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Ho Control With Time-Domain Constraints:
Theory and an Application

Mario Sznaier, Takeshi Amishima, and Tamer Inanc

Abstract—n this paper, we study the problem of minimizing
the H> norm of a given transfer function subject to time-domain
constraints on the time response of a different transfer function
to a given test signal. The main result of this paper shows that
this problem admits a minimizing solution in R’H-. Moreover,
rational solutions with performance arbitrarily close to optimal
can be found by constructing families of approximating problems.
Each one of these problems entails solving a finite-dimensional
quadratic programming problem whose dimension can be
determined before hand. These results are illustrated and exper-
imentally validated by designing a controller for an active vision
application.

Index Terms—3H, control, £°° control, active vision, disturbance
rejection, optimal control.

. INTRODUCTION

N MANY cases, the objective of a control system design can @)

be stated simply as synthesizing an internally stabilizing e .
controller that minimizes the response to some exogenoty . . Visual u T A :
inputs. When these exogenous inputs are assumed arbitr: - Controller '— Robot
but with bounded energy and the outputs are also measur :
in terms of energy, this problem leads to the minimization o ; —
the H..-norm of the closed-loop system. The case where th * ot V'S";':je"”'
exogenous inputs are bounded persistent signals and the outp +( Optical Flow
are measured in terms of the peak time-domain magnitud | SrrrTTTTTTemmommemeeees
leads to the minimization of ar!//'-norm. H.-optimal n
control can now be solved by elegant state-space formulas [21] (b)

while £!/¢*-optimal control can be (approximately) solvedrig. 1. (a) Visual tracking setup. (b) Corresponding block diagram.

by finite linear programming [15]-[17], [19]. Finally, the case

where the input is a bounded energy signal and performarngak time-domain magnitude, it leads to the minimization of
is measured in terms of the® norm leads to the generalized e /yo_norm [5], [18], [22], [34], [48], [61].

Ho problem [40], also solvable via finite-dimensional convex |n general, a realistic control problem is likely to involve
optimization. specifications on both the energy and peak values of the output.
A common practice in engineering is to state some of theg@nsider for example the problem of smooth tracking of a
performance requirements in terms of the response of €ncooperative target, illustrated in Fig. 1. Here, the goal is to

closed-loop system to a given, fixed test input (such as bounggernally stabilize the plant and to track target motiong,g.,

on the rise time, settling time or maximum error to a step)sing as measurements images possibly corrupted by noise

In this case, if the output is measured in terms of its energy as indicated in [28], [39], in principle this problem can be

the problems leads to the minimization of the closed-loags|yed using LQG control theory.

Hy-norm, extensively studied in the 1960s and 1970s. OnFgig 2 shows the experimental response to a step displace-

the other hand, if the outputs are measured in terms of thunt of the target of 25 pixels achieved by an optiftalcon-

troller. This controller was designed using a stable, nonmin-
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® ; ! ? : ; solution of a constrained optimization problem, which limits the

: : : : : applicability of the method in situations like the previous one,
Pv{1 1 . e, e, e, e, 4 with relatively fast sampling times (33 ms).
: : : : : H, control problems with time-domain constraints can be
addressed by recasting them into a migés)/¢* optimization
form and elegantly solved using the methods proposed in [41].
However, this is a worst-case type approach that guarantees sat-
isfaction of the time-domain constraints for all signals in the
£°°—unit ball. Thus, these controllers are potentially very con-
: : : : : servative for applications such as the active vision problem dis-
s L S R S e T 1 cussed above, where the specifications are given in terms of the
: : : response to a few test signals, representing the typical patterns
of motion of the target.
In this paper, motivated by the results in [47], we propose
, a solution to both, continuous and discrete tifiie problems
s " s s subjecttotime domain constraints given in terms of the response
Time (seconds) to a set of fixed, given signals. Specifically, the contributions of
(@) this paper are as follows.
100 T y g T T « Establishing that contrary to some other multiobjective
f f problems such as mixeds/H ., Ha problems with time
N TS T W S S W ) domain constraints admit a solution RiH, the closure

-
o
T

Tracking error (pixels)
S
T
I

: : : of the subspace of{, formed by real rational transfer
_ ] i : matrices.
i d L g ; i » A computational procedure, based on finite-dimensional
‘ : ; ; § : guadratic programming, to computesuboptimal real ra-
RS S ST SUOUNUNUUSPE SOOI R i tional (and, thus, implementable) controllers.
: " : : : « Extension of these results to the continuous time case.
» Experimental validation of the theory with a nontrivial
application.

: : : : : The paper is organized as follows. In Section I, we intro-
_1soHb ............... . ................ ............... _ duce the notation to be used and some pre“minary results. In
: : : 5 Section IIl, we introduce two modified, //> problems, pro-

200 ; : : : ; viding suboptimal and a super-optimal solutions respectively.
° Tane (soconds) Both problems can be reduced to finite dimensional quadratic
®) programming, and in the limit their respective solutions strongly

converge to the solution of the original problem. In Section 1V,

we solve the continuous-time counterpart of the problem. The

theory is illustrated in Section V by synthesizing and experi-

mentally validating a controller for the active vision application

significant undershoot and oscillations. Our goal is to desighentioned above. Finally, in Section VI, we summarize our re-
a controller that substantially decreases the peak value of th8is and we indicate directions for future research.
control action and the oscillations in the error response, while

achieving comparable tracking performance in terms of the root
mean square (RMS) value of the error. Il. PRELIMINARIES

Itis well known that, for discrete-time stable systems ke In this section, we introduce the notation used in the paper,

norrrt] |stan quer boutn_d t(')f trte® nt?]rm. Thlle, Im pnpmple Pﬁ precisely state the problem under consideration, and present pre-
can try to enforce restrictions on the peak value of a (weig § inary results that will be latter used to reduce this problem

time-domain response through the minimizatipn qf a weightel) a finite-dimensional convex optimization.
‘Ho norm. However, this approach can be arbitrarily conserva-
tive. State and control constraints can be handled by rendering
appropriate sets positively invariant (see for instance [10], [ZOﬁ‘;

[52], [59] and the excellent survey [7]). LQR control subject The notation used in this paper is summarized here.

=)

Control action (counts)
1
[
=]

L
8

Fig. 2. (a) Tracking error to a step input (experimental). (b) Control action.

Notation

to input constraints has been addressed in [25], [62] using &¢R. ) Set of real (positive real) numbers.

lipsoidal invariant sets. However, these methods are potentiadly*" Banach space of matrix valued right-sided,
conservative, due to the choice of invariant sets and are restricted absolutely summable real sequences
to the state feedback case. Alternatively, these problems can be z = {z(k)}%2, equipped with the norm
addressed using receding horizon-type methods [11], [36], [42], lzlle, = maxicicm D51 Dpeg lzii (k)] <

[50], [51]. However, stability considerations require the on-line 0.
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0(Z) Banach space of absolutely summable, double Ve z,
sided real sequenrlcgs,ﬂn} equipped with the W, P 2,
norm [zle, = 0=, [wl. . ;

omn Hilbert space of matrix valued right-sided, en-

ergy bounded real sequences= {z(k)}?2,
equipped with the norm ||z]|e, =

1/2
(Zr S Dol (W) < o K
gmxn Banach space of matrix valued right-sided,
bounded sequencex = {z(k)}2,
equipped with the norm ||z||¢.. =
MAX1<j<n P ieq SUPg>0 |Tij (k)| < oo.

m Space of real vector sequencés(k)} e Wwhere{¢;(k)} is a given{> sequence. A typical choice for
¢ such that {z;(k)/g:(k)} € le, ¢i(-)is
equipped with the norm ||z 00 =
MAaX] <i<m SUPg>o |95 - (k)i (k)|, where ¢(k) =M, k=0,1,....5
g(k) € ¢m is a given sequence, such that P(k) =Malk=F), ki <k, 0<a<l1. (2-1)

i(k) > 0.
L (Ry) i:i(lb()art space of matrix valued LebesgueThiS sequence imposes constraints on the maximum overshoot

integrable  functions «(t) on R, (M) and forces exponential decay of the output after time

Fig. 3. H. with time domain constraints setup.

equipped with the norm ||z|., - !n the sequelZ we yvill assume without loss of .generqlity (by
m n oo ) using superposition if necessary) that the test signals in the set
(Ei:l Yim1 o i) dt) < o0. W, are of the formw! (k) = [0 0 ... w;j(k) ... 0] .

L*"(Ry)  Banach  space  of  matrix  valuedMoreover, by using weighting functions and absorbing these
Lebesgue  integrable  functions z(t) weights in the generalized plant (see [61] for details) it can also
on R, with the norm |z||c. = be assumed that; (k) is an impulse.

Max<j<n P ;e €55SUDe g, |Ti(t)] < 00. Let T(\) andS(\) denote the closed-loop transfer matrices

H " (jw) Hilbert space of matrix valued com-from ws to zo and fromw; to z; respectively, obtained when
plex functions F(s) with analytic con- connecting a stabilizing controller frogto «. Using the Youla
tinuation on the open right—half plane,Parameterization, the set of all such transfer matrices can be
and square integrable there, equippeparameterized by [63]
with the usual H, norm [[F|j3, = T
1/2n [7° Trace [F*(jw)F(jw)] dw < oc. T=T"+T7°QT

HP™™(D)  Discrete time counterpart of H,(jw), §=8"+ 52085 (2-2)

i.e., Hilbert space of matrix valued Xy il Moy Xy el ney X7l
complex functions F()\) with ana- WhereQ € H,""™, T°0 e 4777, T2 € £, ,

lytic continuation inside the unit disk, 7°' € f?yxnw";, I T/
equipped with the norm | F|3, = and S* ¢ /¢*""*. Moreover, by suitable selecting the
1/2x fjﬂ Trace [F*(eﬂ)p(eﬁ)] do. parametrization, without Iqss of ge.nerality it can be assumed
A A transform of a right—sided real sequencet.hat the transfer matriceég™” and S*’ are analytic inside the
X(\) = 3052, i\t disk || < (1/a) < p. In order to stress the dependence@zn
P, P [0, GiN] = Z?;ol G the notat|0n§(Q)_ andS(Q) are sometimes useq in the s_equel.
G Conjugate of an operato = GT(1/)). _ The parameterization allows for precisely statingiewith
- e Frobenious norm: fod € R™*, ||M|2. = time-domain constraints problem as follows.
S om? Problem 1: Given sequenceég; ;(k)} of the form (2-1),
w find the optimal value of the performance measure
B. H, With Time Domain Constraints Problem p= inf |7+ TRQT2, (2-3)
Consider the system shown in Fig. 3, where the signals QeHy

R™: andws € R":2 represent known test signals and exéubject to
ogenous disturbances, respectively, and where R™=: and

z9 € R™2 represent regulated outputs. Our goal is to find an S(0). - L || S(Q, k) <1
internally stabilizing control laws = Ky, v € R™,y € R™ 15(@)sills..s.00 = bii(k) e ~
that minimizes theé/{, norm of the closed-loop transfer func- k=0,1,2,... {i,j} €T (2-4)

tion from w, to 25, subject to time domain constraints on the
response of some of the elements:pfo test signalsv; € W;, and the corresponding controllex, .., whereZ denotes the set
of the form of input—output pairs subject to time domain constraints.
Next, we show that under mild conditions, the solution to this
|2¢, (k)| < ¢i(k) problem is unique.
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Lemma 1:Let T'2, T?! have generically full column and A. Problem Transformation

row rank respectively, and assume that a solution to problem L; is 5 standard result (see, for instance [53, p. 194]) that the

exists. Then, this solution is unique. parameterization of all stabilizing controllers can be selected
Proof: Let @1 and @, solve Problem 1, and assume by, redefining) if necessary), so thaf'? and 72! are inner

contradiction that); # (2. By the strict convexity of thé{> 54 co-inner, respectively. Thus, there esi$tL, 721+ such

normT* 4+ T12Q, Tt = T 4+ T12Q,T?!. Since by assump- 721 _

tion 712 has full-column rank and’! has full-row rank, nec- that[7** T"**]and [Tzu are unitary. Let

essarilyQ; = Q-.

In the sequel, we solve Problem 1 by constructing sequences Rl —pl2™plip21l™
of super and suboptimal controllefsy’ } and{@}, such that R12 —l2™pllp21l™
7@, 1 andHT(@)H2 | u, respectively. Moreover, )y e e e
these controllers can be found by solving finite-dimensional R?2 —pl2Ll™plip2ll™, (3-1)

guadratic programming problems. in order to establish these
facts, we need the following result, showing that the componeritbrough straightforward but tedious operations, it can be shown
of every feasible controlle) that are relevant to the time-do-([53, p. 195]) that with this choice of the parametrizati®¥, €
main constraints are bounded in t## sense. R'Hy . Since theH, norm is invariant under pre- (post) multi-

Given an input—output palfi, j) € Z subject to time-domain plication by unitary matrices, we have that
constraints, denote hy;* andS3* the:** row and;*" column

of S12 andS?!, respectively. By considering the corresponding ||T11 + leQT21||2 _ H [Rll +Q Rlz} 2
Hy

Smith—Mcmillan decompositions [33], it follows that there exist R R?? o
unimodular (i.e., polynomial with polynomial inverse) matrices Rllsp  pl27]2
v} andV;" such that :'H R2t R22:|
Ha
S2=[0 0 ... SPO) ... 0]VE); +H[DRH+Q 0”‘
T 0 7 0 0 o
0 H |:R115p R12711%
o = R21 R22}
5]21 :V]L()\) Sle()\) . (2'5) . 5 Ho
. +[|p™" + ¢ (3-2)
: Ho
L 0
. . . where R1'*» and DE"" denote the strictly proper part dt'!
Hence, the constraint (2-4) is equivalent to and its feed through term, respectively. Thus, Problem 1 may be
U A1 a1 A reformulated as follows.
Hsij +857857 Q|| =<1 (2-6)  Problem 2: Find the optimal value of the performance
’ measure
Where@j = (‘/IRQVJL) -
: 12 21 inf  ||Q"||3,, subjectto
Lemma 2: Assume thatS;*(A), S7'(A) have full row and on ey Ha

column rank onA| = 1. Then, all feasible controllers satisfy 2 .
1Qi;114>° < M;;, whereM;; depends only on the problem data. H [S” + 82(Q" — DR )521} , <1. (3-3)

Proof: Since S} and S?* have full row and column
rank on|A| = 1 it follows that (S}252')()) # 0 on the unit Problem 2 is a convex infinite-dimensional problem, for which
circle. Thus, Wiener-Gelfand's theorem [13] implies thato closed-form solution is known to exist. In this paper, a so-
ST = (512571)7t € £(Z). It follows that if Q) is feasible for lution will be computed by taking the limit of the solution to
Problem 1, then: some finite-dimensional minimization problems. In the sequel,

. R , ot we will assume without loss of generality (by redefinifig as

Gl IS8 < ST IS2SRQNE e s sy toap Y gt

<[1STlex (116> + 1S3 116°) = M. (2-7)
B. Computation of Superoptimal Solutions

In this section, a sequence of finite-dimensional convex op-
timization problems is introduced. Theh problem hagD(n)

In this section, we show that Problem 1 can be solved bariables, and its optimal cogt” satisfiesy™ < u. The se-
solving two modifiedH,/¢>° problems, providing suboptimal quence of problems approximates Problem 1 in the sense that
and a superoptimal solutions respectively. Both problems caf — p and the partial solutions converge to the optimal solu-
be reduced to finite dimensional quadratic programming, andtion (in theH, norm) asn, — co.
the limit their respective solutions strongly converge, inthe Using the projection operatd?,,, consider the optimization
topology, to the solution of the original problem. problem

I1l. PROBLEM SOLUTION
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Problem 3: Find the optimal value of the performance: to achieve some desired error bound. To solve this difficulty,
measure in this section we introduce a sequence of suboptimal solutions
converging to the optimal from above. Solutions to Problem 1

n __ : n|2 H
£ = Qne#jfumy 12" 3, subjectto with arbitrary accuracy can then be found by computing upper
HPn(Sll n 512Qn521)m || < 1. (3-4) and lower bounds gf until the difference between these bounds
Prsr00 = is as small as desired.

Problem 3 can be thought of as a finitely-many constraints ap-Consider the following finitely many variables approximation
proximation to the original problem, where the constraints afg pProblem 1.

enforced only over a finite horizon. In the sequel, we show problem 4:
that this problem is equivalent to a finite dimensional quadratic

programming problem. = min Q" ()%
Lemma 3: Problem 3 is equivalent to [@"(0) @Q"(1) --- Q"(n-— Z
y = min st [[S7 ) + S VR" (A >521( Mrallgooo <1
@ e @) whereQ"(A) = 321 Q ()X A
. . Theorem 2: Assume that there exist3 € Hy"*™ such
2" (4)||% subject to: 3-5 A -~ 2
; 1" () [F> subj (3-5) that||S(Q)||¢,co0 < 1. Theni™ | pand||Q™ — Qoptll#, — O,
whereQ,,; € H,"**" is the solution to Problem 1.
Po | STN) + S12(A Z Q" (4) g21 Proof: If Q™ solves Problem 4 with horizon then it is
ol oo also feasible with horizon + 1. Thusg,, > 7, . Since the

<1 (3-6) sequencegr,, } is bounded below by, it follows that it has a
- limit ;;,,, > u. Proceeding asin the proof of Theorem 1 itcan be
Proof: Follows from the fact that for any feasibtg € shown that{Q"} is a Cauchy sequence and, thus, it converges
Hy" X" we have tha®" = P, (Q) is also feasible and yields to someQ* € H.. As before, it can be easily shown t@t is
a lower cost. . feasible. Finally, from Lemma 1 we have th@t = Qops.
Theorem 1: Assume that there existg € H,"**"* such  In principle, Problem 4 is a semi-infinite-dimensional
that [|(S™ + S?QS5%"),sll¢,...c < 1. Then,u™ 1 p and quadratic programming problem, since it has an infinite
Q" — Qoptll, — 0, whereQope € Hy"*"+ is the solu- number of constraints. However, as we show in the sequel,
tion to Problem 1. under mild conditions only finitely many of these constraints
Proof: To show thatu™ 1 pu note that ifQ™*! solves are active.
Problem 3 with horizom. + 1 then it is feasible for Problem 3  Theorem 3:Let Z denote the set of pairg, s) such that
with horizonn. Thusp™ < p™*1. Sincey is bounded above by S(Q),., is subject to time-domain constraints. Denote 4}y
|Ql|,., it follows that the sequencg:” } has a limity, < p.  andsSZ' ther'™ row ands'" columns ofS'* and S*', and as-
Toestablishthat, = ;. we will find a feasibleQ € H- Thuxny  sume thasl? andS2! have full row and column rank oh= 1,
such thaﬂIQlluz_;muum. respectively, for all pairér, s) € Z. Then, Problem 4 is equiv-
Given anyn, m, m > n, defineQ™™ = 0.5 x (Q™ + Q™). alentto
From convexity, we have th&"™ is feasible for Problem 3

with horizonn. Moreover = min >l i)F
) 2 2 2 Q') Q1) @(n-1)]!
1Q" — Q" (I3, =21Q" I3, + 21Q™ I3, — 4IQ™" 1%, subject to
<4 [(p™)% = (u™)?]. (3-7) [P, [S™ )+ S20Q™ NS V],
Thus, as, m — oo, ||Q™ — Q™||n, — 0. This establishes the <1 (3-9)
fact thatQ™ is a Cauchy sequence and, therefore, (siHgds ’(VRQnVL) (k)‘ <M
complete) it converges strongly to so € H,™**", with ! R @
1Q* |7, = uim. Next, we show thaf* is feasible for Problem % =0,1...,No—1 (i,j) €T (3-10)

1. To this effect, note that strong convergence&lin theH;  whereQ™()\) = S7° 01 Q" (i)\', Mg, N1(n) and N»(n) are
topology, implies thalf S(Q"),s — S(Q*)»sll#, — 0, whichin constants that depend only on the problem data and the length
turn implies strong convergence 8{Q")..s to S(Q*).s inthe  of the finite-impulse response (FIR), and the unimodular ma-
£°° topology. Thus, ifQ* is not feasible, there exist some fmﬂemcesz VL are defined in (2-5).
# and N such that Proof: ~For notational simplicity, letQ;; = (V/FQ"

[(S™ + §12Q7S*Y) (k)| > pus(s) foralin > N, (3-8) Vj')ij andSi; = §;2571. SinceV;F, V¥ andQ" are polyno-

) " mial matrices, it follows that there exist som&(n) such that

However, this contradicts (3-6) for > max {N, x}. Qi;(k) = 0, for all k > N, and(i, ) € Z. From Lemma 2 we

C. Computation of Suboptimal Solutions have that every feasible controller satisfies a bound of the form

Theorem 1 shows that a solution to Problem 1 can be ob- Qi (k)] < Mi.;.
tained by solving a sequence of quadratic programming probhus definingM = max{M; ;} renders the additional con-
lems. However, it does not furnish information on how to selestraint (3-10) redundant at the optimum. Moreover, since the
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Youla parametrization is chosen so ti§at is analytic in|A\| < Lemma 4: Consider the strictly proper stable system (4-3)
(1/a) < p, there existdV;(n, N2) (that can be precomputed and its corresponding EAS (4-4). Denote fiy) andgg(k, )
priori) such that St (k)| + [|(I = Pe—ny+1))Sesller * Mo < the respective impulse responses. Then, the following hold.
¢rs(k) forall k& > Nj. The proof follows now by noting that, 1) Given0o < 7 < 7, if |ge(k,7)| < ¢ (1 — (r/ro))k_l,

forall k > N; = max{Ns, N3}, we have then|g(t)| < pe— (/7).
|(511 + 512Q8%Y), . (k) | :‘ (S 4 gTSQTS)(k)’ 2) Ifforall 0 < 7 < 7, there i)((ri?ﬁ(ﬂ ande such thgt
" lgek(T),7]| > ¢ (1 = (1/75)) +¢, then there exist
<[y (k)| t such thatlg(f)| > pe=(#/7),
N2l Proof: Letg = g(t)et/™. Givenr < 7, definer,, by
k—1) ||Q17( )‘ 1 1 1

= (4-6)

’Teq T To
It can be easily seen that the EAS systenj obrresponding to
Teq has the following state-space realization:

§|5rs( )|
+ H(I ~ Plk=No+1))Srs)

yan

X M, & L+ (A + %) ‘ TeqB
0 (3-11) B2 Teq) = - —
i.e., all the constraints are automatically satisfiedifor V; . (1 n T_q) (I +7A) ’ 7o B
- ™ . (4-7)
IV. CONTINUOUS TIME CASE C 0
In this section, we consider the continuous-time counterpgr'iom Property 5 in Lemma 5 in the Appendix, it follows that
of Problem 1, as follows. 58k, Teg)| < Teqgd VE=|3(1)| < ¢ = |g(t)| < pe /™).
Problem 5: Given functions, () > 0 of the form (4-8)
M 0<t<t The proof of Property 1 follows now from the relationship be-
Prs(t) = {Me—(t—to)/TO it (4-1) tween the Markov parameters @z (7.,) andGp(T)
¢ . Teq\k— _
find the optimal value of the performance measure GE(k, Teq) =TeqC(1 + T—q)k "(I+7A)'B
Bt = Qiéléz Q1|2 subject to] (Sy.s(t)| < ¢rs(t) =7.,C(1 — l)—(k—l)([ +7AF1B
t>0, (r,s) ez 4-2 ’
20, (1) _ (4-2) =reg(1— )=y p (7). (4-9)
and the corresponding optimal control@t. To

The main result of this section shows that this problem cdtfoperty 2 now follows from the aforementioned derivation,
be solved by solving a sequence of discrete-time proble@mbined with Property 5in Lemma 5 and the fact that| 0
similar to Problem 1. In the sequel, we consider, for not&s7 | 0.
tional S|mp||c|ty, Sing|e-input_sing|e-output (S|SO) Systems COfOlla.ry 1: A solution to Problem 5 with cost arbitrarily
but the technique extends trivially to the multiple-inputclose to the optimal can be found by considering a sequence

multiple-output case. 7; | 0 and solving a sequence discrete-time problems of the
Given a continuous-time system with state-space realizatié@m
;i = min 5
(o) = (A | B> @3 pi = o min Qe
o 0 . )
o T subject to:Q(z)].—o =0
we define its Euler approximating system (EAS) as the fol- M
lowing discrete-timesystem: |(SE(r:) + SE(7:) * @)k <—
Ge(z) = <%Lég> (4-4) k 0 lt/N—l -
Mete/Te T
The EAS approach has been used in the past [6], [48] to solve |(SE(TI) + SE(mi) * Q) | - <1 - T—o>
continuous-timeC! and mixed. ., /H.. problems by reducing E=N
them to solving equivalent discrete-time control problems. From T
the properties of the EAS (see Lemmas 5 and 4 in the Appendix), N=|- b (4-10)
it can be easily seen that, df,.s(¢) is constant then a solution TLn(l— =)

to Problem 5 with cost arbitrarily close to the optimal can bgpare 5i i (r;) denotes the EAS corresponding to the transfer
found by considering a sequence| 0 and solving a SequencefuncnonSJ for the valuer;, and wherg is the impulse response
discrete-time problems of the form of Q.

p; = min ||Qg(7;)||2 subjecttd|Se(QE, 7)|le= < i From the discussion above it follows that continuous time
(4-5) constrainedH, problems can be solved by solving a sequence
whereQ  and Sy denote the EAS of) andS'! + S'2QS?!, of discrete time problems, using the techniques proposed in
respectively. As we show next, the same approach can be uSedtion Ill. However, note that, when compared with Problem
for constraints of the form (4-1). 1, (4-10) has an additional interpolation constraipt0) = 0,
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Fig. 4. Block diagram for a simple continuous-time example.
5.8

required to guarantee that the continuous time system has ¢_

nite H, norm. ?_—_v____?/”jf”",_,_—’——v
Next, we illustrate the effectiveness of this approach with s4F I e 1

simple design problem. Consider the problem of minimizin _ | B ]

the H, norm of the complementary sensitivity function for the - linfty

unstable nonminimum phase system shown in Fig. 4, subjectt sp v T

constraint on the peak of the control action due to a unit-impul:

disturbancew. 46?005 0.01 . 0.015 0.02
In this case, the optimal (unconstrained), controller

achieves||Ty, ||z, = 5.2 with || Tyyl|lz= = 7.32. Suppose ®

that it is required that the magnitude of the control action il ? o v '

response to a unit-impulse disturbance must remain below I = neonEEned

i.e.,||Tuwl||c~ < 5. Table | and Fig. 5(a) summarize the results ~ °f ' ' o : S

obtained using the EAS approximation for different values ¢

the parameter. Note that forr < 0.01 the gap is below 10%

for the H, norm and virtually zero for th&€>° norm. Finally,

Fig. 5(b) shows a comparison of the constrained versus t\,(‘gS

unconstrained impulse responses for the resulting (after mocg

reduction) eigth-order controller. This controller meets th§

performance specifications while maintaining the settling tim

and||T,.,||2 comparable to the unconstrained design.

V. APPLICATION: VISUAL TRACKING OF AN

UNCOOPERATIVE TARGET
In this section, we illustrate the advantages of the propost -5, 1 2 3 p 5 6 7 8 °
method by designing a controller for the active vision applice Time (sec.)
tion described in Section I. (b)

Fig.5. Continuous-time example. (a) Approximation error for different values
A. Background of 7. (b) Comparison of the control responses.
In the past few years, active vision systems, i.e., systems
incorporating feedback as an integral part of the loop, have TABLE |

emerged as a viable option for a large number. O.f appllcajtlor\%suu FOR THECONTINUOUS-TIME EXAMPLE FOR DIFFERENTVALUES OF T
ranging from MEMS manufacture [24] to vision assisted

surgery [60], assisting individuals with disabilities [46], [58], T Ill2,eas | -ll2,cont | I-lleso.EAS | |-l| o0 comt
and intelligent vehicle highway systems [45], [56]. In practice, 0.02 6.647 5.529 4.999 5.0
using these systems in dynamic scenes requires both real-time 0.01 5.959 5.454 4.999 5.0
visual processing and real-time closed-loop control. Recent 0.0075 | 5.813 5.442 5.000 5.0
hardware developments have make this now possible, leading 0.005 5.671 5.434 5.000 5.0

to a number of systems [12], [14], [23], [38], [44].

Active vision systems appeared as far back as the late 1970s
[30], with the main concern at that time being stability, whicimust be empirically tuned to achieve good performance. Robust
was often accomplished experimentally, by detuning the catnacking performance against calibration errors, variations in the
troller. An excellent survey of the earlier work and a compresptical parameters of the system and unmodeled dynamics has
hensive literature review up to 1996 can be found in [29]. Recdmten addressed in [49], by using a combined model of the vision
work has recognized the fact that robustness issues are cergeaisor and pan and tilt dynamics inHg, / u—synthesis frame-
to the success of active vision systems. Robustness to calitwark. As standard in the—synthesis framework, here, perfor-
tion errors and estimation noise has been addressed in [26], [3BAnce is enforced through the use of appropriate weighting
and [43] respectively. However, while in all these cases the cdunctions, whose tuning also entails a certain degree of trial-and-
trol algorithm is relatively simple, it contains parameters thatrror experimentation.
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This section illustrates how time-domain performance spec pan.
fications can be exactly addressed, without trial-and-error ite motion
ations, by using thé&{, control with time domain constraints
formalism. While at this point this represents only a first stey
toward this goal, since it guarantees ontyminalperformance,
once these techniques prove to be useful, we plan to address
bustness at a later date by combining them with the approas
proposed in [54].

B. Hardware and Image Processing Description

The hardware setup used in this paper, shown in Fig. ¢
consists of a BiSight robotic head equipped with two Hitach
KP-M1 cameras and Fujinon H10X11EMPX-31 lenses. Thi
BiSight platform contains two dc brush drive motors, equippel
with position encoders, that allow for rotational motion arounc
the vertical (pan) and horizontal (tilt) axis, as illustrated in
Fig. 6(a). These motors are driven using a 10-channel PMA
6—r controller. At its lowest level of operation, the PMAC con-
tains, for each channel, a PID servo loop updated at 2.2 KHz, (@)
that drives the position of the corresponding motor to a desired
setpoint (specified in motor encoder units). At a higher level,

Data Cube, MaxSPARC 250

the PMAC contains a DSP processor that computes trajectories In‘f; signall  \ [ vid Analog mags Siznal

that interpolate desired points, and executes them by changing 7 a;ml eo OF mipe e

the setpoint of the corresponding channel. However, while this

results in smooth motion, the delay incurred by the trajectory Image . 4 _

preplanning (up to 400 ms) is unnaceptable for real-time £ A M“;‘O‘é‘dw Analog Image Signal

tracking (see [8] for details). In this research, we avoided this /

delay by driving the PMAC at the servo level, i.e., by directly PMAC-VME L.16D |_Vergence unit__|

accessing its position registers. Finally, the image processing | | Motion Controller ITJ‘;L Q—

required to capture the images and locate the target was per-| | gys Mator on Camera Camera

formed using a Datacube MaxSPARC S250 hosted by a dual Registers Leas M N Umt |5

processor Sun Ultra 2 workstation, allowing for processing /ﬂ\ DC Motors

512x 512 pixel images at video rate (30 Hz). A block diagram PLCO Single-Stage

of the complete system showing the interconnection of the Program Reductions

various components is shown in Fig. 6(b). Control /ﬂ\ Optical Amplified
Next, we briefly discuss the choice of the image processing ommands |\ Encoders Motor

algorithms used in this paper. The so call@dotion corre- 7 ::”"'d ;:‘;;’s‘

spondence’problem, i.e., to determine the image position of  [5pus emory N ,

the object being tracked in the frames of the sequence-has beel | v™E | Terminate \ %ﬁ‘i‘t’hﬁer

extensively studied in the computer vision literature, and a large O User Motor /

number of techniques have been proposed, both for known and Interface Control

unknown objects (see, for instance, [2]-[4], [9], [14], [27], [29], fnlﬁz Signals

[35], [38], [57], and the references therein). Correspondences ~

between individual frames are usually integrated over time (b)

to exploit the dynamical properties of the target, using, f%rI 6

instance, Condensation trackers [3]. These trackers generali?'e '

Kalman-filter based ones by allowing more general (multi-

modal) observation noise models, although in some cases taiget through a sequence of frames. As shown in the sequel (see

result on impractical computational requirements [32]. also [31]), this algorithm achieves good performance tracking
Selection of the image processing algorithm entails a cof@gets at video rate.

promise between complexity and robustness, since time delays

stemming from more sophisticated image processing algoriths Control Objectives and Performance Specifications

have negative impact on the stability and overall performance of|:ig. 7 shows a block diagram of the augmented plant, where
the closed-loop system. Since the goal of the present paper ig{9,..., y:.ze: andu represent the velocity and position (in the
concentrate on performance issues arising from hard time-@®age plane) of the target, and the control input to the PMAC
main constraints in the control action, we selected, as a compboard, respectively. Here, the integrator precedinthe input
mise between complexity and robustness, a normalized crogsthe pan and tilt unit, models the way this board distributes set-
correlation with template update algorithm [35] to track thpoint changes across the sampling period to avoid jerky motion

(a) Experimental setup. (b) Corresponding block diagram.
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Fig. 7. Augmented plant for the active vision problem.

(see [31] for details). Finally = (e., e,) denotes the two-di- i.e., the low level PID servo loops that drive the motors, and the
mensional position in the image plane, relative to the centeramputer vision modute(the block labeled in Fig. 7).

the image, of the centroid of the target, corrupted by measure-Control oriented identification of the plant, followed by a
ment noise; = (1, 1y). model (in)validation step, yielded the model for the nominal

The goal is to minimizdl¢||2, the RMS value of the displace-transfer function fromi to e,, the horizontal displacement of

ment of the target from the center of the image, by rotating thiee target, measured in pixels (see [49] for details), shown in
head around its vertical (pan) and horizontal (tilt) axes. In addhe equation at the bottom of the page, where the faicto?

tion, the closed loop system should satisfy the following speciodels the delay due to the time required by the image pro-
fications (motivated by physical considerations). cessing algorithms to find the target in each frame.

a) Zero steady-state tracking error to step inputg.at.:
(i.e., impulse velocity iNputSvia.get). Note that this
specification is automatically met by any internally In order to achieve the performance specifications given in
stabilizing controller due to the integral action provideection V-C, our goal is to design a controller that achieves
by the PMAC. an RMS value of the tracking errofte||», comparable to that

b) Small overshoot (less than 20%) and appropriate settinghieved by the optimai{, controller, while at the same time
time (on the order of five sampling times) in both the erroavoiding the large control action and oscillatory responses noted

E. Controller Design

and control responses to a step inpuf@atge:? in the introduction. To this effect, we first carried-out a design
c) Closed-loop bandwidth of at least 4 radians/s (this roughiyhere the control action in response to a step displacement of
corresponds to targets moving at 4 m/s). the target of 25 pixels was bounded || ¢>> < 50 (roughly

d) Control action to a step input ak..z.: of 25 pixels 1/3 of the control action used by the optim&l, controller).
(roughly corresponding to a target moving with amote that, in this case, Theorem 3 is not directly applicable since
angular velocity of 4 rad/s) not to exceed 50 controf'? has a zero at = 1 due to the integrator at the control input.
units (motor encoder counts), in order not to saturate thtowever, as we show next the upper bound of the cost can still

actuators. be computed using finite-dimensional optimization.
e) Rejection of high frequency image processing ngise Consider the Youla parametrization obtained by selecting
In the sequel, due to space limitations, we consider only the = 7¢(J; @) with
problem of designing a controller for the pan axis, since design
of a controller for the tilt axis follows exactly along the same J = (AJ' Bj > (5-1)
lines. J D;j

] where (5-2)—(5-3), shown at the bottom of the next page, holds.
D. Plant Modeling It can be easily verified that this choice rend&f¢ and 72!
Applying the H, control with time-domain constraints for-inner and co-inner respectively. Moreover, the controller corre-
malism to the active vision problem, requires reducing it to trgponding to the followingy:
form shown in Fig. 3. This entails finding a mod#l of the
system that includes the dynamics of the head, the actuators@rir =0.7022 + 0.2593z " + 0.0194z % + 0.0076z
+0.049227* +0.072927°

+0.052227% 4+ 0.01722~7 (5-4)
1These specifications are designed to prevent correlator walk off problems?2By identifying a single model combining the dynamics of the pan/tilt unit,

i.e., the window used for the normalized cross correlation in the image practuators and the computer vision module, this approach avoids artificially in-
cessing drifting away from the true target. flating the order of the resulting model, and better captures their interaction.

_0.035925 + 0.04192° 4 0.12892* — 0.04682% — 0.03662 4 0.00022 4 0.0389 _ 1

P(z) = - X —
(2) 1.00002% — 0.358525 4+ 0.32822% — 0.177723 + 0.176222 — 0.0424z 4+ 0.0345 ~ 23
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TABLE I
PERFOMANCE OFDIFFERENTH o, CONTROLLERS
method | contr. order | || Tey||2 | Peak Control to
Step in y
opt. Ha 9 1.99 167.9
Design 1 10 2.13 50
Design 2 10 2.13 50

is feasible and yield§T.., ||z = 2.13. Since||Q||¢~ < ||Q]|2,

it follows that the optimal solution to Problem 4 satisfies
lgx] < 2.13 = Mg. Finally, direct computations show that for
the choice of Youla parametrization given above we have that:
IS ()| + (I — Pr)S?||n Mg < 2forall k > 12. Thus, it
follows that N = 12 is a suitable horizon for the upper-bound
computation. The corresponding controller was found by
solving Problem 4 using the projection-based method imple-
mented in Matlab’s quadprog command for medium-sized
problems [37].

Fig. 8 shows the control and error responses achieved by
this controller in response to a step displacement of the cen-
troid of the target of 25 pixels, relative to the center of the
image. As shown there, the tracking error (the distance from
the centroid of the target to the center of the image) settles very
quickly, with little overshoot. Note however that the control ac-
tion oscillates, settling down after 13 samples. To remove this
oscillation, we carried out a second design, imposing the con-
straints: 1)ju(k)| < 50 and 2)|u(k)| < 1,k > 9. The re-
sulting twenty-eigth-order controller was reduced to tenth order
by using Hankel norm model reduction (the optirt&l con-
troller for this problem has order nine), leading to a controller
with the state-space realization shown in (5-5) at the bottom of

(a) Trackifige next page.

8

(

0.475
0.676
—0.001
—0.003
—0.008
—0.003
—0.001

—0.056
0.015
0.031
0.020
0.056
0.096
0.288
0.275
1.346

1.000

—0.008
0.000

—0.415
—0.112
0.717
0.00
0.001
0.001
0.00
0
5.110
0.442
1.248
2.226
7.305
2.474
1.000
0.000
0.000

.716
0

0.001
0.000

0.080
0.552
0.394
0.355
0.077
0.026
0.011
0

0.071
0.000

—0.730
0.280
—0.414
—0.488
0.155
—0.146
—0.059
0

—0.395
0.000

—0.584 -0.188 —0.669 —0.411 —3.499
0.130 —-0.089 -0.033 -0.166 —0.274
—0.253 —-0.293 -0.103 —0.194 —-0.846
—-0.204 -0.159 -0.374 —-0.430 -—1.467

—-0.879 —-0.731 -0.968 —1.042 —4.924 (5-2)
0.6564 —0.367 —0.301 —-0.417 —1.685
—0.141  0.542 0.047 —0.667 —0.649
0 0 0 0.385 —0.079
—-0.944 -0.538 —0.934 —0.838 —4.538) (5-3)
0.000 0.000 0.000 0.000 —0.743
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Fig. 9. Response of the constrained controller (design 2). (a) Tracking erfoig: 10- Frequency responses achieved with the controller (5-5). (a) Sensitivity
(b) Control action. and complementary sensitivity. (b) Nyquist plot.

As shown in Figs. 8 (simulation) and 9 (experimental), thi'g' Controller Benchmarking

controller achieves an error response virtually identical to that of Fig. 10(a) shows the closed-loop sensitivity and complemen-
design 1, while removing the oscillations in the control actiottary sensitivity achieved with the controller (5-5). Note that
The different designs are compared in Table 1. these transfer functions have bandwidths of 4 rad/s and 20 rad/s,

0.4245 0.8559 —0.0524 0.0042 —0.0504 —0.0193 0.0092 0.0095 —0.0048 —0.0005
—0.8559 0.2830 —0.1090 0.0215 —0.1168 —0.0344 0.0172 0.0192 —0.0091 —0.0005
0.0524 —0.1090 -0.5098 —0.7446 0.2314 —0.0658 0.0203 0.0040 —0.0092 —0.0051
0.0042 —-0.0215 0.7446 —0.5388 —0.3139 —-0.0765 0.0346 0.0336 —0.0177 —0.0022
—0.0504 0.1168 —0.2314 -0.3139 —-0.5185 0.3149 —0.1169 -—-0.0764 0.0562 0.0159

0.0193 —0.0344 -0.0658 0.0765 —0.3149 —-0.6183 —0.2315 —0.4180 0.0896 —0.0458
0.0092 —0.0172 —-0.0203 0.0346 —0.1169 0.2315 0.8361 —0.3803 0.0206 —0.0597
—0.0095 0.0192 0.0040 —0.0336 0.0764 —0.4180 0.3803 0.2651 0.3831 0.2116

—0.0048  0.0091 0.0092 —0.0177 0.0562 —0.0896 0.0206 —0.3831 —0.6531 0.4873

0.0005 —0.0005 —0.0051 0.0022 —0.0159 —0.0458 0.0597 0.2116 —0.4873 —0.5989

B =(0.5990 0.6535 0.3173 0.1155 —0.4039 0.0825 0.0458 —0.0580 —0.0248 —0.0002)"
Cr =(0.5990 —0.6535 —0.3173 0.1155 —0.4039 —0.0825 0.0458 0.0580 —0.0248 0.0002)
Dj, = — 2.0000. (5-5)
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Fig. 11. Tracking error and control action in response to a random velocityg. 12. Response of an empirically tuned PID controller. (a) Tracking error.
profile (experimental). (b) Control action (experimental).
respectively, and thus satisfy the performance specifications.
Fig. 10(b) shows the Nyquist plot of the loop function, clearly TABLE Il
displaying its nonminimum phase nature. The corresponding DESIGN2 VERSUSPID

gain and phase margins a@\ = 4.7 dB andPM = 58.5°.
Thus, in this case, even though the controller has not been Step in y
designed taking robustness into acccunthe cl_osed-lo_op _ Design2 | 2.13 230 50
system has reasonably good robustness properties against gain PID 212 2.86 60
variations, stemming from instance from changes in the optical
parameters of the system, or phase variations, due for instances

to vgrlable ::me delayg n tlhe image procI:essw:g. .mentioning that extensive trial and error iterations were needed
Fig. 11 shows additional experimental results correspondifgy, in g the control action down to 60 encoder units. Indeed, the

to a random target velocity profile.argec. As llustrated there, o harameter combination was found by “reverse engineering”

the closed-loop system is able to track the target, while usIng constrained{, controller. Moreover, no combination was

moderate cgntrol action. . found that further reduced the control action, subject to the set-
Finally, Fig. 12 shows the experimental step response hg time constraint

tained using a PID controller, empirically tuned to minimize Table Il compares the performance of the constraifed

the peak of the conirol action wh|I_e maintaining a s_ettllng t'mgnd PID controllers. Both achieve virtually identical tracking
comparable to that of the constrain&d controller. It is worth . i
error. However, the PID controller requires larger control ac

3The proposed method inherits the potential fragility of optiffal control. ~ tions both to track target motions and to reject noise.

method | [[Teyll2 | ||Zunll2 | Peak Control to
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VI. CONCLUSION

In this paper, we consider the problem of optimizing tig
norm of a given system subject to additional specifications given[l]
in terms of the response to a given test signal. The main result
shows that both in the discrete and continuous time cases thi&!
problem admits a solution iRH,. Moreover, suboptimal so-
lutions can be obtained by solving sequences of finite-dimen-[3!
sional quadratic programming problems until the gap between
upper and lower bounds of the solution is smaller than a pre-4]
specified tolerance. Additional results show that the sequenc
of controllers thus obtained converges strongly to the optimal
solution. (6]

These results were illustrated with a practical example arising
in the context of active vision and a simple academic example
showing convergence of the sequence of approximations useg]
to solve continuous time problems. Based on consistent numeris]
ical experience, it seems that for discrete-time SISO problems[gl
whenever the constraint-level for the time-domain constraints is
set above the minimally achievalfi® norm, the optimaf) has !
a finite impulse response. However, at this point no formal proo#
of this conjecture is available.

(11]

APPENDIX

[12]
EULER APPROXIMATING SYSTEM AND ITS PROPERTIES

. [13]

In the sequel, we summarize, for ease of reference, some
properties of the EAS system relevant to tie with time-do-  [14]
main constraints problem.

[15]
Lemma 5: Consider the stable strictly proper system

[16]
A B
G(s) = <C—V—0> (A-1) [17]
and its corresponding EAS [18]
[19]
1 A B
Grlz7) = (%) A2) g

wherer > 0. Let Typax = minyea 2—7e(N)/|A|? whereA is  [21]
the set of eigenvalues of and consider a strictly decreasing
sequence,,x > 7; | 0. Then, the following properties hold.

1) Gg(z,7;) is asymptotically stable for ail

2) |G, < (1/)IGE(z, o), Vi

3) 1/nllGr(z, i), = (1/m)IGe(z T3, i <.

4) lim, o (1/7)|GE (2 7i)llF, = IG5,

5) llg(W)lle= < (1/m);llge(k, mi)lle= Vi

6) limr, o (1/7)llgp(k, 7i)llee = [lg(t)[| 2o -
whereg(t) andgg(k, ) denote the impulse responses of (A-2)
and its EAS, respectively. [

Proof: The proof of items 1), 5), and 6) can be found in

[48]. The proof of items 2)—4) is given in [1].

[22]
(23]
(24]

[25]
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