
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 3, MARCH 2003 355

2 Control With Time-Domain Constraints:
Theory and an Application

Mario Sznaier, Takeshi Amishima, and Tamer Inanc

Abstract—In this paper, we study the problem of minimizing
the 2 norm of a given transfer function subject to time-domain
constraints on the time response of a different transfer function
to a given test signal. The main result of this paper shows that
this problem admits a minimizing solution in 2. Moreover,
rational solutions with performance arbitrarily close to optimal
can be found by constructing families of approximating problems.
Each one of these problems entails solving a finite-dimensional
quadratic programming problem whose dimension can be
determined before hand. These results are illustrated and exper-
imentally validated by designing a controller for an active vision
application.

Index Terms— 2 control, control, active vision, disturbance
rejection, optimal control.

I. INTRODUCTION

I N MANY cases, the objective of a control system design can
be stated simply as synthesizing an internally stabilizing

controller that minimizes the response to some exogenous
inputs. When these exogenous inputs are assumed arbitrary
but with bounded energy and the outputs are also measured
in terms of energy, this problem leads to the minimization of
the -norm of the closed-loop system. The case where the
exogenous inputs are bounded persistent signals and the outputs
are measured in terms of the peak time-domain magnitude,
leads to the minimization of an -norm. -optimal
control can now be solved by elegant state-space formulas [21]
while -optimal control can be (approximately) solved
by finite linear programming [15]–[17], [19]. Finally, the case
where the input is a bounded energy signal and performance
is measured in terms of the norm leads to the generalized

problem [40], also solvable via finite-dimensional convex
optimization.

A common practice in engineering is to state some of these
performance requirements in terms of the response of the
closed-loop system to a given, fixed test input (such as bounds
on the rise time, settling time or maximum error to a step).
In this case, if the output is measured in terms of its energy
the problems leads to the minimization of the closed-loop

-norm, extensively studied in the 1960s and 1970s. On
the other hand, if the outputs are measured in terms of the
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(a)
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Fig. 1. (a) Visual tracking setup. (b) Corresponding block diagram.

peak time-domain magnitude, it leads to the minimization of
-norm [5], [18], [22], [34], [48], [61].

In general, a realistic control problem is likely to involve
specifications on both the energy and peak values of the output.
Consider for example the problem of smooth tracking of a
noncooperative target, illustrated in Fig. 1. Here, the goal is to
internally stabilize the plant and to track target motions, ,
using as measurements images possibly corrupted by noise
. As indicated in [28], [39], in principle this problem can be

solved using LQG control theory.
Fig. 2 shows the experimental response to a step displace-

ment of the target of 25 pixels achieved by an optimalcon-
troller. This controller was designed using a stable, nonmin-
imum-phase model of the combined dynamics of the head and
vision sensor, obtained via control oriented identification (see
Section V for details). Note that the tracking error settles to4
pixels (within the experimental measurement error) in approxi-
mately one second. However, the control action has large oscil-
lations, leading to jerky motions that create significant stress on
the pan and tilt unit. Moreover, the error response also exhibits

0018-9286/03$17.00 © 2003 IEEE
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(a)

(b)

Fig. 2. (a) Tracking error to a step input (experimental). (b) Control action.

significant undershoot and oscillations. Our goal is to design
a controller that substantially decreases the peak value of the
control action and the oscillations in the error response, while
achieving comparable tracking performance in terms of the root
mean square (RMS) value of the error.

It is well known that, for discrete-time stable systems, the
norm is an upper bound of the norm. Thus, in principle one
can try to enforce restrictions on the peak value of a (weighted)
time-domain response through the minimization of a weighted

norm. However, this approach can be arbitrarily conserva-
tive. State and control constraints can be handled by rendering
appropriate sets positively invariant (see for instance [10], [20],
[52], [59] and the excellent survey [7]). LQR control subject
to input constraints has been addressed in [25], [62] using el-
lipsoidal invariant sets. However, these methods are potentially
conservative, due to the choice of invariant sets and are restricted
to the state feedback case. Alternatively, these problems can be
addressed using receding horizon-type methods [11], [36], [42],
[50], [51]. However, stability considerations require the on-line

solution of a constrained optimization problem, which limits the
applicability of the method in situations like the previous one,
with relatively fast sampling times (33 ms).

control problems with time-domain constraints can be
addressed by recasting them into a mixed optimization
form and elegantly solved using the methods proposed in [41].
However, this is a worst-case type approach that guarantees sat-
isfaction of the time-domain constraints for all signals in the

–unit ball. Thus, these controllers are potentially very con-
servative for applications such as the active vision problem dis-
cussed above, where the specifications are given in terms of the
response to a few test signals, representing the typical patterns
of motion of the target.

In this paper, motivated by the results in [47], we propose
a solution to both, continuous and discrete time problems
subject to time domain constraints given in terms of the response
to a set of fixed, given signals. Specifically, the contributions of
this paper are as follows.

• Establishing that contrary to some other multiobjective
problems such as mixed , problems with time
domain constraints admit a solution in , the closure
of the subspace of formed by real rational transfer
matrices.

• A computational procedure, based on finite-dimensional
quadratic programming, to compute-suboptimal real ra-
tional (and, thus, implementable) controllers.

• Extension of these results to the continuous time case.
• Experimental validation of the theory with a nontrivial

application.

The paper is organized as follows. In Section II, we intro-
duce the notation to be used and some preliminary results. In
Section III, we introduce two modified problems, pro-
viding suboptimal and a super-optimal solutions respectively.
Both problems can be reduced to finite dimensional quadratic
programming, and in the limit their respective solutions strongly
converge to the solution of the original problem. In Section IV,
we solve the continuous-time counterpart of the problem. The
theory is illustrated in Section V by synthesizing and experi-
mentally validating a controller for the active vision application
mentioned above. Finally, in Section VI, we summarize our re-
sults and we indicate directions for future research.

II. PRELIMINARIES

In this section, we introduce the notation used in the paper,
precisely state the problem under consideration, and present pre-
liminary results that will be latter used to reduce this problem
to a finite-dimensional convex optimization.

A. Notation

The notation used in this paper is summarized here.
Set of real (positive real) numbers.
Banach space of matrix valued right-sided,
absolutely summable real sequences

equipped with the norm

.
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Banach space of absolutely summable, double
sided real sequences equipped with the
norm .
Hilbert space of matrix valued right-sided, en-
ergy bounded real sequences
equipped with the norm

.

Banach space of matrix valued right-sided,
bounded sequences
equipped with the norm

.
Space of real vector sequences

such that ,
equipped with the norm

, where
is a given sequence, such that

.
Hilbert space of matrix valued Lebesgue
integrable functions on
equipped with the norm

.

Banach space of matrix valued
Lebesgue integrable functions
on with the norm

.
Hilbert space of matrix valued com-
plex functions with analytic con-
tinuation on the open right—half plane,
and square integrable there, equipped
with the usual norm

.
Discrete time counterpart of ,
i.e., Hilbert space of matrix valued
complex functions with ana-
lytic continuation inside the unit disk,
equipped with the norm

.
transform of a right—sided real sequence:

.
.

Conjugate of an operator: .
Frobenious norm: for ,

.

B. With Time Domain Constraints Problem

Consider the system shown in Fig. 3, where the signals
and represent known test signals and ex-

ogenous disturbances, respectively, and where and
represent regulated outputs. Our goal is to find an

internally stabilizing control law , ,
that minimizes the norm of the closed-loop transfer func-
tion from to , subject to time domain constraints on the
response of some of the elements ofto test signals ,
of the form

Fig. 3. H with time domain constraints setup.

where is a given sequence. A typical choice for
is

(2-1)

This sequence imposes constraints on the maximum overshoot
and forces exponential decay of the output after time.

In the sequel, we will assume without loss of generality (by
using superposition if necessary) that the test signals in the set

are of the form .
Moreover, by using weighting functions and absorbing these
weights in the generalized plant (see [61] for details) it can also
be assumed that is an impulse.

Let and denote the closed-loop transfer matrices
from to and from to respectively, obtained when
connecting a stabilizing controller fromto . Using the Youla
Parameterization, the set of all such transfer matrices can be
parameterized by [63]

(2-2)

where , , ,
, , ,

and . Moreover, by suitable selecting the
parametrization, without loss of generality it can be assumed
that the transfer matrices and are analytic inside the
disk . In order to stress the dependence on,
the notations and are sometimes used in the sequel.

The parameterization allows for precisely stating thewith
time-domain constraints problem as follows.

Problem 1: Given sequences of the form (2-1),
find the optimal value of the performance measure

(2-3)

subject to

(2-4)

and the corresponding controller , where denotes the set
of input–output pairs subject to time domain constraints.

Next, we show that under mild conditions, the solution to this
problem is unique.
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Lemma 1: Let , have generically full column and
row rank respectively, and assume that a solution to problem 1
exists. Then, this solution is unique.

Proof: Let and solve Problem 1, and assume by
contradiction that . By the strict convexity of the
norm . Since by assump-
tion has full-column rank and has full-row rank, nec-
essarily .

In the sequel, we solve Problem 1 by constructing sequences
of super and suboptimal controllers, and , such that

and , respectively. Moreover,

these controllers can be found by solving finite-dimensional
quadratic programming problems. in order to establish these
facts, we need the following result, showing that the components
of every feasible controller that are relevant to the time-do-
main constraints are bounded in the sense.

Given an input–output pair subject to time-domain
constraints, denote by and the row and column
of and , respectively. By considering the corresponding
Smith–Mcmillan decompositions [33], it follows that there exist
unimodular (i.e., polynomial with polynomial inverse) matrices

and such that

...

...

(2-5)

Hence, the constraint (2-4) is equivalent to

(2-6)

where .

Lemma 2: Assume that , have full row and
column rank on . Then, all feasible controllers satisfy

, where depends only on the problem data.
Proof: Since and have full row and column

rank on it follows that on the unit
circle. Thus, Wiener–Gelfand’s theorem [13] implies that

. It follows that if is feasible for
Problem 1, then:

(2-7)

III. PROBLEM SOLUTION

In this section, we show that Problem 1 can be solved by
solving two modified problems, providing suboptimal
and a superoptimal solutions respectively. Both problems can
be reduced to finite dimensional quadratic programming, and in
the limit their respective solutions strongly converge, in the
topology, to the solution of the original problem.

A. Problem Transformation

It is a standard result (see, for instance [53, p. 194]) that the
parameterization of all stabilizing controllers can be selected
(by redefining if necessary), so that and are inner
and co-inner, respectively. Thus, there exist , such

that and are unitary. Let

(3-1)

Through straightforward but tedious operations, it can be shown
([53, p. 195]) that with this choice of the parametrization,

. Since the norm is invariant under pre- (post) multi-
plication by unitary matrices, we have that

(3-2)

where and denote the strictly proper part of
and its feed through term, respectively. Thus, Problem 1 may be
reformulated as follows.

Problem 2: Find the optimal value of the performance
measure

subject to

(3-3)

Problem 2 is a convex infinite-dimensional problem, for which
no closed-form solution is known to exist. In this paper, a so-
lution will be computed by taking the limit of the solution to
some finite-dimensional minimization problems. In the sequel,
we will assume without loss of generality (by redefining as

, if necessary) that .

B. Computation of Superoptimal Solutions

In this section, a sequence of finite-dimensional convex op-
timization problems is introduced. Theth problem has
variables, and its optimal cost satisfies . The se-
quence of problems approximates Problem 1 in the sense that

and the partial solutions converge to the optimal solu-
tion (in the norm) as .

Using the projection operator , consider the optimization
problem
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Problem 3: Find the optimal value of the performance
measure

subject to

(3-4)

Problem 3 can be thought of as a finitely-many constraints ap-
proximation to the original problem, where the constraints are
enforced only over a finite horizon. In the sequel, we show
that this problem is equivalent to a finite dimensional quadratic
programming problem.

Lemma 3: Problem 3 is equivalent to

subject to: (3-5)

(3-6)

Proof: Follows from the fact that for any feasible
we have that is also feasible and yields

a lower cost.
Theorem 1: Assume that there exists such

that . Then, and
, where is the solu-

tion to Problem 1.
Proof: To show that note that if solves

Problem 3 with horizon then it is feasible for Problem 3
with horizon . Thus . Since is bounded above by

, it follows that the sequence has a limit .
To establish that we will find a feasible
such that .

Given any , , , define .
From convexity, we have that is feasible for Problem 3
with horizon . Moreover

(3-7)

Thus, as , , . This establishes the
fact that is a Cauchy sequence and, therefore, (sinceis
complete) it converges strongly to some , with

. Next, we show that is feasible for Problem
1. To this effect, note that strong convergence ofin the
topology, implies that , which in
turn implies strong convergence of to in the

topology. Thus, if is not feasible, there exist some finite
and such that

for all (3-8)

However, this contradicts (3-6) for .

C. Computation of Suboptimal Solutions

Theorem 1 shows that a solution to Problem 1 can be ob-
tained by solving a sequence of quadratic programming prob-
lems. However, it does not furnish information on how to select

to achieve some desired error bound. To solve this difficulty,
in this section we introduce a sequence of suboptimal solutions
converging to the optimal from above. Solutions to Problem 1
with arbitrary accuracy can then be found by computing upper
and lower bounds of until the difference between these bounds
is as small as desired.

Consider the following finitely many variables approximation
to Problem 1.

Problem 4:

s.t.

where .
Theorem 2: Assume that there exists such

that . Then and ,
where is the solution to Problem 1.

Proof: If solves Problem 4 with horizon then it is
also feasible with horizon . Thus . Since the
sequence is bounded below by , it follows that it has a
limit . Proceeding as in the proof of Theorem 1 it can be
shown that is a Cauchy sequence and, thus, it converges
to some . As before, it can be easily shown that is
feasible. Finally, from Lemma 1 we have that .

In principle, Problem 4 is a semi-infinite-dimensional
quadratic programming problem, since it has an infinite
number of constraints. However, as we show in the sequel,
under mild conditions only finitely many of these constraints
are active.

Theorem 3: Let denote the set of pairs such that
is subject to time-domain constraints. Denote by

and the row and columns of and , and as-
sume that and have full row and column rank on ,
respectively, for all pairs . Then, Problem 4 is equiv-
alent to

subject to

(3-9)

(3-10)

where , , and are
constants that depend only on the problem data and the length
of the finite-impulse response (FIR), and the unimodular ma-
trices , are defined in (2-5).

Proof: For notational simplicity, let
and . Since , and are polyno-

mial matrices, it follows that there exist some such that
, for all and . From Lemma 2 we

have that every feasible controller satisfies a bound of the form

Thus defining renders the additional con-
straint (3-10) redundant at the optimum. Moreover, since the
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Youla parametrization is chosen so that is analytic in
, there exists (that can be precomputeda

priori ) such that
for all . The proof follows now by noting that,

for all , we have

(3-11)

i.e., all the constraints are automatically satisfied for .

IV. CONTINUOUS-TIME CASE

In this section, we consider the continuous-time counterpart
of Problem 1, as follows.

Problem 5: Given functions of the form

(4-1)

find the optimal value of the performance measure

subject to

(4-2)

and the corresponding optimal controller .
The main result of this section shows that this problem can

be solved by solving a sequence of discrete-time problems
similar to Problem 1. In the sequel, we consider, for nota-
tional simplicity, single-input–single-output (SISO) systems
but the technique extends trivially to the multiple-input–
multiple-output case.

Given a continuous-time system with state-space realization

(4-3)

we define its Euler approximating system (EAS) as the fol-
lowing discrete-timesystem:

(4-4)

The EAS approach has been used in the past [6], [48] to solve
continuous-time and mixed problems by reducing
them to solving equivalent discrete-time control problems. From
the properties of the EAS (see Lemmas 5 and 4 in the Appendix),
it can be easily seen that, if is constant then a solution
to Problem 5 with cost arbitrarily close to the optimal can be
found by considering a sequence and solving a sequence
discrete-time problems of the form

subject to
(4-5)

where and denote the EAS of and ,
respectively. As we show next, the same approach can be used
for constraints of the form (4-1).

Lemma 4: Consider the strictly proper stable system (4-3)
and its corresponding EAS (4-4). Denote by and
the respective impulse responses. Then, the following hold.

1) Given , if ,
then .

2) If for all there exist and such that
, then there exist

such that .
Proof: Let . Given define by

(4-6)

It can be easily seen that the EAS system ofcorresponding to
has the following state-space realization:

(4-7)

From Property 5 in Lemma 5 in the Appendix, it follows that

(4-8)
The proof of Property 1 follows now from the relationship be-
tween the Markov parameters of and

(4-9)

Property 2 now follows from the aforementioned derivation,
combined with Property 5 in Lemma 5 and the fact that
as .

Corollary 1: A solution to Problem 5 with cost arbitrarily
close to the optimal can be found by considering a sequence

and solving a sequence discrete-time problems of the
form

subject to:

(4-10)

where denotes the EAS corresponding to the transfer
function for the value , and where is the impulse response
of .

From the discussion above it follows that continuous time
constrained problems can be solved by solving a sequence
of discrete time problems, using the techniques proposed in
Section III. However, note that, when compared with Problem
1, (4-10) has an additional interpolation constraint, ,
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Fig. 4. Block diagram for a simple continuous-time example.

required to guarantee that the continuous time system has a fi-
nite norm.

Next, we illustrate the effectiveness of this approach with a
simple design problem. Consider the problem of minimizing
the norm of the complementary sensitivity function for the
unstable nonminimum phase system shown in Fig. 4, subject to a
constraint on the peak of the control action due to a unit-impulse
disturbance .

In this case, the optimal (unconstrained) controller
achieves with . Suppose
that it is required that the magnitude of the control action in
response to a unit-impulse disturbance must remain below 5,
i.e., . Table I and Fig. 5(a) summarize the results
obtained using the EAS approximation for different values of
the parameter . Note that for the gap is below 10%
for the norm and virtually zero for the norm. Finally,
Fig. 5(b) shows a comparison of the constrained versus the
unconstrained impulse responses for the resulting (after model
reduction) eigth-order controller. This controller meets the
performance specifications while maintaining the settling time
and comparable to the unconstrained design.

V. APPLICATION: VISUAL TRACKING OF AN

UNCOOPERATIVETARGET

In this section, we illustrate the advantages of the proposed
method by designing a controller for the active vision applica-
tion described in Section I.

A. Background

In the past few years, active vision systems, i.e., systems
incorporating feedback as an integral part of the loop, have
emerged as a viable option for a large number of applications,
ranging from MEMS manufacture [24] to vision assisted
surgery [60], assisting individuals with disabilities [46], [58],
and intelligent vehicle highway systems [45], [56]. In practice,
using these systems in dynamic scenes requires both real-time
visual processing and real-time closed-loop control. Recent
hardware developments have make this now possible, leading
to a number of systems [12], [14], [23], [38], [44].

Active vision systems appeared as far back as the late 1970s
[30], with the main concern at that time being stability, which
was often accomplished experimentally, by detuning the con-
troller. An excellent survey of the earlier work and a compre-
hensive literature review up to 1996 can be found in [29]. Recent
work has recognized the fact that robustness issues are central
to the success of active vision systems. Robustness to calibra-
tion errors and estimation noise has been addressed in [26], [55],
and [43] respectively. However, while in all these cases the con-
trol algorithm is relatively simple, it contains parameters that

(a)

(b)

Fig. 5. Continuous-time example. (a) Approximation error for different values
of � . (b) Comparison of the control responses.

TABLE I
RESULT FOR THECONTINUOUS–TIME EXAMPLE FOR DIFFERENTVALUES OF�

must be empirically tuned to achieve good performance. Robust
tracking performance against calibration errors, variations in the
optical parameters of the system and unmodeled dynamics has
been addressed in [49], by using a combined model of the vision
sensor and pan and tilt dynamics in an –synthesis frame-
work. As standard in the–synthesis framework, here, perfor-
mance is enforced through the use of appropriate weighting
functions, whose tuning also entails a certain degree of trial-and-
error experimentation.
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This section illustrates how time-domain performance speci-
fications can be exactly addressed, without trial-and-error iter-
ations, by using the control with time domain constraints
formalism. While at this point this represents only a first step
toward this goal, since it guarantees onlynominalperformance,
once these techniques prove to be useful, we plan to address ro-
bustness at a later date by combining them with the approach
proposed in [54].

B. Hardware and Image Processing Description

The hardware setup used in this paper, shown in Fig. 6,
consists of a BiSight robotic head equipped with two Hitachi
KP-M1 cameras and Fujinon H10X11EMPX-31 lenses. The
BiSight platform contains two dc brush drive motors, equipped
with position encoders, that allow for rotational motion around
the vertical (pan) and horizontal (tilt) axis, as illustrated in
Fig. 6(a). These motors are driven using a 10-channel PMAC
– controller. At its lowest level of operation, the PMAC con-

tains, for each channel, a PID servo loop updated at 2.2 KHz,
that drives the position of the corresponding motor to a desired
setpoint (specified in motor encoder units). At a higher level,
the PMAC contains a DSP processor that computes trajectories
that interpolate desired points, and executes them by changing
the setpoint of the corresponding channel. However, while this
results in smooth motion, the delay incurred by the trajectory
preplanning (up to 400 ms) is unnaceptable for real-time
tracking (see [8] for details). In this research, we avoided this
delay by driving the PMAC at the servo level, i.e., by directly
accessing its position registers. Finally, the image processing
required to capture the images and locate the target was per-
formed using a Datacube MaxSPARC S250 hosted by a dual
processor Sun Ultra 2 workstation, allowing for processing
512 512 pixel images at video rate (30 Hz). A block diagram
of the complete system showing the interconnection of the
various components is shown in Fig. 6(b).

Next, we briefly discuss the choice of the image processing
algorithms used in this paper. The so called“motion corre-
spondence”problem, i.e., to determine the image position of
the object being tracked in the frames of the sequence-has been
extensively studied in the computer vision literature, and a large
number of techniques have been proposed, both for known and
unknown objects (see, for instance, [2]–[4], [9], [14], [27], [29],
[35], [38], [57], and the references therein). Correspondences
between individual frames are usually integrated over time
to exploit the dynamical properties of the target, using, for
instance, Condensation trackers [3]. These trackers generalize
Kalman-filter based ones by allowing more general (multi-
modal) observation noise models, although in some cases can
result on impractical computational requirements [32].

Selection of the image processing algorithm entails a com-
promise between complexity and robustness, since time delays
stemming from more sophisticated image processing algorithms
have negative impact on the stability and overall performance of
the closed-loop system. Since the goal of the present paper is to
concentrate on performance issues arising from hard time-do-
main constraints in the control action, we selected, as a compro-
mise between complexity and robustness, a normalized cross-
correlation with template update algorithm [35] to track the

(a)

(b)

Fig. 6. (a) Experimental setup. (b) Corresponding block diagram.

target through a sequence of frames. As shown in the sequel (see
also [31]), this algorithm achieves good performance tracking
targets at video rate.

C. Control Objectives and Performance Specifications

Fig. 7 shows a block diagram of the augmented plant, where
, and represent the velocity and position (in the

image plane) of the target, and the control input to the PMAC
board, respectively. Here, the integrator preceding, the input
to the pan and tilt unit, models the way this board distributes set-
point changes across the sampling period to avoid jerky motion
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Fig. 7. Augmented plant for the active vision problem.

(see [31] for details). Finally, denotes the two-di-
mensional position in the image plane, relative to the center of
the image, of the centroid of the target, corrupted by measure-
ment noise .

The goal is to minimize , the RMS value of the displace-
ment of the target from the center of the image, by rotating the
head around its vertical (pan) and horizontal (tilt) axes. In addi-
tion, the closed loop system should satisfy the following speci-
fications (motivated by physical considerations).

a) Zero steady-state tracking error to step inputs at
(i.e., impulse velocity inputs ). Note that this
specification is automatically met by any internally
stabilizing controller due to the integral action provided
by the PMAC.

b) Small overshoot (less than 20%) and appropriate setting
time (on the order of five sampling times) in both the error
and control responses to a step input at 1

c) Closed-loop bandwidth of at least 4 radians/s (this roughly
corresponds to targets moving at 4 m/s).

d) Control action to a step input at of 25 pixels
(roughly corresponding to a target moving with an
angular velocity of 4 rad/s) not to exceed 50 control
units (motor encoder counts), in order not to saturate the
actuators.

e) Rejection of high frequency image processing noise.
In the sequel, due to space limitations, we consider only the

problem of designing a controller for the pan axis, since design
of a controller for the tilt axis follows exactly along the same
lines.

D. Plant Modeling

Applying the control with time-domain constraints for-
malism to the active vision problem, requires reducing it to the
form shown in Fig. 3. This entails finding a model of the
system that includes the dynamics of the head, the actuators,

1These specifications are designed to prevent correlator walk off problems,
i.e., the window used for the normalized cross correlation in the image pro-
cessing drifting away from the true target.

i.e., the low level PID servo loops that drive the motors, and the
computer vision module2 (the block labeled in Fig. 7).

Control oriented identification of the plant, followed by a
model (in)validation step, yielded the model for the nominal
transfer function from to , the horizontal displacement of
the target, measured in pixels (see [49] for details), shown in
the equation at the bottom of the page, where the factor
models the delay due to the time required by the image pro-
cessing algorithms to find the target in each frame.

E. Controller Design

In order to achieve the performance specifications given in
Section V-C, our goal is to design a controller that achieves
an RMS value of the tracking error, , comparable to that
achieved by the optimal controller, while at the same time
avoiding the large control action and oscillatory responses noted
in the introduction. To this effect, we first carried-out a design
where the control action in response to a step displacement of
the target of 25 pixels was bounded by (roughly

of the control action used by the optimal controller).
Note that, in this case, Theorem 3 is not directly applicable since

has a zero at due to the integrator at the control input.
However, as we show next the upper bound of the cost can still
be computed using finite-dimensional optimization.

Consider the Youla parametrization obtained by selecting
with

(5-1)

where (5-2)–(5-3), shown at the bottom of the next page, holds.
It can be easily verified that this choice renders and

inner and co-inner respectively. Moreover, the controller corre-
sponding to the following :

(5-4)

2By identifying a single model combining the dynamics of the pan/tilt unit,
actuators and the computer vision module, this approach avoids artificially in-
flating the order of the resulting model, and better captures their interaction.
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(a)

(b)

Fig. 8. Responses of the constrained controllers (simulation). (a) Tracking
error. (b) Control action.

TABLE II
PERFOMANCE OFDIFFERENTH CONTROLLERS

is feasible and yields . Since ,
it follows that the optimal solution to Problem 4 satisfies

. Finally, direct computations show that for
the choice of Youla parametrization given above we have that:

for all . Thus, it
follows that is a suitable horizon for the upper-bound
computation. The corresponding controller was found by
solving Problem 4 using the projection-based method imple-
mented in Matlab’s quadprog command for medium-sized
problems [37].

Fig. 8 shows the control and error responses achieved by
this controller in response to a step displacement of the cen-
troid of the target of 25 pixels, relative to the center of the
image. As shown there, the tracking error (the distance from
the centroid of the target to the center of the image) settles very
quickly, with little overshoot. Note however that the control ac-
tion oscillates, settling down after 13 samples. To remove this
oscillation, we carried out a second design, imposing the con-
straints: 1) and 2) , . The re-
sulting twenty-eigth-order controller was reduced to tenth order
by using Hankel norm model reduction (the optimal con-
troller for this problem has order nine), leading to a controller
with the state-space realization shown in (5-5) at the bottom of
the next page.

(5-2)

(5-3)
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(a)

(b)

Fig. 9. Response of the constrained controller (design 2). (a) Tracking error.
(b) Control action.

As shown in Figs. 8 (simulation) and 9 (experimental), this
controller achieves an error response virtually identical to that of
design 1, while removing the oscillations in the control action.
The different designs are compared in Table II.

(a)

(b)

Fig. 10. Frequency responses achieved with the controller (5-5). (a) Sensitivity
and complementary sensitivity. (b) Nyquist plot.

F. Controller Benchmarking

Fig. 10(a) shows the closed-loop sensitivity and complemen-
tary sensitivity achieved with the controller (5-5). Note that
these transfer functions have bandwidths of 4 rad/s and 20 rad/s,

(5-5)
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(a)

(b)

Fig. 11. Tracking error and control action in response to a random velocity
profile (experimental).

respectively, and thus satisfy the performance specifications.
Fig. 10(b) shows the Nyquist plot of the loop function, clearly
displaying its nonminimum phase nature. The corresponding
gain and phase margins are dB and .
Thus, in this case, even though the controller has not been
designed taking robustness into account,3 the closed-loop
system has reasonably good robustness properties against gain
variations, stemming from instance from changes in the optical
parameters of the system, or phase variations, due for instances
to variable time delays in the image processing.

Fig. 11 shows additional experimental results corresponding
to a random target velocity profile . As llustrated there,
the closed-loop system is able to track the target, while using a
moderate control action.

Finally, Fig. 12 shows the experimental step response ob-
tained using a PID controller, empirically tuned to minimize
the peak of the control action while maintaining a settling time
comparable to that of the constrained controller. It is worth

3The proposed method inherits the potential fragility of optimalH control.

(a)

(b)

Fig. 12. Response of an empirically tuned PID controller. (a) Tracking error.
(b) Control action (experimental).

TABLE III
DESIGN 2 VERSUSPID

mentioning that extensive trial and error iterations were needed
to bring the control action down to 60 encoder units. Indeed, the
best parameter combination was found by “reverse engineering”
the constrained controller. Moreover, no combination was
found that further reduced the control action, subject to the set-
tling time constraint.

Table III compares the performance of the constrained
and PID controllers. Both achieve virtually identical tracking
error. However, the PID controller requires larger control ac-
tions both to track target motions and to reject noise.
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VI. CONCLUSION

In this paper, we consider the problem of optimizing the
norm of a given system subject to additional specifications given
in terms of the response to a given test signal. The main result
shows that both in the discrete and continuous time cases this
problem admits a solution in . Moreover, suboptimal so-
lutions can be obtained by solving sequences of finite-dimen-
sional quadratic programming problems until the gap between
upper and lower bounds of the solution is smaller than a pre-
specified tolerance. Additional results show that the sequence
of controllers thus obtained converges strongly to the optimal
solution.

These results were illustrated with a practical example arising
in the context of active vision and a simple academic example
showing convergence of the sequence of approximations used
to solve continuous time problems. Based on consistent numer-
ical experience, it seems that for discrete-time SISO problems,
whenever the constraint-level for the time-domain constraints is
set above the minimally achievable norm, the optimal has
a finite impulse response. However, at this point no formal proof
of this conjecture is available.

APPENDIX

EULER APPROXIMATING SYSTEM AND ITS PROPERTIES

In the sequel, we summarize, for ease of reference, some
properties of the EAS system relevant to the with time-do-
main constraints problem.

Lemma 5: Consider the stable strictly proper system

(A-1)

and its corresponding EAS

(A-2)

where . Let where is
the set of eigenvalues of and consider a strictly decreasing
sequence . Then, the following properties hold.

1) is asymptotically stable for all.
2) .
3) .
4) .
5) .
6) .

where and denote the impulse responses of (A-2)
and its EAS, respectively.

Proof: The proof of items 1), 5), and 6) can be found in
[48]. The proof of items 2)–4) is given in [1].
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