , let

.
2) If , stop. Otherwise, con-

sider next sample and go
back to step 2).

Clearly, the existence of at least one!s 2 N is equivalent to T (y) 6= ;.
The algorithm finishes, either by finding one admissible uncertainty
�s(z) that makes the model set not invalidated by the data or after ns

3We will assume that the structured singular value, � (S) < 
 so that
the interconnection F (M;�) is well-posed.

steps, in which case the model is deemed to be invalid. Straightforward
application of the results in [16], shows that if N1 is chosen such that

N1 �
ln 1

�

ln 1
(1��)

(11)

where (�; �) are two positive constants in (0, 1), then with probability
greater than 1 � �, the probability of rejecting a model which is not
invalidated by the data is smaller that �.4

Thus, by introducing an (arbitrarily small) risk of rejecting a possibly
good candidate model, we can substantially alleviate the computational
complexity entailed in validating models subject to structured uncer-
tainty. In addition, as pointed out in [21] the deterministic approach
to model invalidation is optimistic since a candidate model will be ac-
cepted even if there exists only a very small set of pairs (uncertainty,
noise) that validate the experimental record. On the other hand, both the
approach in [21] and the one proposed here will reject (with probability
close to 1) such models. The main difference between these approaches
is related to the experimental data and the a priori assumptions. The
approach in [21] uses frequency domain data and relies heavily on the
whiteness of the noise process and independence between samples at
different frequencies. On the other hand, the approach pursued in this
note is based on time-domain data and the risk estimates are indepen-
dent of the specific probability density function of �. [16].
In order to illustrate the proposed method, assume that

P (z) =
0:2(z + 1)2

18:6z2 � 48:8z + 32:6

Q(z) = [1 0 � 1] R(z) = [0 1 1]T

S(z) =

0 1 0

0 0 0

0 0 0

�̂(z) =

0:125(5:1�4:9z)
(6:375�3:6250z)

0 0

0 0:1(5:001�4:9990z)
(6:15�3:85z)

0

0 0 0:05(5:15�4:85z)
(6:95�3:05z)

:

(12)

Our experimental data consists of a set of n = 20 samples of the im-
pulse response of Ĝ(z) = F`(P; �̂), corrupted by noise k!k` �
0:0041. The noise bound �t represents a 10% of the peak value of the
impulse response. Our goal is to find the minimum size of the uncer-
tainty, 
st, so that the model is not invalidated by the data. A coarse
lower bound 
st � 0:0158 can be obtained by performing an LMI-
based invalidation test using unstructured uncertainty [7]. Starting from
this value of 
, we generated three sets with N1 = 300,5 one for each
of the scalar blocks, with k�i(z)k1 � 
st, and, at each given value
of 
st, we evaluated the function

f(�s) = �t � fFl(M;�s) � u� ygn
k=0 1[0;n]

for all �s 2 ���st(
st). If 8�s, f(�s) < 0, then the model is invali-
dated by the data with high probability. It is then necessary to increase
the value of 
st and continue the (in)validation test. In this particular
example, the test was repeated over a grid of 1000 points of the in-
terval I until we obtained the value 
st of 0.0775, the minimum value
of 
st for which the model was not invalidated by the given experi-
mental evidence.
The proposed approach differs from the one in [7] in that here the

invalidation test is performed by searching over���st with the hope of
finding one admissible � 2 ���st that makes the model not invalid;

4These probabilities are measured with respect to the pdf of the samples gen-
erated by Algorithm 1.
5This guarantees probability of at least 0.985 that probff(�) > 0g �

0:015.
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Fig. 2. (a) Robust performance analysis problem. (b) Application to active vision.

TABLE I
RISK-ADJUSTED ASSESSMENT OF ROBUST PERFORMANCE

while there it is done by searching over the class of unstructured uncer-
tainties���u and by introducing, at each step, diagonal similarity scaling
matrices with the aim of invalidating the model. More precisely, if at
step k the model subject to unstructured uncertainty remains not inval-
idated (which is equivalent to the existence of at least one feasible pair
(�;Dk) so that a given matrixM(�;Dk) � 0), one possible strategy
is to select the scalingDk+1 so as to maximize the trace ofM. See [6,
Ch. 9, pp. 301–306] for details. However, for this particular example
Dk = diag(d1k; d2k; d3k) and this last condition becomes

sup
d ;d ;d

�n 1 +
1


2
(d2k + d3k) + n 1�

1


2
d1k

d1k; d2k; d3k � 0:

For 0 < 
 < 1, clearly the supremum is achieved at d1k = 0, d2k = 0
and d3k = 0. As an alternative searching strategy, one may attempt to
randomly check conditionM(�;Dk) � 0 by sampling appropriately
the scaling matrices, following [19]. Using 6000 samples led to a value
of 
st of 0.031 05 for which the model was invalidated by the data. For
values of 
st in [0.031 05,0.125] nothing can be concluded regarding
the validity of the model.
Combination of these bounds with the risk-adjusted ones obtained

earlier shows that the model is definitely invalid for 
st � 0:031 05,
invalid with probability 0.999 in 0:03105 < 
st < 0:0755 and it is not
invalidated by the experimental data available thus far for 0:0755 �

st � 0:125. Thus, these approaches, rather than competing, can be
combined to obtain sharper conditions for rejecting candidate models.

B. Application 2: Finite Horizon Robust Performance Analysis

Consider the interconnection shown in Fig. 2(a), where w 2 Rn

and y 2 Rn represent a fixed, known test signal and the corresponding
regulated output. We will assume that a robustly stabilizing controller
has been already found so that the interconnection is stable for all� 2
D(
)

:
= f� 2 H1 : � = diagf�ig; k�k1 � 
g. The goal is to

establish if time domain constraints of the form

ky(k)k
1
� �i(k); k = 0; 1; . . .n (13)

hold for all� 2 D(
) and all test signals w in a given setWt. Typical
choices areWt = funit stepg orWt = funit impulseg and �i(:):

�(k) =M; k = 0; 1; . . . ; k1

�(k) =Ma
k�k

; k1 � k � n; 0 < a < 1: (14)

The aforementioned problem is a generalization of the time-domain
constrainedH1 [15] andH2 [17] control problems, that considers ro-
bust, rather than nominal, performance. As we briefly outline next, it
can be solved by sampling the set D(
) in an attempt to find an ele-
ment �worst such that the corresponding interconnection violates the
constraints. If no such uncertainty can be found, then we can conclude
that, with a certain probability, the constraints are robustly satisfied. As
before, since only the first n + 1 Markov parameters of � affect the
output y in [0; n], the problem also reduces to sampling BHn

1
.

Next, we illustrate this approach using the problem illustrated in
Fig. 2(b), where the goal is to internally stabilize the plant and to track
target motions, wtarget, using as measurements images possibly cor-
rupted by noise. Assuming that the velocity of the target and the mea-
surement noise are `2 signals and that the tracking error is measured
in the `1 sense leads to an optimal H2 control problem. Moreover,
in order to avoid saturation and target walk off problems, the control
action in response to a 25 units step input should satisfy (see [17] for
details)

jy(k)j � fb(k) fb(k)
:
=

50(1 + 0:1); 0 � k < 9

10(0:95)k�9; 9 � k � 39:
(15)

A constrainedH2 controller satisfying these specifications for the nom-
inal plant was designed in [17]. Our goal here is to assess its robustness,
by determining howmuch uncertainty can be tolerated before the spec-
ifications are violated.
Table I shows the results obtained by applying the proposed

risk-adjusted approach with ns = 500 samples, corresponding to
a probability � = 0:0095 of passing the tests while in fact the risk
of exceeding the constraints is above � = 0:0095. As shown there,
the control constraints are violated if k�k1 � 0:0221.

V. CONCLUSION

Probabilistic methods have the potential to address both the issue
of the conservatism of worst-case bounds and the computational com-
plexity entailed in their computation. However, up to the present time
application of these methods has been limited to the case of finite-di-
mensional parametric uncertainty, largely due to the unavailability of
methods for generating samples from sets of bounded causal operators.
In this note, we take steps toward removing this limitation by

proposing a computationally efficient algorithm for sampling sets of
the form BHn

1
. As we show in the note, samples generated with the
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proposed algorithm can be used to perform model (in)validation in
the presence of structured uncertainty and robust performance over
finite horizons. In addition, these sets can be also used to assess, up to
an arbitrary precision, infinite horizon � robust performance against
structured dynamic uncertainty, by resorting to an iterative procedure.
Salient features of the proposed approach are that: i) the computational
complexity scales linearly, rather than exponentially, with the number
of uncertainty blocks, and ii) the results are independent of the actual
probability distribution of both the uncertainty and the noise. Finally,
these results can be directly applied to the problem of synthesizing
robust controllers by using the samples generated in combination with
a stochastic gradient algorithm [13].

APPENDIX

A. Proof of Theorem 1

For the sake of notational simplicity we will prove the result for the
case where the number of partitions of the vector x ism = 4, but the
same reasoning applies to arbitrary dimensions.
Consider a rectangle R

:
= R1 � R2 � R3 � R4 � C, where Ri �

R
k , i = 1, 2, 3, 4. Let Nt(N1) and NR(N1) be the total number of

samples generated and the number of hits of R, respectively. We will
show that

NR

Nt

w:p:1
�!

vol(R1)vol(R2)vol(R3)vol(R4)

vol(C)
:

In other words, the ratio converges with probability one to a constant
which is equal to the probability of the rectangle R under a uniform
distribution over the set C. Henceforth, the symbol! denotes conver-
gence with probability one.
Let Xk

1 be the kth sample of the first component of the vector.
Similarly, denote by Xmk

2 and Xnmk
3 the mth sample of the second

component of the vector when the first component is Xk
1 , and the

nth sample of the third component of the vector when the first
two components are Xk

1 and X
mk
2 , respectively. Finally, denote by

vk
:
= vol[Ik(X1; . . . ;Xk�1)]. Consider

Nt

N4

1

=
1

N1

N

k=1

1

N1

b� N v (X )c

m=1

1

N1

bN � v (X ;X )c

n=1

�
1

N1

N1�4v4 X
k
1 ;X

mk
2 ;Xnmk

3 :

Using the following equalities:

E v4 X
k
1 ;X

mk
2 ;Xnmk

3 jXk
1 ;X

mk
2 =

vol S2 X
k
1 ;X

mk
2

v3 Xk
1
;Xmk

2

E S2 X
k
1 ;X

mk
2 jXk

1 =
vol S3 X

k
1

v2 Xk
1

E vol S3 X
k
1 =

vol(C)

v1

the fact that limN bN1ac=N1 = a for any a and applying the
Strong Law of Large Numbers (e.g. see [11]), one obtains

Nt

N4

1

!
�2�3�4

v1
vol(C) as N1 !1:

Next, consider the number of hits of the rectangle R, which we de-
note by NR. The Strong Law of Large Numbers implies that

NR

N1

X
k
1 2 R1;X

mk
2 2 R2;X

nmk
3 2 R3 ! �4v4�

X
k
1 ;X

mk
2 ;Xnmk

3

vol(R4)

v4 Xk
1
;Xmk

2
;Xnmk

3

= �4vol(R4)

which is independent of the values ofXk
1 ,X

mk
2 andXnmk

3 . Repeating
the same reasoning, we obtain

NR

N4

1

!
1

v1
�2�3�4vol(R1)vol(R2)vol(R3)vol(R4):

Hence, as N1 ! 1

NR

Nt

!
vol(R1)vol(R2)vol(R3)vol(R4)

vol(C)
:

B. Proof of Theorem 2

As in the proof of Theorem 1, only m = 4 is considered and it is
assumed that

A
:
= R1 �R2 �R3 �R4 � C

whereRi � R
k , i = 1; 2; 3; 4, satisfy vol(Ri) = dxi. The proof can

be easily generalized for other values ofm and other sets A.
Using the notation in the proof of Theorem 1, we first consider

E[Nt]. The reasoning to follow relies on the fact that, given two
random variables, X and Y , E[Y ] = E[E[Y jX]]. Indeed

E
Nt

N4

1

= E
1

N1

N

k=1

1

N1

b� N v (X )c

m=1

1

N1

�

bN � v (X ;X )c

n=1

1

N1

N1�4v4 X
k
1 ;X

mk
2 ;Xnmk

3 :

Moreover

E
1

N1

bN � v (X ;X )c

n=1

1

N1

� N1�4v4 X
k
1 ;X

mk
2 ;Xnmk

3 jXk
1 ;X

mk
2

=
N1�3v3 X

k
1 ;X

mk
2

N1

�4
vol S2 X

k
1 ;X

mk
2

v3 Xk
1
;Xmk

2

�
"4
N1

where "4 2 [0; 1]. Repeating the previous reasoning, one obtains

E
Nt

N4

1

=
�2�3�4

v1
vol(C)�

�1 + �2 + �3
N1

where �1, �2 and �3 above are bounded functions ofN1. Hence, there
exists a constant � such that

�
�

N1

� E
Nt

N4

1

�
�2�3�4

v1
vol(C) � 0:

Next consider E[NA=N
4

1 ] which equals

E
1

N4

1

N

k=1

b� N v (X )c

m=1

bN � v (X ;X )c

n=1

�

bN � v (X ;X ;X )c

l=1

I
X 2R ;X 2R ;X 2R ;X 2R

and where I denotes the indicator function. Repeating the previous rea-
soning, one obtains

E
NA
N4

1

= dx1dx2dx3dx4
�2�3�4

v1
�


1 + 
2 + 
3
N1
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where 
1, 
2 and 
3 above are bounded functions ofN1. Hence, there
exists a constant 
 such that

�



N1

� E
NA
N4

1

� dx1dx2dx3dx4
�2�3�4

v1
� 0:

The proof is completed by noting that given the aforementioned results,
one can determine constants k1, k2 and k3 such that

E[NA]

E[Nt]
�

vol(A)

vol(C)
=

E N

N

E N

N

�
vol(A)

vol(C)
�

1

N1

k1

k2 +
k

N

:
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Comments on “Explicit Criterion for the Positive
Definiteness of a General Quartic Form”

Fei Wang and Liqun Qi

Abstract—The purpose of this note is to point out that the result in the
above paper is incomplete, and to give a complete and improved result.

Index Terms—Positive definiteness, quartic polynomial, roots.

The above paper [2] gives a necessary and sufficient condition for
the positive definiteness of the following quartic form of two variables:

V (x1; x2) = k0x
4

1 + k1x
3

1x2 + k2x
2

1x
2

2 + k3x1x
3

2 + k4x
4

2 (1)

for all x1 and x2, where k0, k1, k2, k3 and k4 are real numbers. The
purpose of this paper is to point out that the result in [2] is incomplete,
and to give a complete and improved result.
Let k0 = a0, k1 = 4a1, k2 = 6a2, k3 = 4a3, and k4 = a4.

i) If x2 = 0, (1) reduces to

V (x1; 0) = a0x
4

1:

Then, V (x1; x2) > 0 holds for all x1 6= 0 and x2 = 0 if and
only if a0 > 0.

ii) If x2 6= 0, then

V (x1; x2) = x42 a0
x1
x2

4

+ 4a1
x1
x2

3

+6a2
x1
x2

2

+ 4a3
x1
x2

+ a4 :

Let x = x1=x2. Then, V (x1; x2) > 0 holds for all x2 6= 0
if and only if

f(x) = a0x
4 + 4a1x

3 + 6a2x
2 + 4a3x+ a4 = 0 (2)

has no real roots for all values of x and a0 > 0.
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