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Finally, given a metric spaceY equipped with the metric
m(x1,x2),d(A) denotes the diameter of sed C X, ie., T n
d(A) = sup, ,cam(z, a).

<
»

Ill. CONTROL-ORIENTED IDENTIFICATION OF LPV SYSTEMS Gp

@
A. Problem Statement Uu Ty =z+n
Fig. 1(a) shows a diagram of the LPV system under consideration, G
np

denoted in short form as

G = Fu(Gp,T) + Gup 1) @)

where F,, stands for upper linear fractional transformation (LFT). n
Here, the signals andy represent a known finite input sequence and
its corresponding output corrupted by measurement ngisellected , G(U) Q(v)

in vectorsu,y, and s, respectively. For simplicity, it is assumed U )
without loss of generality, that is a finite unit impulse sequence R(U) S(U) —l

applied at: = 0. The diagonal blockR™ = diag(vi 1., ..., vsI.,) de-
pends on a set of time-varying parameters, denoted by{v; }72,,
that can be measured in real time. A
Our goals are: 1) to identify a modél, consistent with both some C w
a priori assumptions and theposterioriexperimental data, and 2) to (b)
obtain worst-case deterministic bounds on the identification error.
In the sequel we consider arpriori set of model§ of the form (1), Fig. 1. (a) LPV control-oriented identification and (b) model (in)validation
) . - etups.
where the first term represents the parameter-varying portion of the Sy-
namics, and the second one accounts for the (possible) existence of a
nonparametric component. As usual in robustidentification, we will agjsing this definition the LPV identification problem can be precisely
sume that7,,, belongstothe set,, = BH..,,(I) withp > 1given, stated as follows.
i.e., to the set of exponentially stable systems with a peak respons@roplem 1: Given the experimentsy, X) and thea priori sets
to complex exponential inputs @& . Regarding the parameter-varying(j,J\r’)
component, we will assume that it belongs to the&ebf functions
that admit an expansion of the form:

i) determine whether the priori anda posterioriinformation are
consistent, i.e., whethéf (y, Y) # 0;
Ny i)y if 7(y,X) # 0, find a nominal modelZ € 7(y,Y) and a
Fu(Gp, ) = Zp"f"(G‘” ) worst-case bound on the identification error.
=1

In the sequel, we will show that these problems can be recast as an LMI

wherep; are unknown scalars and the known transfer matiiéds) feasibility problem.
are such that the impulse responses of flig interconnections
Fu(G;,Y) are linearly independent for all admissible parameteB. Main Results

trajectories. We will further assume that the syst@rns exponentiall ) N . . .
J 4 P y 1) Consistency and Identificationtn this section we will solve the

stable. . o . P
%c_)nsstency problem by reducing it to a Carathéodory—Fejér interpola-

Remark 1: As we show in the sequel, the linear independence a bl d showing that the latter i ivalent t LMI feasi
sumption is required to establish global convergence of the method.1iI N problem and showing that tne fatter s equivalent to an east-

tuitively, it guarantees that the impulse experiment is “rich” enough % '_lt_{] probler;.Th iori and terioriint " istent
identify the system. If it fails, a different input should be used. A deeper (;eorelmT i ea pr'lotnt anda p?s erEJrun ormation are cogils_en
discussion of this condition and possible relaxations will be present'é@n only iHnere exist two vectorp = [p1 ... pn,]" andh =
in Section II-B.2. ho -+ hx—1]" such that:

Finally, we will considera priori noise of the form

. Mgth) >0 (y—-Paxp—-h)eN (3)
N=LpeRV:L(p) =L+ ZL/@WA >0 2
i where

whereL; are given real-valued symmetric matrices. This noise setis a g e qu

i i pNV . . . 9 i T { 9o
generalization of the séip € R : |5x| < €} usually considered in the ) = R =F P ) .
literature, that allows for taking into consideration correlated noise. As r(h) = %F R N= . \
we illustrate in Section V, models of the form (1)—(2) arise, for instance, gN—1 N
in the context of active vision applications. ho «++ hyn_i

Definition 1: Given the experimentsy, Y), the consistency set F= :
7 (y,Y) is defined as the set of all possible models compatible with ; '
thea priori assumption$7 , \"), that could have generated tA@os- 0 10;
teriori experimental datg, i.e., : )
R = diag(1l,p,.. .,p“fl) andg,, denotes thenth element of the

T(y.X)={GeT:y-—THue N}. impulse response of, (G;, T).
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Proof: Giventhe parameter trajectoly, the experimentaldaga  wherel’ = {v: vy = v, £ = 0,1,...,N — 1}, i.e., the “size” of
is consistent with tha priori information if and only if there exist vec- the largest set of indistinguishable models compatible witlathegori
torsp,h, g = [0 ... n~—1]" and a functionH (») € BH,,,(K) information and the firstV measurements of the parameter trajectory.
with p > 1 such that: Similarly, we can define parameter-dependeidentification error

by considering the worst-case error over all trajectories compatible
with the present parameter trajectory.

Definition 3: Given the experimental outconig, Y), let G4 =
Aly, ) denote the nominal model obtained using the algorithm pro-

Np
Y =Nk + hp + szgi»-, neN

= z e w‘wil .«
H@) =hotluzt -t by te “) posed in Section I11.B.1. The parameter-dependent identification error
Note that H(:) € BHw.,(K) if and only if H(z) = sdefinedas:
H(pz)]K € BHw, with coefficientsi, = phi/K. By ap- e(AX)= sup |G = Galleina:
plying Carathéodory—Fejér interpolation theory, the existendé (af) GeT(y ¥) ?

is equivalent, after some algebra, B> — (1/K*)F"R™?F > 0

[11, Ch. 18]. The first inequality in (3) follows now from Schur_ ~," 5 L
complements; the second one is simply a restatement of (4). = 2%21 p’,‘F”'(G“ 1 are convex and symmetric with respect _to the
ogﬁtsG = 0,7 = 0, it follows (see [4, Lemma 10.2]) that, as in the

Once consistency is established a nominal model can be obtaife . : . .
. nonparametric case, the worst-case experiment is the one that yields a
proceeding as follows. )

- . L zero outcome, i.e.,

i) Find a pair of data vectors, h satisfying the LMIs (3). . .

ii) All solutions Gy, (NOnparametric component) can be parame- e(AY)<DIZ,X)=2 sup [|Glleyina. (%)
trized as a lower LFT of a free parametg(-) (see [11, Ch. 18] GeT(0,T)
for details). In particular the choid@( =) yields the central so-  In order to show convergence of the proposed algorithm, we need
lution G, = KT1(2/p)T5 ' (2/p), where the transfer function the following additional assumption.

Since for a givenY the sets\" and7(Y) = {G: G = Gu, +

T(z) has the following state-space realization: Assumption 1: There exists som& * large enough, butindependent
. of T, such that for all parameter trajectories and all eleméhts €
T(z)=[Ti(z) Tx(z)] ={Ar.Br,Cr,Ds} Sup/{0} the matrix
0 I( N—1)x(N—1) —1 1 -t T . np n . np np 14’
Ar = |:0 1 6< ,Br =Mp (AT - I) [C,] Paug('f) = [PN* g‘,\ﬁ*] ng’* = [90] . ,(}]\P*]l
Cr = Ci (Ar —T) has full-column rank, witfP - defined as in Theorem ¥g"*} =
"~ loo . imp(Grp) and wherémp( - ) denotes impulse response.
C4 o - This assumption essentially rules out the existence of arbitrarily
D7 =1+ {C_] Mp (AT - I) [C-] large time delays in the non parametric portion of the models. In
C_=[10 - 0].Cp=[ho - hn_i]. Secti_on I-C, we will analyze some of its implications and discuss
possible relaxations.
The complete model is given byGa = Gup + For simplicity in the sequel we will assume that teriori noise
Z;V:IH piFu(GiY). setis of the form\" = {5 € RV: || < €} but the error bounds and

2) Analysis of the Identification Error and Convergenchiext, we convergence proof easily generalize to sets of the form (2).
show that the proposed algorithm is convergent and we derive SO.mél'heorem 2: If assumption 1 holds, then the algorithm is convergent,
worst-case bounds on the identification error. Begin by noting that thg-:

proposed algorithm is interpolatory (in the sense that it always gener- lim o 1Go = Galleyina = 0
—{0

ates a model inside the consistency &y, Y)) and recall that, for N—oo N
any interpolatory algorithmA, the worst-case identification error is ) N
bounded by (see, for instance, [4, Ch. 10]) whereG, = Go,, + 3., Po, Fu(Gi, T) denotes the actual system.
Proof: The proof is divided in two parts: 1) establishing
e(A) < D(T) that e(A,Y) — 0, and 2) using this last result to show that
IGo = Galleyina — 0.
whereD(Z) denotes theliameterof information. To prove 1), consider sequenc@s 71 oc,e; | 0, and for

Note that in contrast to the case of LTI systems, here the experimenygiven pair (N.¢) denote by7 (yo,N.e,X) the set of plants
operatory = E(G,,u, v) that maps the model, inputs and noise tgonsistent with thea priori information, the observed param-
the experimental outcome is not linear (since, in general, the plant deer trajectory‘f and the null outcomeyy. Clearly, ife; < e
pends nonlinearly on the time-varying parameterand, thusP(Z) and N; > N, then 7(yo. Nj.e;.X;) C T(yo.Ni,ei. Xi)
may not be easily computable. To circumvent this difficulty, we inand, thus, [12, p. 18] the sequence of s&fé) has a limit
troduce the concepts paarameter-dependediameter of information j'(-i-) = w7 (vo. Nk, s 'i-k), If j'('i-) # {0}, then there exists
and identification error. These concepts will be used to establish cegmmen £G= Z;V:Pl P Ful(Gi, ) + énp € T(yo. Nj. €5, Y;’)NJ’-

vergence of the algorithm for all parameter trajectories. Assume first thati,,, # 0, and define{jn,} = imp(Gap), K =
Definition 2: (}iven a parameter trajectol¥ = [9p ... Dn_1], 1P+ (Gup)ll2s {3} = imp(G’,,p/IA{). From Assumption 1, it

define the sed’(Y) as the set of all experimental data consistent witfy|iows that the matrix

the a priori information, for all possible parameter trajectories com- . o,

patible with the firstV measurement¥. The parameter-dependent Pog(T) = [Pne gW] &0 =[3" -+ g1’

diameter of information is given by has full-column rank. Sinc& € 7 (yo, N*, ¢, Y}, it follows that

e e ) I1B" K" lleo < IPLucllie. ThUs|Glley ina — 0 @se — 0,which
b(I.x) = ye}?epd(ny’ 1) contradicts the fact that # 0. If G, = 0, a similar argument holds
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considering the submatrix tﬂ?aug formed by its firstV, columns. The Summing this last equation froi = 0 to oo and using the fact that

desired result follows now directly from (5). limy .o x3 = 0 due to exponential stability of the system yields:
To prove convergence, note that, from the definitior(0f, T) we oo oo

have that| G, — G a||e, ina < e(A, T) — 0. This equation, combined 2013 =D zrze <77 ) upur = +7|ull3.

with the linear independence of the impulse responses aVthiater- k=0 k=0

connectionsF, (G;, T) and the separation condition (Assumption 1) u

implies that|Gup — Go,, [leyina — 0 @andpi — po, . ] Remark 2: The set valued map is a generalization of the usual rate
As we show next, a bound di(Z, Y') can be obtained by solving boundsr < @; < 7, that allows for considering for instance discrete

an LMI optimization problem. parameter values and parameter variations with memory. In the case of
Theorem 3: The parameter-dependent diameter of information cawbitrarily fast varying parameter®(v) = P.

be bounded above by SinceA(v),B(v), C(v) andD(v) are affine inv it follows that in

the simpler case of polytopi® and arbitrarily fast varying parameters,
checking that (9) holds can be accomplished by just checking the ver-
tices of P. As is the case with standard LPV analysis, more complex

N-—1
DI, Y) <2 |allpllee + D vi+ Kp~ /(0= 1)|  (6)

=0

N, dependencies may require griding the parameter set.
o= Z sup |Fu(Giy Dlley ina Remark 3:_In many cases, the boun-d given in (6) can be qu_lte con-
— ver servative. A tighter bound can be obtained, at the expense of increased
Vi = min{Kp_iq P i, ) ol + €)- c_omputatlonal complexity, by solving the following convex optimiza-
tion problem:
Proof: SinceG € T(0,Y), it follows that N, N1
max { sup piFu(Gi, 1) + ||h|lx + Kp—l
Pyxp+helN (7) pho(ver|[i= £9ind a

) ) ) subject to: Pxp+h € N
whereP v, p, andh are defined in Theorem 1. By assumption, the

impulse responses of th€, interconnections,(G;, T) are linearly |he < Kp™". (10)

independent for any given trajectory of the time-varying parameteigote that, for each value qf, the objective function can be computed
Thus, forN' large enougtP » has full-column rank, i.e., it has a left py first finding a state space realization F, p; F.. (G;, T) and then
inversePY,. Hence,p = P (n — h) for somen € N It follows  applying Lemma 1.

that||pllee < [[PL111]I(n — b)lle < PLli(c + K) where the last

inequality follows from the fact thaf’.,, € BH.. ,(K). Moreover, C. Relaxing Some of the Assumptions

this fact, combined with (7) implies that;| < v;. Thus, for every
G € T(0,T) we have that

In this section, we briefly address the issue of relaxing some of the
assumptions made before.

N Linear independence on the impulse responses ohentercon-
‘Yp
tionsF.(G;, T). This assumption can be relaxed if a bound on
Glleyina < i|(sup ||Fu(Gi, T)|legina) + [|Guplles ind nections. (&, o . .
1Gllrzina < ; v |‘ve¥” ( Mieaina) +[1Gulles lpll- is available as part of the priori information. In that case this

N—1 boundﬁ can be directly used in Theorem 3 to establish the bound on
< allpll + Z v; + Kp_(N_l)/p -1 D(Z,Y).
i=0 Separation conditioffAssumption 1). This condition is required in
order to guarantee convergence of the identified model. It can be re-
laxed to hold only on certain parameter trajectories, provided that the
identification is performed over one of these. Intuitively, this condition
guarantees a unicwe parametric/nonparametric decomposition for each
elementG,,, + >.% p:Fu(G;, Y) of thea priori set. If it fails for a
zx = C(vr)xx + D(vi)ug. (8) given parameter trajectof¥, then for this trajectory there exist mul-
tiple parameter choices. Therefore, the parametric and nonparametric
As shown next, an upper bound enp,, . [| 7. (G, T)lle2ind, @A components will not converge separately, although the full model might
therefore on constant defined in (6), can be computed by solving & nyerge to the real plant. Since by assumption the model to be iden-
(functional) affine matrix inequality optimization problem. ~tified consists of a nonparametric and a parameter-dependent portion,
Lemma 1: Assume that the set of admissible parameter trajectpys reasonably to assume that this condition will hold for most of the

ries is of the formFe = {v: vit1 € Ofvr], k = 0,1,...}, where  parameter trajectories. If this is not the case, then the nonparametric
O: P ~ P is a given set valued map. If the following parameter-deﬁart can be absorbed into the parametric one.

pendent affine matrix inequality in the varial¥gv) > 0:

Consider a state-space realization for the LRI G;, T)

Xpr1 = A(vi)x, + B(vg)ug

AT (0X(O)A() - X(0) AL (0)X(0)B(0) Ct(v) IV. (IN)VALIDATION OF LPV MODELS
BT (0)X(8)A(v) BT (0)X(9)B(v)—~+*I DT(v) | <0 Next, we turn our attention to the related problem of model (in)val-
C(v) D(v) -1 idation. Note that the error bounds provided in the previous section,
(9)  while useful to establish the convergence properties of the algorithm,
holds for allv € P and¥ € ©(v), then||F.(G:i, T)|¢yina < 7. tend to be too conservative for control synthesis. Moreover, from a
Proof: Pre- and postmultiplying (9) bix;. u; z} ] and its trans- practical standpoint, before using the identified model and associated
pose, we have for every admissible parameter trajectory uncertainty description to synthesize controllers, they should be vali-

dated usingiewdata, that has not been used in the identification process
0> x4 1 X(Vey1)Xnr1 — X X(vk)Xk + 2, 25 — 7 U Uy (to avoid introducing biases).
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Consider the lower fractional interconnection, shown on Fig. 1(bijow, replacing the expressionef from (13) into the right-hand side
between a discrete-time stable LPV mod¥l) and an unstructured of each of the inequalities (14), and reordering terms yields
LTV uncertaintyA in the setA = BL({2)(6). The blockP(v) con- 1 " "
sists of a nominal model of the physical systéw)—obtained for (Ck)l (6_21 - (T’é) T’E) ¢t < (T’Euk) Thu*+
example using the method proposed in Section lll—and a description, T T
given by the blocks)(v), R(v), andS(v), of how uncertainty enters + (Tﬁu") T+ (¢H)' (T’;) Thu* (15)
the model. We will further assume thia§(v)||¢, ina < 6~ holds for )
all parameter trajectoriesso that the interconnectiofi (P(v), A)is  or k = 1,....n. 1US”?9 Schur complements and the fact that
{ stable for allo. Finally, the signals. andy represent an arbitrary but ||5,S“)||fzind < &7 gives the firstn LMI's of the set (11),
known test input and its corresponding output respectively, corrupt®d (¢) > 0.k = 1,...,n. The last LMl of (11) L(x) > 0, is simply
by measurement noisec A", whereA is of the form (2). As before, OPtained by replacing the expression of the noise vegtoom (12)
their values over a finite horizon are collected in vectorg, andy. N the definition of\ giveniin (2). u
The goal is to determine whether or not the measured values of the
inputw, the outputy and the time-varying parametersare consistent V. A PRACTICAL EXAMPLE
with the as:sumed modét(v) and the given set descriptions for the |, i section, we illustrate the proposed framework with a practical
noisen € A" and uncertaintA € A, thatis, the following. example arising in the context of active vision. Consider the problem
Problem 2: Given the time-domain experiments of smooth tracking of a noncooperative target, illustrated in the block
diagram shown in Fig. 2(a). Here, the goal is to internally stabilize the

- , L T
u - [wo w1 ... wna] plant and to track target motiong.rg.¢, USing as measurements im-
Y=[vo vi ... vni] ages possibly corrupted by noise, while zooming in and out of features
y=[{yo v oo yuot]’ of interest.

o i ] Designing a controller for this application requires, as a first step,
the modelP(v) and thea priori sets\’, A determine whether or not finding a model for the block labelefiin Fig. 2(a) that maps the com-
the a priori anda posterioriinformation are consistent, i.e., whether,ang input to the head, in encoder units, to the position of the target
the set (in pixels). This map depends on the time-varying focal lerfgtti the

, . lenses, unknowm priori, but measurable in real time. In the sequel,
M@y, X P)={(Am): A€A, €Ny =T pw).a) u+n} we concentrate on the pan axis, since the procedure for the tilt axis is
is nonempty. S|m|Iar.' ) . )
Next, we recast the (in)validation problem subject to LTV uncer- Physical considerations, corroborated by experiments performed
tainty into LMI feasibility form. while holding the time-varying parameter constant, suggest that the
Theorem 4: Given time-domain measurements of the inpythe ~Parametric component of the LPV modgl (G, T) can be modeled

outputy and the time-varying parameteXs, the LPV modelP(v) is  USiNg just one transfer function, i.epiF.(G1.T), and that its
not invalidated by this experimental information if and only if ther&lependence with, can be considered to be affine. Regarding the

exist two vectorg = [(o ... Cu—1]” andnp =[no ... n.—1]",such Nonparametric componert,,, based on the time constant obtained
that the following set of» + 1) LMIs hold: with experiments involving only the mechanical components of the
system, we determined a value of= 1.5 for the a priori stability
MF(¢)>0k=1,....n, L(p) >0 (11) margin.
The experimental information considered consist&/of 35 sam-
where ples of the time response of the real systgno a unit step input:
i CTXEO) (€M) while the time-varying parameter was allowed to vary between 0%
M"(¢) = { ¢ Yk(t):| and 80% of the maximum value of the zoom during the experiment,
. 1 as is shown in the upper plot of Fig. 3. By repeatedly measuring the
Y’“(() = (%1 - (Té) T’g) location of the centroid of the target in the absence of input, the exper-
b N B imental noise measurement was determined to be bounded=by
X4(0) = (That) ' Thu'* + (Tha') " Th* pixels, ie. V" = {1 € RY: || < e}
. Using thesea priori information and experimental data, the
+ (T’gg’“) T u minimum value of K™ such that LMIs (3) hold was determined using
nEy - Thu - T (12) Matlab’s LMI toolbox, yielding a value of’ = 0.0444, a value of

the parametep; of 0.9743 and a nonparametric component with as
many states as the number of experimental samples. From a control
first  elements of sequences(, andw, respectively. perspf_ectiye, minimizing" is attractive since it leads to smaller
Proof: The LPV modelP(v) is not invalidated by the experi- |d_ent|f!cat|on error bounds [thro_ugh the_ last term of the upper bqund
mental information{u, y, Y} if and only if there exist a\ € A and 9iven in (6)] and less conservative designs. The bottom plot of Fig. 3

andL(n) is defined as in (2). Here, vectons, ¢*, andw” contain the

an € N such that shows the output of the complete identified mo@gl, as the sum of
a parametric LPV component and a nonparametric LTI component of
vy =Ttu+TH(+1 order 4 (after a Hankel norm model reduction step [4]), to the same
w=Thu+Ti ¢=Tiw. (13) input« applied during the experiment and for the measured trajectory

of the time-varying parameter;, and the noisy measurements of
Using [13, Th. 4.5], the existence of an uncertainty bloclifis equiv-  the output of the real systesm As shown there, the identified model
alent to explains the observed data within the experimental error.
Regarding the priori worst-case identification errer A, Y), the
(¢ < (W) W 1e k=1,....n. (14) evaluation of (10) leads to an upper bound in the induéedorm
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baaa = 0.018 andé,.i, = 0.26 in the additive and in the multiplica-
tive cases, respectively.

In order to further validate the proposed approach, the identified
model and the uncertainty descriptidn,..., € BL({2)(0.26) were
combined with the technique used in [2] to design an LFT scheduled
'H controller. As shown in [14], the resulting closed-loop system was
able to achieve good tracking performance in spite of the substantial
change in the dynamics of the plant due to the change in

VI. CONCLUSION AND DIRECTIONS FORFURTHER RESEARCH

In this note, we proposed a new robust identification framework that,
starting from experimental data, generates models suitable to be used
by the LPV synthesis techniques, as well as bounds on the identifica-
tion error. As shown here, the problems of obtaining and validating a
nominal model and an associated uncertainty description are not more
computationally demanding that comparable techniques available for
the case of LTI systems. Moreover, as in the LTI case, the identifica-
tion algorithm is optimal up to a factor of 2 as compared with cen-
tral strongly optimal procedures, and convergent. Efforts are currently
under way to extend the LPV model invalidation problem to cope with
structured and slowly time-varying uncertainties.
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