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An Exact Solution to Continuous-Time Mixed Ha/H o
Control Problems * ———— —

M. Sznaier, H. Rotstein, Juanyu Bu, and A. Sideris

Abstract—Multiobjective control problems have been the object of much
attention in the past few years, since they allow for handling multiple,
perhaps conflicting, performance specifications and model uncertainty. Fig. 1. The generalized plant.

One of the earliest multiobjective problems is the mixedH . / H .. control
problem, which can be motivated as a nominalLQG optimal control
problem subject to robust stability constraints. This problem has provento  While it is known that the solution to this problem is in general infi-

be surprisingly difficult to solve, and at this time no closed-form solutions  njte-dimensional [9], recent work has shown that, in the discrete-time
are available. Moreover, it has been shown that except in some trivial o rgjon of the problem, performance arbitrarily close to optimal can be
cases, the optimal controller is infinite-dimensional. . . . . .

In this paper, we propose a solution to general continuous-time mixed achieved using rational controllers. Moreowesuboptimal solutions
H, /H. problems, based upon constructing a family of approximating can be found by solving a sequence of truncated problems [21], [18],
problems, obtained by solving an equivalent discrete-time problem. Each of [6], [13]. The continuous time counterpart of the problem is consider-
these approximations can be solved efficiently, and the resulting controllers ably less developed. An iterative procedure to find the optimal cost and
converge strongly in the’¢ topology to the optimal solution. suboptimal controllers was proposed in [18], based also on the solution

Index Terms—7<, control, H .. control, multiobjective control. to a sequence of truncated problems. However, contrary to the discrete
time case, results showing convergence of the sequence of controllers
and closed-loop systems are not currently available.

In this paper, we propose a solution to continuous-time mixed

A large number of practical control problems involve designing &-/H., problem based upon recasting the problem into a dis-
controller that minimizes the worst case response to some exogenougte-time equivalent. The transformation, motivated by some of the
disturbances. The case where the exogenous disturbancaee ideas in [15], preserves both thé, and’H ., horms, allowing for the
bounded spectral density signals and the objective is to minimize tige of the results in [21] and [13] to obtain an optimizing sequence
power of the output leads to the well-knowri> control problem. that converges to the optimal solution strongly in tHe topology.
This problem is appealing since there is a well-established connectidaditionally, by using this technique we establish that, as in the
between the performance index being optimized and performarntiecrete-time case;suboptimal performance can be achieved by real
requirements encountered in practical situations. Moreover, traional controllers. Finally, we show that closed-loop systems with
resulting controllers are easily found by solving two Riccati equationa, prescribed degree of stability can be obtained by solving a single
and in the state-feedback case exhibit good robustness propertiesdfptimization problem, whose size can be determiagdiori.
However, as established in [4], these margins vanish in the ouput
feedback case. Il. PRELIMINARIES

Following this paper, several attempts were made to incorporate ro- .
bustness into thé{» framework [16], [17], [5], [10]. However, this A. Notation
problem has proven to be surprisingly difficult, and to date no neces-£>° denotes the Lebesgue space of complex valued matrix func-
sary and sufficient robust performance conditions are available [22]tions essentially bounded on the axis, equipped with the norm

An alternative is to settle for nomin&t, performance subject to a ||G(s)||.c = ess sup_a(G(jw)), wherea denotes the largest sin-
robust stability constraint. This leads to the mix&d/H, problem gular value. ByH.. (H,) we denote the subspace of function<’ity
[3], [24], [7], [21], [18], illustrated in Fig. 1, where the objective iswith a bounded analytic continuation Re(s) > 0 (Reg(s) < 0).
to synthesize a controller(s) = K (s)y(s) such thatl|T¢,, w,|l2 IS RH denotes the subspace of real rational transfer matricés.of
minimized, subject to the specificatiddt ... ()|l < 7. and.A, denotes the subset &f.. functions continuous in thelosed

A large portion of the work in this field [3], [24], [7], [19] addressesright-half plane. ByH: we denote the space of complex valued matrix
the related problem of minimizing ampper boundof the H> norm, functionsG(s) with analytic continuation in Re) > 0 and square
subject to theH ., constraint. This modified problem has the advanintegrable on thgw axis, equipped with the usual, norm
tage of leading to a mathematically tractable formulation, but in some o
cases the resulting controller performs worse than the “cerittal” ||G||§ = i/ TracdG(jw)G™ (jw)] dw.
controller [2]. 21 J oo

An alternative approachlis.tq use the Ypula parametrizgtiqn tq recasirhe discrete-time counterparts af>, M
the’H2/H~ problem as ainfinite dimensional convex optimization. denoted asC™(D), Ha (D), and Ha(D),

|. INTRODUCTION

=, and Hz will be
respectively. Also of
interest in this discrete-time setting is the Banach spdces of
transfer functions inH.,, which are analytic inside the disk of
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function G(s) € H. can be expanded &8(s) = > =, I'il;. Since n, Q"(s) can be found by solving a finite-dimensional convex opti-
these functions are orthonormal, it follows thi&#||5 = > 72 [|IT:||%. mization problem and an unconstrairf&d. problem.

The projection operatdP,.: H> — RH- is defined by In order to prove this theorem, we begin by introducinglis-
crete-time problenthat is equivalent to Problem 1 (in a sense that
P.[G(s)] = Z Tl (2) Wwill be made clear below). Assume théit(s) and()(s) are strictly
proper, and lefS (s), S2(s), andQ(s) have the following Laguerre
expansmns

In the sequel, we will assume for simplicity that all the signals in
volved are scalar, although the results presented here can be general- c
ized to the multi-input/multi-output (MIMO) case (at the cost of more Si(s) = Z o1,ili(s)
involved notation) proceeding as in [13]. j

B. The MixedH./H. Control Problem Sals) =ou0+ ) oailils)
=1
It is well known that by using the Youla parametrization, the set of
all closed-loop transfer transfer matrices fram, to ¢~ and fromw: Q(s) = Z 8il;(s). (7)

to (2, obtained by connecting an internally stabilizing controller from

' n rameteriz 2 . . . . .
y 1w, can be parameterized as [20] Consider now the following discrete-time mixéth /H problem.

T(s)=Ti(s)—T2(s)Q(s) Problem 4:
S(s) = S1(s) = 52()Q(5) @) - ; {‘

i = min
Q4(2)EH oo (D)

$1(2) = 5:(:)Q" (=)
whereT;, S; are stable transfer matrices af)ds) € H.. is the “free
parameter” in the parametrization. Hence the miked H.. problem such tha’
can be stated as follows.

Problem 1 (MixedH:/H.. Control Problem): Find the optimal \here
value of the performance measure

T1d(z) —T;(Z)Qd(z)

<1} ®

p= inf {51 = SQllsuchthal Ty — 2@l <1} (4) $i(x)= 3 onid
and, givere > 0, a controller@ such thaf|S(s,@)|]2 < i + € and 8o(2) = - P P ;
A 2(2) = 52,02 52,0 = 02, + 02,0V 2a 9
175, )l < 1. 2 =2 oV ®)

Note that from the strict convexity of ti> norm, if a solution to
Problem 1 exists, then it is unique. It can be shown [9] that, exceptamnd Where]';’(z),fj(;) are obtained fronf (s), T2 (s) via the bi-
trivial cases where the solution to the optirél problem satisfies the linear transformation
'H~ constraints, Problem 1 admits a minimizing solutiorHn, but
not in A,. Thus, implementability considerations lead to considering 2= .
the restriction of the problem to rational controllers. s+a

Problem 2 (MixedH: /H. Control Problem ind,): Find the op-  ag we show next, Problems 1 and 4 are equivalent in the sense that
timal value of the performance measure their solutions are related via a bilinear transformation.
pr = inf {||S1 — $2Q|2 such thal|Ti — T:Q|c < 1} (5) _Theorem 2: Pr_oblem 1 is feasible if and_ only i_f Problem 4 is fea-
QeA sible. Moreover, in that case a controlig(s) is feasible for Problem 1
and, givere > 0, find Q. € RHo. such that|S(Qr)llz < jir + € arjld yields a cost. = ||S1 + S2Q)|2 if and only if the controller
and|[|T(Qr)ll < 1. Q (Z) Q()s=ar42/1- 2 is feasible for Problem 4 and yields a
costp? = ||S1(2) = S2()Q(2)|l2 = e
Proof: See Appendix A.
Corollary 1: The optimal costs in Problems 1 and 4 coincide.
A. Computation of a Solution ovéf. Proof of Theorem 1:From Theorem 2 and its corollary, it follows

In this section, we show that Problem 1 can be solved by consMerM@t Problem 3 is equivalent (in the sense of Theorem 2) to the following

a sequence of finite-dimensional convex optimization problems, whdfencated discrete-time problem:
thenth problem hag)(n) variables. Using the projection operator de-

sS—a

(10)

Ill. PROBLEM SOLUTION

fined in (2), consider the optimization problem. pt = min P i o1zt — i I
Problem 3: Find the optimal value of the performance measure Qi (2)EH oo (D) = perdl
p = i {IPalS1(5) = Sa(5)Pu(@(5))l ps (Z qﬂ
such thal|7: — T2Q||- < 1} (6) =0 2
subject to( TG - Tl )] <1 @y

and the corresponding optimal controligf .
Theorem 1: Assume that Problem 1 ig feasible and thatjw) # whereP? (0, b ) = S U k=i, The first part of the proof fol-
0. Theny:" 1 1 and the sequence of solutiof" (s)} converges nor-  ows now from [13, Theorem 4]. Normal convergence@ﬁ‘(,s) in
mally? to a solution of Problem 1 in Re) > 0. Moreover, for a fixed Re(s) > 0 follows from normal convergence @97 (=) in || < 1
1A sequence of complex-valued functiofis defined in an open séf con- and the fact that the bilinear transformation (10) maps compact do-

verges normallyo f if { f., } is pointwise convergent thin U and this conver- MainsDc(s) C Re(s) > 0 into compact domain®a(z) C |z| < 1.
gence is uniform on each compact subset/dfL1]. O
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B. Computation of a Solution ov@&H . whereW (.) is shown in (14) at the bottom of the page. Then,

Theorem 1 furnishes a procedure to (approximately) compute the op- 107 €veryez > 0, there existsV(ez) such thap. < ¢ + €2
timal H. /H- cost. Moreover, the sequence of controllers (and the cor- foralln > N(es).
responding closed-loops) converges, in the normal sense, to the corre- Proof: See Appendix A.
sponding optima.However, since normal convergence does not imply Corollary 2: The optimal cost of Problems 1 and 2 are equal, i.e.,
uniform convergence, one cannot conclude §atwill provide an ap- # = Hk-
proximate solution to the problem, evemifs taken very large. Indeed, ~ Corollary 3: Givene; > 0, a suboptimal solution to Problem 1
sinceS°Pt ¢ A, [9], the sequence of closed-loop systefias- S, Q" With costie < + € is given by
will not approximateS°®* in the .. sense. "

In this section, we show that a ratiorasuboptimal solution to the Qn(s) = Z 0,1;(s) + <
mixed H2/H- problem can be found by solving a sequence of trun- =
cated problems, each one requiring onlfirste number of elements
of the Laguerre expansion &f. To establish this result, we will con- Where®. = (6, 62 ... #6,) solves (13) fom larger than some
sider the restriction of Problem 1 to the subspate(D.) C ‘H., Precomputable bound., and where)r(s) solves the following-
formed by functions analytic outsidB., a closed disk centered at@Pproximation problem:

5. = —a(14 €*/2¢) with radiusr = a(1 — ¢? /2¢), equipped with the . .
. s—a 5—4a
norm Qr(s)= argmin <b+—a) G(s)= > a <s+q)
i=0
- Q7 (s)

s—a

s+a

)" Qn(s) (15)

. QEH (D)
IFlloc.c = sup [F(s)].
s#ED,

Note that the impulse response of functiafise H..(D.) decays

faster thare~*“" and that from the maximum modulus theorem, it fol- ] ]
lows that|| F(s)||cc.c > [|F(5)]|sc. Remark 1: From Corollary 3, it follows that an approximate so-

For ease of reference, defi@s(z) = Ts(62)T{(1/6=). In the lution to Problem 1 can be computed in polynomial time by solving
sequel, we will assume théts () has the following (minimal) state- @ Convex optimization problem witth(V.) variables and an uncon-

00, €.

space realization: strainedH.. problem. Moreover, the resulting closed-loop system has
a degree of stability better thafue since it is inH . (D. ). Note, how-
. <A§ bs ) ever, that the value aWV. obtained using the approach outlined in Ap-
G= pendix B is usually very conservative. This difficulty can be circum-
cs ds o . . . . .
vented by combining the upper bound introduced in this section with
with controllability and observability grammians. s and L, s, re- the lower bound introduced in Section Ill-A to obtain sequences of sub-
spectively. optimal and superoptimal solutions.
Theorem 3: Consider the restriction of Problem 1% (D) Finally, for completeness, we show convergence of the closed-loop
. . ‘ systems and of the controllers in th& topology.
e = QG%;}"“gl — 520> such thal| Ty — T e < 1} Lemma 1: Consider a sequende < ¢; | 0. Then, the sequence

(12) of corresponding closed loos = S| — S2Q); converges in thé
topology. Moreover, ifS; does not have zeros on the-axis, then
Assume thak is selected small enough so tH&t S; € H..(D.). the sequence of controllers converges inthetopology, i.e.||Q; —

Then we have the following. Q*|l2 — 0, whereQ* is a solution to Problem 1.
1) Givene; > 0, there existg > 0 (that can be calculateal Proof: The proof, omitted for space reasons, is similar to the
priori in terms of the problem data) such that< ;. + ;. proof of [13, Lemma 4].
2) pe 2 pr.
3) Let IV. NUMERICAL EXAMPLE
n_ . (51— Su(s - 0.1.(s In this section, we illustrate the proposed framework by applying it
fe = [61 (19121111 L0 1(8) = Sals) 21 ili(s) to a flexible structure used as a damage mitigation testbed [23]. This
. = 2 structure, illustrated in Fig. 2, consists of two discrete masses supported
subject ta [V (©,)] < 1 (13) orrdetre, MU n g ! : upp

by cantilever beams, excited by the vibratory motion of a shaker table,
2t can be also easily shown thsif, = S, — S»,Q" is strongly convergentin and exhibits a very lightly damped resonancefat= 110 Hz. The

the - sense by showing that it is a Cauchy sequence. goal is to design a controller so that the masgstracks low-frequency
LYSARLYS LVSbs LY7Ashs ... LYJA7™'bs 0 0 0
n— 1/2 n—
cs Al ]LL,’/[S ds csbs . cs Al 2bs 0 qo @1 er Guoa
W,r(@n) — 0 ds . + 0 0 do e 4n—2
CéAéLi‘/: S csbs 0 :
es LS 0 0 . ds 00 0w

. 1+e &4 Oig1 —0: ,
6= o= ——, ;= ———0", 1> 1. 14
<1—e)’ L= T = -
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Fig. 2. (a) The flexible testbed. (b) Corresponding block diagram.

signals (up to 10 Hz), while minimizing the displacement of the secorahd low-pass filters, respectively, to reflect the performance specifica-

mass at the resonant frequeRcy. tions
Control-oriented identification of the structure yields the following ) 1.1531s + 5.6566
seventh-order model [12] as shown in (16) at the bottom of the page. Wi(s) = 0.001s2 + 0.0001s + 11.384
The problem can be recastinto a constraikedninimization where .10—45 N 1' > '
the goal is to minimizd|W,T,,.||2* subject to||WaTew|lse < 7, Wa(s) = {m}

whereT,, .. and7.., denote the closed-loop transfer function from the
input to the displacement of the second mass and the tracking error,Tle optimalH.. controller (found using Matlab’s linear matrix in-
spectively. The weighting functiorl$’; andW> are chosen as a notchequality (LMI) toolbox hinflmi command) yield§7,, .||« = 0.47

and||Ty,.|l2 = 1534. Since the plant is open-loop stable, it follows

3This displacement is directly related to the stress and causes the structur : . . . Lo
fail due to material fatigue. Thus, by minimizing it the controller extends th L"& optimal?{ performance is achieved in open-loop, resulting in

lifespan of the specimen. [Ty ]l = 100. lii?ally, the proposed design _using the values
4Here we are using the fact that the induced norm ft8rto ¢ is precisely 100, = 0.75 x 107", N = 200, andy = 0.51 yields a closed-loop
the M, norm. system with||T,,..|l> = 1254 and||T},. || = 0.51. The resulting

[ —0.2185 110.2712 -1.0704 —0.4213 —-1.1968 —0.0013 —0.0777 T
—110.2801 —0.9896 3.7338 2.1488 1.8831 —0.0787 0.1621
—1.4114  —4.5158 —12.9851 42.7061 —41.2727 —-1.4982 —2.1739

A= —0.8933  —-2.5601 —51.8080 —5.2078 —82.6450 0.5258 3.2744

1.4331 2.2632 48.7714  82.7986  —9.4665 2.5266 —1.1314
0.1010 0.2228 2.1113 0.8446  —2.8446 —0.1284 —145.9587

L —0.2674  —0.6012 —3.4584 —4.3014 4.8333  145.9948 —0.9545 |

B =[2.7144 5.7331 10.4155 6.1052 —7.5692 —0.6268 1.7()47]T

_10.5669 —0.0827 0 —3.8842 —3.4930 0.6009 1.68()2} _{()}

C&

7.257 (16)
T 2.6546 —5.7525 7.4713 4.7102 6.7150 —0.1782 0.2881 "’ — 10
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TABLE | of the Laguerre functions, it follows th@tF'(s)l. = [|F(z)]]2 =
COMPARISON OFRESULTS FOR THEMIXED Hz /H o PROBLEM S 2. ThusF(s) € Hy < F(:) € Ha(D).
Proof of Theorem 2:Given 51,52, € RHe, With the La-
.Type Controller Order | 1Tty [l2 | [T¢aws lleo guerre expansions (7), defidg(s) = S1(s) — S2(s)Q(s). Straight-
i ZPEI‘}ZH('ZMI) 11 ;ig‘; g‘gz forward but tedious computations using the fact thét) - 1;(s) =
mixe 2/ Hoo . o 1 Vi . . \.
mixed M/ Hee (39 ord) 39 1952 05l (1/v2a)(li4j—1 — liy;) yield the following expansion fob(s):
mixed Ha/Hoo (18 ord) 18 1271 0.52

D(s) =D dili(s), di=ori+ Y Frir1-jgi1
=1

=1
TABLE I ) §2,0 =02+ 020V2a
LOWER BOUND OF || Tyyz.||2 AS A FUNCTION OF N 9 6; 6,
1 j+1 — Y5

Horizon (N) | 50 | 75 | 100 | 125 | 150 | 175 | 200 V2a' Y V2a
uN 1104 | 1197 | 1236 | 1241 | 1243 | 1244 | 1245

Note that they;s coincide exactly with the coefficients of the Taylor
expansion of)(z), i.e.,

oo

controller can be reduced to order 29 withouth any performance loss . i
and to order 18 with less than 2% performance degradation. For bench- Q(2) = Qs)ls=ati42/1-2) = Z gz
marking purposes, we also designed a mikegd H.. controller using =0
the LMI approach proposed in [19], based on the minimization of an
upper bound obtained using a single Lyapunov function and impl
mented in Matlab’s hinfmix command. In this case, the eleventh-or
controller corresponding t9 = 0.53 results in||T,, .||« = 0.51
and||Ty,.||l2 = 2168. Note that due to the potentially conservativ
nature of the method, in this case performance is worse than that
responding to the centraf . controller corresponding t¢ = 0.47.
These results are summarized in Table I.

Table Il shows the lower bound of the cost obtained by solving ‘a
sequence of problems of the form of (6) as a function of the horizon . {‘

Define ¢(z) = S1(z) — S2(2)Q%(z). From the discussion
bove, it follows thatp(s) € Hy, < &(z) € H2(D) and that
fﬁp( )2 = ||6(2)]|2. The proof of the theorem follows from the fact
that the bilinear transformation preserves tHe., norm and thus
ITi(5) = To(5)Q(3)l = ITH(2) = T (2)Q"(2) | . O

Proof of Theorem 3: Leté = (14 ¢/1 — €). Since the bilinear
transformation (10) maps the spakte.(D.) to H s, it follows that
(12) is equivalent to the followindiscrete-timgoroblem:

51(:) = 5:(:0Q'¢),

N. Note that forV = 200 the difference betweep” and. is less  #* =~ ng?};w

than 1%. Finally, Fig. 3 shows the outputs corresponding to a triangular

input wave with frequency, = 5.84 Hz. As shown in the plot, both the such that‘
LMI and the proposed controller achieve good tracking of the signal.

However, the LMI controller results in larger displacements (and hence (18)
larger damage) of the second mass.

Ti(z) = T5(2)Q" (=)

The proof follows now from [13, Theorem 5].
V. CONCLUSIONS APPENDIX B
Mixed H2 /H control problems arise in the context of both multi- IMPLEMENTATION CONSIDERATIONS
objective control and robugt, control. Contrary to both th&(, and

B h ffi fthe L E
H cases, the mixed problem has proved to be surprisingly dn‘flcu1A Computing a Bound on the Coefficients of the Laguerre Expansion

and to date no closed-form solutions are available. Let F(s) = > 2, fil; since the Laguerre functions are or-
In this paper, we propose a solution to continuous-time mixdgonormal, it follows that

‘H2/H control problems, based upon constructing families of super ) 1 -

and suboptimal solutions and showing that these families converge to fi= 2 F(s)li(=s)ds

a solution of the original problem. The main idea behind the approach
is to construct at each step an equivalent discrete-time problem aeere the integration contodr encloses all the poles df(s). Since
then exploit our previous work to find-suboptimal solutions in £'(s) € H2(D.), we can take” as the boundary of the disR.. The
polynomial time. This equivalence can be also used to show that,Rinear transformatios = a(ae — s/es — a) mapsC' to thejw axis,
in the discrete-time case, while the optimal solution is not genericaijelding
in A,, optimal performance can be approached arbitrarily close by a

real-rational controller. f=2 2a (1+e) <1 - E) /+ f <a ae= )’»’)
27 1+ € e €jw —a
APPENDIX A ) 1 <.7@‘ + (’)Z ' do.
PROOFS OFTHEOREMS2 AND 3 (Jw—a)(ejw —a) \jw —a
In order to prove these theorems, we need to introduce some addgnce
tional results Consider first a functidfi € 7 and its Laguerre ex- ; 1o e\! [t
pansionF(s) = 3.2 Til;. The blllnear transformation (10) maps  |fi| < (I4+¢€) <1 T ) / 1 Floo
F(s) € H to F(z ) € Ho(D), Fi(z) = Y2 fiz', where ¢
£, = TyV/Za andf; = (Tiwr —Ty)/v/2a,i > 1, and whereF" (1) — : ! dw
0. Consider nowF'(z) i S, I';z'. Straightforward computations VIWw? +a?)(e2w? +a?)

IN

show thatF'(z) = v/2a(z/1 — z)F%(z). SinceF? € H..(D) and av2a T—eY ., 1. 1—e\'
A1y 0 i ; — (1+4¢) flls= =M . (19
F°(1) =0, it follows thatF'(z) € Ho (D). From the orthonormality 14+ 1+e
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12 ] ] ] ] ) ] ) L 1
1.2 1.22 1.24 1.26 1.28 13 132 1.34 136 138 14
Time (seconds)

@

.8
1.2 .22 124 1.26 1.28 13 1.32 1.34 1.36 1.38 14
Time (seconds)

(b)

Fig. 3. Time responses to a triangular input: ga)and (b)y- .
B. Additional Considerations where

Recall that in Section IlI-A, we assumed tifat was strictly proper. S, =5, - &52 Ti=S - &TQ
Let D1, D-, and D¢, denote the feedthrough termss$h, S», and@, Dy T Dy
respectively. IfD; # 0, then the closed-loop system has a firfite _ _ _
norm iff D> # 0 andDy, is selected a®q = —(D; /D). It follows WhereS;_, denotes the strictly proper portion 5f. Finally, the con-
that in this case, the problem is equivalent to solving straintQ(s) strictly proper [or, equivalentlyp” (1) = 0 in (4)] can be

enforced by simply factoring? (=) as

pr=  inf  {||Si = S2Ql]2such tha{| 1 — T2Q||- < 1} . L1 .
OCH oo Q%(z) = "—0Q(2), Q(z) € He.

strictly proper z



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 11, NOVEMBER 2000 2101

C. Computational Complexity [20] R. S. S. Pefia and M. Sznai®pbust Systems Theory and Applica-
tions New York: Wiley, 1998.

M. Sznaier, “An exact solution to general SISO mix&d/H . prob-
lems via convex optimization [EEE Trans. Automat. Contrvol. 39,

no. 12, pp. 2511-2517, 1994.

Assume that theH., norm constraint is not “tight,” i.e.,
mingaey |11 — T2Q%le = 7* < 1. As discussed in [14], it is
possible to perturl)?¢ to Q¢ so that

[21]

I

[22] M. Sznaier and J. Tierno, “Is set modeling of white noise a good tool
- 2 for robust, analysis?,’”Automaticavol. 36, no. 7, pp. 957-963, Jul
HSEZ_SSQT ) Sp+te 2000. : Y PP Y
. L } [23] S. Tangirala, A. Ray, and M. Carpino, “Damage mitigating control of
‘Tl -5Q,| <1-4 mechanical structures: Experimental verification of the concept,” in
o

Proc. 1995 ACCSeattle, WA, June 21-23, 1995, pp. 4106-4110.
K. Zhou, K. Glover, B. Bodenheimer, and J. Doyle, “Mixed andH .
performance objectives I: Robust performance analy$FE Trans.
Automat. Contr.vol. 39, no. 8, pp. 1564-1574, 1994.

wheres is a function of the problem data times Introduce the change  [24]
of variablesz — vz, with v > 1. Using the fact thab{, 5¢, T,
and7% are known and finite-dimensional, it is possible to perturb the
problem so that only){ will include the change of variables. Using
elementary manipulations, one can the proceed to estimate the contri-
bution of (I — PZ)Q{ on the two andx norms. This approach allows

for the computation of a bound onin terms of the problem data so
thatu™ < u + e for any givene > 0 (see [14] for details).

Since Problem 3 can be solved to any desired precision in polynomial
time (it is convex), we can then conclude that a controller achieving a
performance of at mogi+ ¢ can be computed in a polynomial number
of iterations.

A Projection Method for Closed-Loop Identification

Urban Forssell and Lennart Ljung

Abstract—A new method for closed-loop identification that allows fit-
ting the model to the data with arbitrary frequency weighting is described
and analyzed. Just as the direct method, this new method is applicable to
systems with arbitrary feedback mechanisms. This is in contrast to other
methods, such as the indirect method and the two-stage method, that as-
sume linear feedback. The finite sample behavior of the proposed method
is illustrated in a simulation study.
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