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An LMI Approach to Control-Oriented Identification and
Model (In)Validation of LPV Systems

Mario Sznaier and María Cecilia Mazzaro

Abstract—This note proposes a control-oriented identification frame-
work for a class of linear parameter varying systems that takes into account
both the dependence of part of the model on time-varying parameters as
well as the possible existence of a nonparametric component. The main re-
sults of the note show that the problems of obtaining and validating a model
for these systems can be recast as linear matrix inequality feasibility prob-
lems. Moreover, as the information is completed, the algorithm is shown to
converge in the -induced topology to the actual plant. Additional results
include deterministic bounds on the identification error. These results are
illustrated with a practical example arising in the context of active vision.

Index Terms—Linear parameter varying (LPV) systems, control-ori-
ented, robust identification and model (in)validation.

I. INTRODUCTION

Motivated by the shortcomings of gain scheduling [11], during the
past few years considerable attention has been devoted to the problem
of synthesizing controllers for linear parameter varying (LPV) systems,
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where the state-space matrices of the plant depend on time-varying pa-
rameters that can be measured by the controller. Assuming that bounds
on both the parameter values and their rate of change are known then
affine matrix inequalities based conditions are available guaranteeing
exponential stability of the system [2], [3].

Clearly, a key issue that needs to be addressed in order to apply these
techniques to practical problems is the development of identification
methods capable of extracting and validating the appropriate descrip-
tion from experimental data. Control-oriented identification of linear
time-invariant (LTI) systems is by now relatively mature and efficient
algorithms are available to obtain both models and worst-case bounds
on the identification error [4]. On the other hand, identification tools for
LPV systems are just starting to appear [5]–[8]. Moreover, at this point
they bear more resemblance to classical identification methods (in the
sense that they identify a set of parameters of a fixed structure) than to
the control-oriented identification methods tailored to robust controls
tools.

Motivated by our earlier results on control-oriented identification
of LTI systems [9], in this note we propose a new robust identification
framework for LPV systems that takes into account both the dependence
of the dynamics on the time-varying parameters and the (possible)
existence of a nonparametric part. The latter accounts for instance
for dynamics not modeled by the parameter dependent portion of
the model. The main results of this note show that the problems of
establishing consistency of the experimental data with thea priori
information and of obtaining and (in)validating a model of the system
can be recast as linear matrix inequality (LMI) feasibility problems.
Moreover, we show that as the information is completed, the algorithm
converges, in thè 2-induced topology, to the actual plant.

II. NOTATION

kxkp denotes thep-norm of the real-valued column vectorx. AT

denotes the conjugate transpose of matrixA;A(i; :) its i-th row and
kAkp its inducedp-norm,Ay its Moore-Penrose pseudoinverse and
��(A) its maximum singular value.
`pm denotes the extended Banach space of vector-valued sequences

x equipped with thep-norm. Pn denotes thenth step projection
operator in `mp , i.e., Pn(x)

:
= fx0; . . . ;xn�1;0;0; . . .g. L1

denotes the Lebesgue space of complex-valued matrix functions
essentially bounded on the unit circle, equipped with the norm
kGk1

:
= ess supjzj=1 ��(G(z));H1 the subspace of functions

in L1 with bounded analytic continuation inside the unit disk,
equipped with the normkGk1

:
= ess supjzj<1 ��(G(z)); and

H1;� the space of transfer matrices inH1 equipped with the norm
kGk1;�

:
= supjzj<� ��(G(z)). BX () denotes the open-ball in a

normed spaceX , BX () its closure andBX (BX ) the open (closed)
unit ball inX .
L(`2) denotes the space of discrete-time, LTV, single-input–single-

output (SISO), causal and bounded operators in`2, equipped with the
normkHk` ind

:
= supu 6=0 kHuk2=kuk2. Any system of interestH

will be represented by its convolution kernelfhi;jg, by the finite lower
triangular matrixTn

H mapping sequences on the horizon[0; n � 1],
whereTn

H(i; j) = hi;j for i � j andTn
H(i; j) = 0 otherwise,

or by a minimal state-space realizationH � fA;B;C;Dg. In the
particular case of LTI operators inL(`2), we will also use the com-
plex-valued transfer functionH(z)

:
= 1

k=0
hkz

k. This note con-
siders SISO models, but all results can be extended to the multivariable
case, following [10].
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Finally, given a metric spaceX equipped with the metric
m(x1; x2); d(A) denotes the diameter of setA � X , i.e.,
d(A)

:
= supx;a2Am(x; a).

III. CONTROL-ORIENTED IDENTIFICATION OF LPV SYSTEMS

A. Problem Statement

Fig. 1(a) shows a diagram of the LPV system under consideration,
denoted in short form as

G = Fu(Gp;�) +Gnp (1)

whereFu stands for upper linear fractional transformation (LFT).
Here, the signalsu andy represent a known finite input sequence and
its corresponding output corrupted by measurement noise�, collected
in vectorsu;y, and ���, respectively. For simplicity, it is assumed
without loss of generality, thatu is a finite unit impulse sequence
applied atk = 0. The diagonal block� = diag(�1Ir ; . . . ; �sIr ) de-
pends on a set of time-varying parameters, denoted by� = f���kg

1
k=0,

that can be measured in real time.
Our goals are: 1) to identify a modelG, consistent with both some

a priori assumptions and thea posterioriexperimental data, and 2) to
obtain worst-case deterministic bounds on the identification error.

In the sequel we consider ana priori set of modelsT of the form (1),
where the first term represents the parameter-varying portion of the dy-
namics, and the second one accounts for the (possible) existence of a
nonparametric component. As usual in robust identification, we will as-
sume thatGnp belongs to the setSnp

:
= BH1;�(K)with � > 1 given,

i.e., to the set of exponentially stable systems with a peak response
to complex exponential inputs ofK. Regarding the parameter-varying
component, we will assume that it belongs to the setSp of functions
that admit an expansion of the form:

Fu(Gp;�) =

N

i=1

piFu(Gi;�)

wherepi are unknown scalars and the known transfer matricesGi(z)

are such that the impulse responses of theNp interconnections
Fu(Gi;�) are linearly independent for all admissible parameter
trajectories. We will further assume that the systemG is exponentially
stable.

Remark 1: As we show in the sequel, the linear independence as-
sumption is required to establish global convergence of the method. In-
tuitively, it guarantees that the impulse experiment is “rich” enough to
identify the system. If it fails, a different input should be used. A deeper
discussion of this condition and possible relaxations will be presented
in Section III-B.2.

Finally, we will considera priori noise of the form

N
:
= ��� 2 <N : L(���) = L0 +

N

k=1

Lk�k�1 � 0 (2)

whereLi are given real-valued symmetric matrices. This noise set is a
generalization of the setf��� 2 <N : j�kj � �g usually considered in the
literature, that allows for taking into consideration correlated noise. As
we illustrate in Section V, models of the form (1)–(2) arise, for instance,
in the context of active vision applications.

Definition 1: Given the experiments(y;�), the consistency set
T (y;�) is defined as the set of all possible models compatible with
thea priori assumptions(T ;N ), that could have generated thea pos-
teriori experimental datay, i.e.,

T (y;�)
:
= fG 2 T : y �TN

Gu 2 Ng:

(a)

(b)

Fig. 1. (a) LPV control-oriented identification and (b) model (in)validation
setups.

Using this definition the LPV identification problem can be precisely
stated as follows.

Problem 1: Given the experiments(y;�) and thea priori sets
(T ;N )

i) determine whether thea priori anda posterioriinformation are
consistent, i.e., whetherT (y;�) 6= ;;

ii) if T (y;�) 6= ;, find a nominal modelG 2 T (y;�) and a
worst-case bound on the identification error.

In the sequel, we will show that these problems can be recast as an LMI
feasibility problem.

B. Main Results

1) Consistency and Identification:In this section we will solve the
consistency problem by reducing it to a Carathéodory–Fejér interpola-
tion problem and showing that the latter is equivalent to an LMI feasi-
bility problem.

Theorem 1: Thea priori anda posterioriinformation are consistent
if and only if there exist two vectorsp = [p1 . . . pN ]T andh =

[h0 � � � hN�1]
T such that:

MR(h) � 0 (y �PNp� h) 2 N (3)

where

MR(h)
:
=

R�2 1

K
FT

1

K
F R

PN
:
=

g10 � � � g
N

0

...
. . .

...
g1N�1 � � � g

N

N�1

F
:
=

h0 � � � hN�1
... � � �

...
0 � � � h0;

R
:
= diag(1; �; . . . ; �N�1) andgim denotes themth element of the

impulse response ofFu(Gi;�).
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Proof: Given the parameter trajectory�, the experimental datay
is consistent with thea priori information if and only if there exist vec-
torsp;h, ��� = [�0 . . . �N�1]

T and a functionH(z) 2 BH1;�(K)

with � > 1 such that:

yk = �k + hk +

N

i

pig
i
k; ��� 2 N

H(z) = ho + h1z + � � �+ hN�1z
N�1 + � � � : (4)

Note that H(z) 2 BH1;�(K) if and only if Ĥ(z) =

H(�z)=K 2 BH1, with coefficients ĥk = �khk=K. By ap-
plying Carathéodory–Fejér interpolation theory, the existence ofH(z)

is equivalent, after some algebra, toR�2 � (1=K2)FTR�2F � 0

[11, Ch. 18]. The first inequality in (3) follows now from Schur
complements; the second one is simply a restatement of (4).

Once consistency is established a nominal model can be obtained
proceeding as follows.

i) Find a pair of data vectorsp;h satisfying the LMIs (3).
ii) All solutions Gnp (nonparametric component) can be parame-

trized as a lower LFT of a free parameterQ(z) (see [11, Ch. 18]
for details). In particular the choiceQ(z) yields the central so-
lutionGnp = KT1(z=�)T

�1
2 (z=�), where the transfer function

T (z) has the following state-space realization:

T (z) = [T1(z) T2(z) ]
T � fAT ;BT ;CT ;DT g

AT =
0 I(N�1)�(N�1)

0 0
;BT =M

�1
P A

T
T � I

�1
[CT

� ]

CT =
C+

C�
(AT � I)

DT = I+
C+

C�
M
�1
P A

T
T � I

�1
[CT

� ]

C� = [ 1 0 � � � 0 ] ; C+ = [h0 � � � hN�1 ] :

The complete model is given byGA = Gnp +
N

i=1 piFu(Gi;�).

2) Analysis of the Identification Error and Convergence:Next, we
show that the proposed algorithm is convergent and we derive some
worst-case bounds on the identification error. Begin by noting that the
proposed algorithm is interpolatory (in the sense that it always gener-
ates a model inside the consistency setT (y;�)) and recall that, for
any interpolatory algorithmA, the worst-case identification error is
bounded by (see, for instance, [4, Ch. 10])

e(A) � D(I)

whereD(I) denotes thediameterof information.
Note that in contrast to the case of LTI systems, here the experiment

operatory = E(G; �; u; �) that maps the model, inputs and noise to
the experimental outcome is not linear (since, in general, the plant de-
pends nonlinearly on the time-varying parameters�) and, thus,D(I)
may not be easily computable. To circumvent this difficulty, we in-
troduce the concepts ofparameter-dependentdiameter of information
and identification error. These concepts will be used to establish con-
vergence of the algorithm for all parameter trajectories.

Definition 2: Given a parameter trajectorŷ� = [�̂��0 . . . �̂��N�1],
define the setY(�̂) as the set of all experimental data consistent with
the a priori information, for all possible parameter trajectories com-
patible with the firstN measurementŝ�. The parameter-dependent
diameter of information is given by

D(I; �̂)
:
= sup
y2Y;�2�

d(T (y;�))

where�
:
= f�: ���k = �̂��k; k = 0; 1; . . . ; N � 1g, i.e., the “size” of

the largest set of indistinguishable models compatible with thea priori
information and the firstN measurements of the parameter trajectory.

Similarly, we can define aparameter-dependentidentification error
by considering the worst-case error over all trajectories compatible
with the present parameter trajectory.

Definition 3: Given the experimental outcome(y; �̂), let GA =

A(y; �̂) denote the nominal model obtained using the algorithm pro-
posed in Section III.B.1. The parameter-dependent identification error
is defined as:

e(A; �̂)
:
= sup

G2T (y;�̂)

kG�GAk` ind:

Since for a given�̂ the setsN and T (�̂) = fG: G = Gnp +
N

i=1 piFu(Gi; �̂)g are convex and symmetric with respect to the
pointsG = 0; ��� = 0, it follows (see [4, Lemma 10.2]) that, as in the
nonparametric case, the worst-case experiment is the one that yields a
zero outcome, i.e.,

e(A; �̂) � D(I; �̂) = 2 sup
G2T (0;�̂)

kGk` ind: (5)

In order to show convergence of the proposed algorithm, we need
the following additional assumption.

Assumption 1:There exists someN� large enough, but independent
of �, such that for all parameter trajectories and all elementsGnp 2
Snp=f0g the matrix

Paug(�)
:
= [PN g

np
N ] g

np
N

:
= [gnp0 � � � gnpN ]

T

has full-column rank, withPN defined as in Theorem 1,fgnpg =

imp(Gnp) and whereimp( � ) denotes impulse response.
This assumption essentially rules out the existence of arbitrarily

large time delays in the non parametric portion of the models. In
Section III-C, we will analyze some of its implications and discuss
possible relaxations.

For simplicity in the sequel we will assume that thea priori noise
set is of the formN = f��� 2 <N : j�kj � �g but the error bounds and
convergence proof easily generalize to sets of the form (2).

Theorem 2: If assumption 1 holds, then the algorithm is convergent,
i.e.,

lim
N!1;N!f0g

kGo �GAk` ind = 0

whereGo
:
= Go +

N

i=1 po Fu(Gi;�) denotes the actual system.
Proof: The proof is divided in two parts: 1) establishing

that e(A; �̂) ! 0, and 2) using this last result to show that
kGo � GAk` ind ! 0.

To prove 1), consider sequencesNi " 1; �i # 0, and for
a given pair (N; �) denote byT (y0; N; �; �̂) the set of plants
consistent with thea priori information, the observed param-
eter trajectory�̂ and the null outcomey0. Clearly, if �j < �i
and Nj � Ni, then T (y0; Nj ; �j ; �̂j) � T (y0; Ni; �i; �̂i)

and, thus, [12, p. 18] the sequence of setsT (�) has a limit
~T (�̂) = \kT (y0; Nk; �k; �̂k). If ~T (�̂) 6= f0g, then there exists
some0 6= ~G =

N

i=1 ~piFu(Gi;�) + ~Gnp 2 T (y0; Nj ; �j ; �̂j);8j.
Assume first that~Gnp 6= 0, and definef~gnpg = imp( ~Gnp); K̂ =

kPN (~gnp)k2; fĝ
npg = imp( ~Gnp=K̂). From Assumption 1, it

follows that the matrix

P̂aug(�)
:
= [PN ĝ

np
N ] ĝ

np
N

:
= [ĝnp0 � � � ĝnpN ]

T

has full-column rank. Since~G 2 T (y0; N
�; �; �̂k), it follows that

k [ ~pT K̂ ]T k1 � kP̂yaugk1�. Thus,k ~Gk` ind ! 0 as�! 0, which
contradicts the fact that~G 6= 0. If ~Gnp = 0, a similar argument holds



1622 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 9, SEPTEMBER 2003

considering the submatrix of̂Paug formed by its firstNp columns. The
desired result follows now directly from (5).

To prove convergence, note that, from the definition ofe(A; �̂) we
have thatkGo�GAk` ind � e(A; �̂)! 0. This equation, combined
with the linear independence of the impulse responses of theNp inter-
connectionsFu(Gi;�) and the separation condition (Assumption 1)
implies thatkGnp �Go k` ind ! 0 andpi ! po .

As we show next, a bound onD(I; �̂) can be obtained by solving
an LMI optimization problem.

Theorem 3: The parameter-dependent diameter of information can
be bounded above by

D(I; �̂) � 2 akpk1 +

N�1

i=0

�i +K��(N�1)=(�� 1) (6)

a
:
=

N

i=1

sup
�2�

kFu(Gi;�)k` ind

�i
:
= minfK��i; kPN(i; :)k1kpk1 + �g:

Proof: SinceG 2 T (0; �̂), it follows that

PNp+ h 2 N (7)

wherePN ;p, andh are defined in Theorem 1. By assumption, the
impulse responses of theNp interconnectionsFu(Gi;�) are linearly
independent for any given trajectory of the time-varying parameters.
Thus, forN large enoughPN has full-column rank, i.e., it has a left
inversePyN . Hence,p = P

y
N(��� � h) for some��� 2 N . It follows

thatkpk1 � kPyNk1k(��� � h)k1 � kPyNk1(� +K) where the last
inequality follows from the fact thatGnp 2 BH1;�(K). Moreover,
this fact, combined with (7) implies thatjhij � �i. Thus, for every
G 2 T (0; �̂) we have that

kGk` ind �

N

i=1

jpij(sup
�2�

kFu(Gi;�)k` ind) + kGnpk` ind

� akpk1 +

N�1

i=0

�i +K��(N�1)=�� 1:

Consider a state-space realization for the LFTFu(Gi;�)

xk+1 = A(���k)xk +B(���k)uk

zk = C(���k)xk +D(���k)uk: (8)

As shown next, an upper bound onsup�2� kFu(Gi;�)k` ind, and
therefore on constanta defined in (6), can be computed by solving a
(functional) affine matrix inequality optimization problem.

Lemma 1: Assume that the set of admissible parameter trajecto-
ries is of the formF� = f�: ���k+1 2 �[���k]; k = 0; 1; . . .g, where
�: P P is a given set valued map. If the following parameter-de-
pendent affine matrix inequality in the variableX(�) > 0:

AT (�)X(�)A(�)�X(�) AT (�)X(�)B(�) CT (�)

BT (�)X(�)A(�) BT (�)X(�)B(�)�2I DT (�)

C(�) D(�) �I

<0

(9)
holds for all� 2 P and� 2 �(�), thenkFu(Gi;�)k` ind � .

Proof: Pre- and postmultiplying (9) by[xTk u
T
k z

T
k ] and its trans-

pose, we have for every admissible parameter trajectory

0 > x
T
k+1X(���k+1)xk+1 � x

T
kX(���k)xk + z

T
k zk � 2uTk uk:

Summing this last equation fromk = 0 to1 and using the fact that
limk!1 xk = 0 due to exponential stability of the system yields:

kzk22 =

1

k=0

z
T
k zk < 2

1

k=0

u
T
k uk = 2kuk22:

Remark 2: The set valued map� is a generalization of the usual rate
bounds� � _�i � �, that allows for considering for instance discrete
parameter values and parameter variations with memory. In the case of
arbitrarily fast varying parameters,�(�) = P .

SinceA(�);B(�),C(�) andD(�) are affine in� it follows that in
the simpler case of polytopicP and arbitrarily fast varying parameters,
checking that (9) holds can be accomplished by just checking the ver-
tices ofP . As is the case with standard LPV analysis, more complex
dependencies may require griding the parameter set.

Remark 3: In many cases, the bound given in (6) can be quite con-
servative. A tighter bound can be obtained, at the expense of increased
computational complexity, by solving the following convex optimiza-
tion problem:

max
p;h

sup
�2�

N

i=1

piFu(Gi;�)

` ind

+ khk1 +K
��(N�1)

�� 1

subject to: PNp+ h 2 N

jhij � K��i: (10)

Note that, for each value ofp, the objective function can be computed
by first finding a state space realization of

i
piFu(Gi;�) and then

applying Lemma 1.

C. Relaxing Some of the Assumptions

In this section, we briefly address the issue of relaxing some of the
assumptions made before.

Linear independence on the impulse responses of theNp intercon-
nectionsFu(Gi;�). This assumption can be relaxed if a bound on
kpk1 is available as part of thea priori information. In that case this
bound can be directly used in Theorem 3 to establish the bound on
D(I; �̂).

Separation condition(Assumption 1). This condition is required in
order to guarantee convergence of the identified model. It can be re-
laxed to hold only on certain parameter trajectories, provided that the
identification is performed over one of these. Intuitively, this condition
guarantees a unique parametric/nonparametric decomposition for each
elementGnp +

N

i=1 piFu(Gi;�) of thea priori set. If it fails for a
given parameter trajectorŷ�, then for this trajectory there exist mul-
tiple parameter choices. Therefore, the parametric and nonparametric
components will not converge separately, although the full model might
converge to the real plant. Since by assumption the model to be iden-
tified consists of a nonparametric and a parameter-dependent portion,
it is reasonably to assume that this condition will hold for most of the
parameter trajectories. If this is not the case, then the nonparametric
part can be absorbed into the parametric one.

IV. (I N)VALIDATION OF LPV MODELS

Next, we turn our attention to the related problem of model (in)val-
idation. Note that the error bounds provided in the previous section,
while useful to establish the convergence properties of the algorithm,
tend to be too conservative for control synthesis. Moreover, from a
practical standpoint, before using the identified model and associated
uncertainty description to synthesize controllers, they should be vali-
dated usingnewdata, that has not been used in the identification process
(to avoid introducing biases).
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Consider the lower fractional interconnection, shown on Fig. 1(b),
between a discrete-time stable LPV modelP (�) and an unstructured
LTV uncertainty� in the set�

:
= BL(`2)(�). The blockP (�) con-

sists of a nominal model of the physical systemG(�)—obtained for
example using the method proposed in Section III—and a description,
given by the blocksQ(�); R(�), andS(�), of how uncertainty enters
the model. We will further assume thatkS(�)k` ind < ��1 holds for
all parameter trajectories� so that the interconnectionFl(P (�);�) is
`2 stable for all�. Finally, the signalsu andy represent an arbitrary but
known test input and its corresponding output respectively, corrupted
by measurement noise� 2 N , whereN is of the form (2). As before,
their values over a finite horizon are collected in vectorsu;y, and���.

The goal is to determine whether or not the measured values of the
inputu, the outputy and the time-varying parameters� are consistent
with the assumed modelP (�) and the given set descriptions for the
noise��� 2 N and uncertainty� 2 �, that is, the following.

Problem 2: Given the time-domain experiments

u
:
= [u0 u1 . . . un�1 ]

T

�
:
= [���0 ���1 . . . ���n�1 ]

y
:
= [ y0 y1 . . . yn�1 ]

T

the modelP (�) and thea priori setsN ;� determine whether or not
the a priori anda posteriori information are consistent, i.e., whether
the set

M(y;�; P )= (�; ���): �2�; ��� 2 N ;y=Tn
F (P (�);�)u+���

is nonempty.
Next, we recast the (in)validation problem subject to LTV uncer-

tainty into LMI feasibility form.
Theorem 4: Given time-domain measurements of the inputu, the

outputy and the time-varying parameters�, the LPV modelP (�) is
not invalidated by this experimental information if and only if there
exist two vectors��� = [�0 . . . �n�1]

T and��� = [�0 . . . �n�1]
T , such

that the following set of(n + 1) LMIs hold:

M
k(���) > 0 k = 1; . . . ; n; L(���) > 0 (11)

where

M
k(���)

:
=

Xk(���) (���k)T

���k Yk(���)

Y
k(���)

:
=

1

�2
I� T

k
S

T

T
k
S

�1

X
k(���)

:
= T

k
Ru

k
T

T
k
Ru

k + T
k
Ru

k
T

T
k
S���

k

+ T
k
S���

k
T

T
k
Ru

k

���
:
= y �Tn

Gu�T
n
Q��� (12)

andL(���) is defined as in (2). Here, vectorsuk; ���k, and!!!k contain the
first k elements of sequencesu; �, and!, respectively.

Proof: The LPV modelP (�) is not invalidated by the experi-
mental informationfu;y;�g if and only if there exist a� 2 � and
a ��� 2 N such that

y = Tn
Gu +Tn

Q��� + ���

!!! = Tn
Ru+Tn

S��� ��� = Tn
�!!!: (13)

Using [13, Th. 4.5], the existence of an uncertainty block in� is equiv-
alent to

(���k)T���k � �
2(!!!k)T!!!k; 1c k = 1; . . . ; n: (14)

Now, replacing the expression of!!!k from (13) into the right-hand side
of each of the inequalities (14), and reordering terms yields

(���k)T
1

�2
I� T

k
S

T

T
k
S ���

k � T
k
Ru

k
T

T
k
Ru

k+

+ T
k
Ru

k
T

T
k
S���

k + (���k)T T
k
S

T

T
k
Ru

k (15)

for k = 1; . . . ; n. Using Schur complements and the fact that
kS(�)k` ind < ��1 gives the firstn LMI’s of the set (11),
Mk(���) > 0; k = 1; . . . ; n. The last LMI of (11),L(���) > 0, is simply
obtained by replacing the expression of the noise vector��� from (12)
in the definition ofN given in (2).

V. A PRACTICAL EXAMPLE

In this section, we illustrate the proposed framework with a practical
example arising in the context of active vision. Consider the problem
of smooth tracking of a noncooperative target, illustrated in the block
diagram shown in Fig. 2(a). Here, the goal is to internally stabilize the
plant and to track target motions,ytarget, using as measurements im-
ages possibly corrupted by noise, while zooming in and out of features
of interest.

Designing a controller for this application requires, as a first step,
finding a model for the block labeledS in Fig. 2(a) that maps the com-
mand input to the head, in encoder units, to the position of the target
(in pixels). This map depends on the time-varying focal lengthf of the
lenses, unknowna priori, but measurable in real time. In the sequel,
we concentrate on the pan axis, since the procedure for the tilt axis is
similar.

Physical considerations, corroborated by experiments performed
while holding the time-varying parameter constant, suggest that the
parametric component of the LPV modelFu(Gp;�) can be modeled
using just one transfer function, i.e.,p1Fu(G1;�), and that its
dependence with�1 can be considered to be affine. Regarding the
nonparametric componentGnp, based on the time constant obtained
with experiments involving only the mechanical components of the
system, we determined a value of� = 1:5 for the a priori stability
margin.

The experimental information considered consists ofN = 35 sam-
ples of the time response of the real systemy to a unit step inputu
while the time-varying parameter�1 was allowed to vary between 0%
and 80% of the maximum value of the zoom during the experiment,
as is shown in the upper plot of Fig. 3. By repeatedly measuring the
location of the centroid of the target in the absence of input, the exper-
imental noise measurement was determined to be bounded by� = 4

pixels, i.e.,N = f��� 2 <N : j�kj � �g.
Using thesea priori information and experimental data, the

minimum value ofK such that LMIs (3) hold was determined using
Matlab’s LMI toolbox, yielding a value ofK = 0:0444, a value of
the parameterp1 of 0.9743 and a nonparametric component with as
many states as the number of experimental samples. From a control
perspective, minimizingK is attractive since it leads to smaller
identification error bounds [through the last term of the upper bound
given in (6)] and less conservative designs. The bottom plot of Fig. 3
shows the output of the complete identified modelGA, as the sum of
a parametric LPV component and a nonparametric LTI component of
order 4 (after a Hankel norm model reduction step [4]), to the same
inputu applied during the experiment and for the measured trajectory
of the time-varying parameter�1, and the noisy measurements of
the output of the real systemy. As shown there, the identified model
explains the observed data within the experimental error.

Regarding thea priori worst-case identification errore(A; �̂), the
evaluation of (10) leads to an upper bound in the induced`2-norm
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(a)

(b)

Fig. 2. (a) Block diagram of a visual tracking system. (b) Experimental setup.

Fig. 3. Results of the identification step.

of 1.15. In order to refine this bound, the LPV model was (in)vali-
dated againstnewexperimental data of lengthn = 35 corrupted by
the same noise level�, subject to additive and multiplicative unstruc-
tured uncertainty�. For these particular uncertainty types, each LMI
M

k(���) of the set (11) depends affinely on�2, and therefore it is pos-
sible to find the minimum upper bound on the uncertainty norm so
that the LPV model is not invalidated. Using thisa priori informa-
tion and new experimental data, we determined, using Matlab’s LMI
toolbox, that the LPV model can explain the new given experimental
information, with an LTV uncertainty block bounded ink � k` ind by

�add = 0:018 and�mult = 0:26 in the additive and in the multiplica-
tive cases, respectively.

In order to further validate the proposed approach, the identified
model and the uncertainty description�mult 2 BL(`2)(0:26) were
combined with the technique used in [2] to design an LFT scheduled
H1 controller. As shown in [14], the resulting closed-loop system was
able to achieve good tracking performance in spite of the substantial
change in the dynamics of the plant due to the change inf .

VI. CONCLUSION AND DIRECTIONS FORFURTHER RESEARCH

In this note, we proposed a new robust identification framework that,
starting from experimental data, generates models suitable to be used
by the LPV synthesis techniques, as well as bounds on the identifica-
tion error. As shown here, the problems of obtaining and validating a
nominal model and an associated uncertainty description are not more
computationally demanding that comparable techniques available for
the case of LTI systems. Moreover, as in the LTI case, the identifica-
tion algorithm is optimal up to a factor of 2 as compared with cen-
tral strongly optimal procedures, and convergent. Efforts are currently
under way to extend the LPV model invalidation problem to cope with
structured and slowly time-varying uncertainties.
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