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An Exact Solution to Continuous-Time Mixed /
Control Problems

M. Sznaier, H. Rotstein, Juanyu Bu, and A. Sideris

Abstract—Multiobjective control problems have been the object of much
attention in the past few years, since they allow for handling multiple,
perhaps conflicting, performance specifications and model uncertainty.
One of the earliest multiobjective problems is the mixed control
problem, which can be motivated as a nominal optimal control
problem subject to robust stability constraints. This problem has proven to
be surprisingly difficult to solve, and at this time no closed-form solutions
are available. Moreover, it has been shown that except in some trivial
cases, the optimal controller is infinite-dimensional.

In this paper, we propose a solution to general continuous-time mixed
problems, based upon constructing a family of approximating

problems, obtained by solving an equivalent discrete-time problem. Each of
these approximations can be solved efficiently, and the resulting controllers
converge strongly in the topology to the optimal solution.

Index Terms— control, control, multiobjective control.

I. INTRODUCTION

A large number of practical control problems involve designing a
controller that minimizes the worst case response to some exogenous
disturbances. The case where the exogenous disturbancesw are
bounded spectral density signals and the objective is to minimize the
power of the outputz leads to the well-knownH2 control problem.
This problem is appealing since there is a well-established connection
between the performance index being optimized and performance
requirements encountered in practical situations. Moreover, the
resulting controllers are easily found by solving two Riccati equations,
and in the state-feedback case exhibit good robustness properties [1].
However, as established in [4], these margins vanish in the ouput
feedback case.

Following this paper, several attempts were made to incorporate ro-
bustness into theH2 framework [16], [17], [5], [10]. However, this
problem has proven to be surprisingly difficult, and to date no neces-
sary and sufficient robust performance conditions are available [22].

An alternative is to settle for nominalH2 performance subject to a
robust stability constraint. This leads to the mixedH2=H1 problem
[3], [24], [7], [21], [18], illustrated in Fig. 1, where the objective is
to synthesize a controlleru(s) = K(s)y(s) such thatkT� ;w k2 is
minimized, subject to the specificationkT� w (s)k1 � .

A large portion of the work in this field [3], [24], [7], [19] addresses
the related problem of minimizing anupper boundof theH2 norm,
subject to theH1 constraint. This modified problem has the advan-
tage of leading to a mathematically tractable formulation, but in some
cases the resulting controller performs worse than the “central”H1
controller [2].

An alternative approach is to use the Youla parametrization to recast
theH2=H1 problem as aninfinite dimensional convex optimization.
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Fig. 1. The generalized plant.

While it is known that the solution to this problem is in general infi-
nite-dimensional [9], recent work has shown that, in the discrete-time
version of the problem, performance arbitrarily close to optimal can be
achieved using rational controllers. Moreover,�-suboptimal solutions
can be found by solving a sequence of truncated problems [21], [18],
[6], [13]. The continuous time counterpart of the problem is consider-
ably less developed. An iterative procedure to find the optimal cost and
suboptimal controllers was proposed in [18], based also on the solution
to a sequence of truncated problems. However, contrary to the discrete
time case, results showing convergence of the sequence of controllers
and closed-loop systems are not currently available.

In this paper, we propose a solution to continuous-time mixed
H2=H1 problem based upon recasting the problem into a dis-
crete-time equivalent. The transformation, motivated by some of the
ideas in [15], preserves both theH2 andH1 norms, allowing for the
use of the results in [21] and [13] to obtain an optimizing sequence
that converges to the optimal solution strongly in theH2 topology.
Additionally, by using this technique we establish that, as in the
discrete-time case,�-suboptimal performance can be achieved by real
rational controllers. Finally, we show that closed-loop systems with
a prescribed degree of stability can be obtained by solving a single
optimization problem, whose size can be determineda priori.

II. PRELIMINARIES

A. Notation

L1 denotes the Lebesgue space of complex valued matrix func-
tions essentially bounded on thej! axis, equipped with the norm
kG(s)k1

:
= ess sup! �(G(j!)), where� denotes the largest sin-

gular value. ByH1 (H�1) we denote the subspace of functions inL1

with a bounded analytic continuation inRe(s) > 0 (Re(s) < 0).
RH1 denotes the subspace of real rational transfer matrices ofH1,
andAo denotes the subset ofH1 functions continuous in theclosed
right-half plane. ByH2 we denote the space of complex valued matrix
functionsG(s) with analytic continuation in Re(s) > 0 and square
integrable on thej! axis, equipped with the usualH2 norm

kGk22
:
=

1

2�

1

�1

Trace[G(j!)G�(j!)] d!:

The discrete-time counterparts ofL1;H1, and H2 will be
denoted asL1(D);H1(D), and H2(D), respectively. Also of
interest in this discrete-time setting is the Banach spaceH1;� of
transfer functions inH1, which are analytic inside the disk of
radius�, where� > 1 (usually � � 1), equipped with the norm
kG(z)k1;�

:
= supjzj<� �(G(z)).

TheLaguerrefunctions are defined as

li(s) =
(2a)

s+ a

s� a

s+ a

i�1

; i = 1; 2 . . . (1)

wherea is a positive real. It is a standard fact (see for instance [8, Ch.
18]) that the familyflig is an orthonormal basis inH2. Therefore, any
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functionG(s) 2 H2 can be expanded asG(s) = 1

i=1
�ili. Since

these functions are orthonormal, it follows thatkGk22 = 1

i=0
k�ik

2

F .
The projection operatorPn:H2 ! RH2 is defined by

Pn[G(s)]
:
=

n

i=1

�ili: (2)

In the sequel, we will assume for simplicity that all the signals in-
volved are scalar, although the results presented here can be general-
ized to the multi-input/multi-output (MIMO) case (at the cost of more
involved notation) proceeding as in [13].

B. The MixedH2=H1 Control Problem

It is well known that by using the Youla parametrization, the set of
all closed-loop transfer transfer matrices fromw1 to �1 and fromw2

to �2, obtained by connecting an internally stabilizing controller from
y to u, can be parameterized as [20]

T (s) =T1(s)� T2(s)Q(s)

S(s) =S1(s)� S2(s)Q(s) (3)

whereTi; Si are stable transfer matrices andQ(s) 2 H1 is the “free
parameter” in the parametrization. Hence the mixedH2=H1 problem
can be stated as follows.

Problem 1 (MixedH2=H1 Control Problem): Find the optimal
value of the performance measure

�
:
= inf

Q2H
fkS1 � S2Qk2 such thatkT1 � T2Qk1 � 1g (4)

and, given� > 0, a controllerQ such thatkS(s;Q)k2 � � + � and
kT (s;Q)k1 � 1.

Note that from the strict convexity of theH2 norm, if a solution to
Problem 1 exists, then it is unique. It can be shown [9] that, except in
trivial cases where the solution to the optimalH2 problem satisfies the
H1 constraints, Problem 1 admits a minimizing solution inH1 but
not inAo. Thus, implementability considerations lead to considering
the restriction of the problem to rational controllers.

Problem 2 (MixedH2=H1 Control Problem inAo): Find the op-
timal value of the performance measure

�R
:
= inf

Q2A
fkS1 � S2Qk2 such thatkT1 � T2Qk1 � 1g (5)

and, given� > 0, find QR 2 RH1 such thatkS(QR)k2 � �R + �
andkT (QR)k1 � 1.

III. PROBLEM SOLUTION

A. Computation of a Solution overH1

In this section, we show that Problem 1 can be solved by considering
a sequence of finite-dimensional convex optimization problems, where
thenth problem hasO(n) variables. Using the projection operator de-
fined in (2), consider the optimization problem.

Problem 3: Find the optimal value of the performance measure

�n
:
= min

Q2H
fkPn[S1(s)� S2(s)Pn(Q(s))]k2

such thatkT1 � T2Qk1 � 1g (6)

and the corresponding optimal controllerQn.
Theorem 1: Assume that Problem 1 is feasible and thatS2(j!) 6=

0. Then�n "� and the sequence of solutionsfQn(s)g converges nor-
mally1 to a solution of Problem 1 in Re(s) > 0. Moreover, for a fixed

1A sequence of complex-valued functionsf defined in an open setU con-
verges normallyto f if ff g is pointwise convergent tof in U and this conver-
gence is uniform on each compact subset ofU [11].

n, Qn(s) can be found by solving a finite-dimensional convex opti-
mization problem and an unconstrainedH1 problem.

In order to prove this theorem, we begin by introducing adis-
crete-time problemthat is equivalent to Problem 1 (in a sense that
will be made clear below). Assume thatS1(s) andQ(s) are strictly
proper, and letS1(s); S2(s); andQ(s) have the following Laguerre
expansions:

S1(s) =

1

i=1

�1;ili(s)

S2(s) =�2;0 +

1

i=1

�2;ili(s)

Q(s) =

1

i=1

�ili(s): (7)

Consider now the following discrete-time mixedH2=H1 problem.
Problem 4:

�d
:
= min

Q (z)2H (D)
Ŝ1(z)� Ŝ2(z)Q

d(z)
2

such that T d
1 (z)�Td

2 (z)Q
d(z)

1

� 1 (8)

where

Ŝ1(z) =

1

i=0

�1;iz
i

Ŝ2(z) =

1

i=0

ŝ2;iz
i; ŝ2;i = �2;i + �2;0

p
2a (9)

and whereT d
1 (z); T

d
2 (z) are obtained fromT1(s); T2(s) via the bi-

linear transformation

z =
s� a

s+ a
: (10)

As we show next, Problems 1 and 4 are equivalent in the sense that
their solutions are related via a bilinear transformation.

Theorem 2: Problem 1 is feasible if and only if Problem 4 is fea-
sible. Moreover, in that case a controllerQ(s) is feasible for Problem 1
and yields a cost�c = kS1 + S2Qk2 if and only if the controller
Qd(z) = Q(s)js=a(1+z=1�z) is feasible for Problem 4 and yields a
cost�d

:
= kŜ1(z)� Ŝ2(z)Q

d(z)k2 = �c.
Proof: See Appendix A.

Corollary 1: The optimal costs in Problems 1 and 4 coincide.
Proof of Theorem 1:From Theorem 2 and its corollary, it follows

that Problem 3 is equivalent (in the sense of Theorem 2) to the following
truncated discrete-time problem:

�dn
:
= min

Q (z)2H (D)
Pd
n

1

i=0

�1;iz
i �

1

i=0

ŝ2;iz
i

� Pd
n

1

i=0

qiz
i

2

subject to T d
1 (z)� T d

2 (z)Q
d
n(z)

1

� 1 (11)

wherePd
n(

1

i=0 hiz
i)

:
= n�1

i=0 hiz
i. The first part of the proof fol-

lows now from [13, Theorem 4]. Normal convergence ofQn(s) in
Re(s) > 0 follows from normal convergence ofQd

n(z) in jzj < 1
and the fact that the bilinear transformation (10) maps compact do-
mainsDc(s) � Re(s) > 0 into compact domainsDd(z) � jzj < 1.
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B. Computation of a Solution overRH1

Theorem 1 furnishes a procedure to (approximately) compute the op-
timalH2=H1 cost. Moreover, the sequence of controllers (and the cor-
responding closed-loops) converges, in the normal sense, to the corre-
sponding optima.2 However, since normal convergence does not imply
uniform convergence, one cannot conclude thatQn will provide an ap-
proximate solution to the problem, even ifn is taken very large. Indeed,
sinceSopt 62 Ao [9], the sequence of closed-loop systemsS1�S2Q

n

will not approximateSopt in theH1 sense.
In this section, we show that a rational�-suboptimal solution to the

mixedH2=H1 problem can be found by solving a sequence of trun-
cated problems, each one requiring only afinite number of elements
of the Laguerre expansion ofS. To establish this result, we will con-
sider the restriction of Problem 1 to the subspaceH1(D�) � H1
formed by functions analytic outsideD�, a closed disk centered at
s� = �a(1+ �2=2�) with radiusr = a(1� �2=2�), equipped with the
norm

kFk1;�
:
= sup

s6=2D
jF (s)j:

Note that the impulse response of functionsF 2 H1(D�) decays
faster thane�a�t and that from the maximum modulus theorem, it fol-
lows thatkF (s)k1;� � kF (s)k1.

For ease of reference, defineG�(z)
:
= T d

2 (�z)T
d
1 (1=�z). In the

sequel, we will assume thatG�(z) has the following (minimal) state-
space realization:

G =
A� b�

c� d�

with controllability and observability grammiansLc;� andLo;�, re-
spectively.

Theorem 3: Consider the restriction of Problem 1 toH1(D�)

��
:
= min

Q2RH

fkS1 � S2Qk2 such thatkT1 � T2Qk1;� � 1g:

(12)

Assume that� is selected small enough so thatTi; Sj 2 H1(D�).
Then we have the following.

1) Given�1 > 0, there exists� > 0 (that can be calculateda
priori in terms of the problem data) such that�� � �+ �1.

2) �� � �R.
3) Let

�n� = min
[� � ... � ]

Pn S1(s)� S2(s)

n

i=1

�ili(s)

2

subject to�[W (�n)] � 1 (13)

2It can be also easily shown thatS = S �S Q is strongly convergent in
theH sense by showing that it is a Cauchy sequence.

whereW (:) is shown in (14) at the bottom of the page. Then,
for every�2 > 0, there existsN(�2) such that�� � �n� + �2
for all n � N(�2).

Proof: See Appendix A.
Corollary 2: The optimal cost of Problems 1 and 2 are equal, i.e.,

� = �R.
Corollary 3: Given �1 > 0, a suboptimal solution to Problem 1

with cost�� � � + �1 is given by

Qn(s) =

n

i=1

�ili(s) +
s� a

s+ a

n

QR(s) (15)

where�n = (�1 �2 . . . �n) solves (13) forn larger than some
precomputable boundN� and whereQR(s) solves the followingH1
approximation problem:

QR(s) = argmin
Q2H (D )

s� a

s+ a

n

G(s)�

n�1

i=0

qi
s� a

s+ q

n�i

� Q
�(s)

1;�:

Remark 1: From Corollary 3, it follows that an approximate so-
lution to Problem 1 can be computed in polynomial time by solving
a convex optimization problem withO(N�) variables and an uncon-
strainedH1 problem. Moreover, the resulting closed-loop system has
a degree of stability better than�a� since it is inH1(D�). Note, how-
ever, that the value ofN� obtained using the approach outlined in Ap-
pendix B is usually very conservative. This difficulty can be circum-
vented by combining the upper bound introduced in this section with
the lower bound introduced in Section III-A to obtain sequences of sub-
optimal and superoptimal solutions.

Finally, for completeness, we show convergence of the closed-loop
systems and of the controllers in theH2 topology.

Lemma 1: Consider a sequence0 < �i # 0. Then, the sequence
of corresponding closed loopsSi

:
= S1 � S2Qi converges in theH2

topology. Moreover, ifS2 does not have zeros on thej!-axis, then
the sequence of controllers converges in theH2 topology, i.e.,kQi �
Q�k2 ! 0, whereQ� is a solution to Problem 1.

Proof: The proof, omitted for space reasons, is similar to the
proof of [13, Lemma 4].

IV. NUMERICAL EXAMPLE

In this section, we illustrate the proposed framework by applying it
to a flexible structure used as a damage mitigation testbed [23]. This
structure, illustrated in Fig. 2, consists of two discrete masses supported
by cantilever beams, excited by the vibratory motion of a shaker table,
and exhibits a very lightly damped resonance atf = 110 Hz. The
goal is to design a controller so that the massM1 tracks low-frequency

W (�n) =

L
1=2
o;� A

n
�L

1=2
c;� L

1=2
o;� b� L

1=2
o;� A�b� . . . L

1=2
o;� A

n�1
� b�

c�A
n�1
� L

1=2
c;� d� c�b� . . . c�A

n�2
� b�

... 0 d�
. . .

...

c�A�L
1=2
c;�

...
...

. . . c�b�

c�L
1=2
c;� 0 0 . . . d�

+

0 0 . . . . . . 0

0 qo q1 . . . qn�1

0 0 qo . . . qn�2

0
...

...
. . .

...
0 0 0 . . . qo

� =
1 + �

1� �
; qo =

�1p
2a

; qi =
�i+1 � �ip

2a
�
i
; i � 1: (14)
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(a)

(b)

Fig. 2. (a) The flexible testbed. (b) Corresponding block diagram.

signals (up to 10 Hz), while minimizing the displacement of the second
mass at the resonant frequency.3

Control-oriented identification of the structure yields the following
seventh-order model [12] as shown in (16) at the bottom of the page.

The problem can be recast into a constrainedH2 minimization where
the goal is to minimizekW1Ty wk24 subject tokW2Tewk1 � ,
whereTy w andTew denote the closed-loop transfer function from the
input to the displacement of the second mass and the tracking error, re-
spectively. The weighting functionsW1 andW2 are chosen as a notch

3This displacement is directly related to the stress and causes the structure to
fail due to material fatigue. Thus, by minimizing it the controller extends the
lifespan of the specimen.

4Here we are using the fact that the induced norm from` to ` is precisely
theH norm.

and low-pass filters, respectively, to reflect the performance specifica-
tions

W1(s) =
1:1531s+ 5:6566

0:001s2 + 0:0091s+ 11:384

W2(s) =
10�4s+ 1

0:1s+ 1

2

:

The optimalH1 controller (found using Matlab’s linear matrix in-
equality (LMI) toolbox hinflmi command) yieldskTy !k1 = 0:47
andkTy !k2 = 1534. Since the plant is open-loop stable, it follows
that optimalH2 performance is achieved in open-loop, resulting in
kTy !k1 = 100. Finally, the proposed design using the valuesa =
100; � = 0:75� 10�3,N� = 200, and = 0:51 yields a closed-loop
system withkTy !k2 = 1254 andkTy !k1 = 0:51. The resulting

A =

�0:2185 110:2712 �1:0704 �0:4213 �1:1968 �0:0013 �0:0777

�110:2801 �0:9896 3:7338 2:1488 1:8831 �0:0787 0:1621

�1:4114 �4:5158 �12:9851 42:7061 �41:2727 �1:4982 �2:1739

�0:8933 �2:5601 �51:8080 �5:2078 �82:6450 0:5258 3:2744

1:4331 2:2632 48:7714 82:7986 �9:4665 2:5266 �1:1314

0:1010 0:2228 2:1113 0:8446 �2:8446 �0:1284 �145:9587

�0:2674 �0:6012 �3:4584 �4:3014 4:8333 145:9948 �0:9545

B = [2:7144 5:7531 10:4155 6:1052 �7:5692 �0:6268 1:7047]T

C =
0:5669 �0:0827 7:2570 �3:8842 �3:4930 0:6009 1:6802

2:6546 �5:7525 7:4713 4:7102 6:7150 �0:1782 0:2881
; D =

0

0
(16)
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TABLE I
COMPARISON OFRESULTS FOR THEMIXED H =H PROBLEM

TABLE II
LOWER BOUND OFkT k AS A FUNCTION OFN

controller can be reduced to order 29 withouth any performance loss
and to order 18 with less than 2% performance degradation. For bench-
marking purposes, we also designed a mixedH2=H1 controller using
the LMI approach proposed in [19], based on the minimization of an
upper bound obtained using a single Lyapunov function and imple-
mented in Matlab’s hinfmix command. In this case, the eleventh-order
controller corresponding to = 0:53 results inkTy !k1 = 0:51
andkTy !k2 = 2168. Note that due to the potentially conservative
nature of the method, in this case performance is worse than that cor-
responding to the centralH1 controller corresponding to = 0:47.
These results are summarized in Table I.

Table II shows the lower bound of the cost obtained by solving a
sequence of problems of the form of (6) as a function of the horizon
N. Note that forN = 200 the difference between�n and�� is less
than 1%. Finally, Fig. 3 shows the outputs corresponding to a triangular
input wave with frequencyfs = 5:84Hz. As shown in the plot, both the
LMI and the proposed controller achieve good tracking of the signal.
However, the LMI controller results in larger displacements (and hence
larger damage) of the second mass.

V. CONCLUSIONS

MixedH2=H1 control problems arise in the context of both multi-
objective control and robustH2 control. Contrary to both theH2 and
H1 cases, the mixed problem has proved to be surprisingly difficult,
and to date no closed-form solutions are available.

In this paper, we propose a solution to continuous-time mixed
H2=H1 control problems, based upon constructing families of super
and suboptimal solutions and showing that these families converge to
a solution of the original problem. The main idea behind the approach
is to construct at each step an equivalent discrete-time problem and
then exploit our previous work to find�-suboptimal solutions in
polynomial time. This equivalence can be also used to show that, as
in the discrete-time case, while the optimal solution is not generically
in Ao, optimal performance can be approached arbitrarily close by a
real-rational controller.

APPENDIX A
PROOFS OFTHEOREMS2 AND 3

In order to prove these theorems, we need to introduce some addi-
tional results. Consider first a functionF 2 H2 and its Laguerre ex-
pansionF (s) = 1

i=1 �ili. The bilinear transformation (10) maps
F (s) 2 H1 to F d(z) 2 H1(D), F d(z) = 1

i=0 fiz
i, where

fo
:
= �1

p
2a andfi

:
= (�i+1��i)=

p
2a; i � 1, and whereF d(1) =

0. Consider nowF̂ (z)
:
= 1

i=1 �iz
i. Straightforward computations

show thatF̂ (z) =
p
2a(z=1 � z)F d(z). SinceF d 2 H1(D) and

F d(1) = 0, it follows thatF̂ (z) 2 H1(D). From the orthonormality

of the Laguerre functions, it follows thatkF (s)k2 = kF̂ (z)k2 =
1

i=1 �
2
i . ThusF (s) 2 H2 () F̂ (z) 2 H2(D).

Proof of Theorem 2:Given S1; S2; Q 2 RH1, with the La-
guerre expansions (7), define�(s)

:
= S1(s) � S2(s)Q(s). Straight-

forward but tedious computations using the fact thatli(s) � lj(s) =
(1=
p
2a)(li+j�1 � li+j) yield the following expansion for�(s):

�(s) =

1

i=1

�ili(s); �i = �1;i +

i

j=1

ŝ2;i+1�jqj�1

ŝ2;i =�2;i + �2;0
p
2a

q0 =
�1p
2a

; qj =
�j+1 � �jp

2a
; j � 1: (17)

Note that theq0is coincide exactly with the coefficients of the Taylor
expansion ofQ(z), i.e.,

Q(z) = Q(s)js=a(1+z=1�z)
:
=

1

i=0

qiz
i:

.
Define �̂(z) = Ŝ1(z) � Ŝ2(z)Q

d(z). From the discussion
above, it follows that�(s) 2 H2 () �̂(z) 2 H2(D) and that
k�(s)k2 = k�̂(z)k2. The proof of the theorem follows from the fact
that the bilinear transformation preserves theH1 norm and thus
kT1(s)� T2(s)Q(s)k1 = kT d

1 (z)� T d
2 (z)Q

d(z)k1.
Proof of Theorem 3:Let �

:
= (1 + �=1 � �). Since the bilinear

transformation (10) maps the spaceH1(D�) toH1;� , it follows that
(12) is equivalent to the followingdiscrete-timeproblem:

��
:
= min

Q 2RH

Ŝ1(z)� Ŝ2(z)Q
d(z)

2

such that T d

1 (z)� T d

2 (z)Q
d(z)

1;�
� 1 :

(18)

The proof follows now from [13, Theorem 5].

APPENDIX B
IMPLEMENTATION CONSIDERATIONS

A. Computing a Bound on the Coefficients of the Laguerre Expansion

Let F (s) = 1

i=1
fili since the Laguerre functions are or-

thonormal, it follows that

fi =
1

2�j C

F (s)li(�s)ds

where the integration contourC encloses all the poles ofF (s). Since
F (s) 2 H2(D�), we can takeC as the boundary of the diskD�. The
bilinear transformations = a(a�� s=�s� a) mapsC to thej! axis,
yielding

fi =
a
p
2a

2�
(1 + �)

1� �

1 + �

i +1

�1

f a
a� � j!

�j! � a

� 1

(j!� a)(�j! � a)

j! + a

j! � a

i�1

d!:

Hence

jfij � a
p
2a

2�
(1 + �)

1� �

1 + �

i +1

�1

kfk1

� 1

(!2 + a2)(�2!2 + a2)
d!

� a
p
2a

2
(1 + �)

1� �

1 + �

i

kfk1 1

�

:
=M

1� �

1 + �

i

: (19)
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(a)

(b)

Fig. 3. Time responses to a triangular input: (a)y and (b)y .

B. Additional Considerations

Recall that in Section III-A, we assumed thatS1 was strictly proper.
Let D1; D2, andDQ denote the feedthrough terms inS1, S2, andQ,
respectively. IfD1 6= 0, then the closed-loop system has a finiteH2

norm iff D2 6= 0 andDQ is selected asDQ
:
= �(D1=D2). It follows

that in this case, the problem is equivalent to solving

�R
:
= inf

~Q2H
strictly proper

fk ~S1 � S2
~Qk2 such thatk ~T1 � T2

~Qk1 � 1g

where

~S1 = S1 �
D1

D2

S2 ; ~T1 = S1 �
D1

D2

T2

whereSi denotes the strictly proper portion ofSi. Finally, the con-
straint ~Q(s) strictly proper [or, equivalently,Qd(1) = 0 in (4)] can be
enforced by simply factoringQd(z) as

Qd(z) =
z � 1

z
Q̂ (z); Q̂(z) 2 H1:
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C. Computational Complexity

Assume that theH1 norm constraint is not “tight,” i.e.,
minQ 2H kT̂1 � T̂2Q

d
uk1 = � < 1. As discussed in [14], it is

possible to perturbQd
u to Qd

1 so that

Ŝ
d
1 � Ŝ

d
2Q

d
1

2

��+ �1

T̂1 � T̂2Q
d
u
1

� 1� �

where� is a function of the problem data times�1. Introduce the change
of variablesz ! z, with  > 1. Using the fact that̂Sd1 ; Ŝ

d
2 ; T̂1,

andT̂2 are known and finite-dimensional, it is possible to perturb the
problem so that onlyQd

1 will include the change of variables. Using
elementary manipulations, one can the proceed to estimate the contri-
bution of(I �Pdn)Q

d
1 on the two and1 norms. This approach allows

for the computation of a bound onn in terms of the problem data so
that�n � � + � for any given� > 0 (see [14] for details).

Since Problem 3 can be solved to any desired precision in polynomial
time (it is convex), we can then conclude that a controller achieving a
performance of at most�+� can be computed in a polynomial number
of iterations.
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A Projection Method for Closed-Loop Identification

Urban Forssell and Lennart Ljung

Abstract—A new method for closed-loop identification that allows fit-
ting the model to the data with arbitrary frequency weighting is described
and analyzed. Just as the direct method, this new method is applicable to
systems with arbitrary feedback mechanisms. This is in contrast to other
methods, such as the indirect method and the two-stage method, that as-
sume linear feedback. The finite sample behavior of the proposed method
is illustrated in a simulation study.

Index Terms—Closed-loop identification, prediction error methods.

I. INTRODUCTION

In “identification for control,” the goal is to construct models that are
suitable for control design. It is widely appreciated that small model
uncertainty around the crossover frequency is essential for successful
control design. Consequently, there has been a substantial interest in
identification methods that provide a tunable optimality criterion so
that the model can be fit to the data with a suitable frequency weighting.
With open-loop experiments this is no problem: it is well known that ar-
bitrary frequency weighting can be obtained by applying a prediction
error method to an output error model structure with a suitable fixed
noise model/prefilter [recall (see [1]) that the effect of any prefilter may
be included in the noise model]. However, open-loop experiments are
not always possible since the system might be unstable or has to be
controlled for safety or production reasons. In such cases, closed-loop
experiments have to be used. The problem is now that the simple ap-
proach of using an output error model with a fixed noise model/prefilter
will give biased results when applied directly to closed-loop data, un-
less the fixed noise model correctly models the true noise color (see,
e.g., [1, Theorem 8.3]). A way around this would be to use a flexible,
parameterized noise model. This would eliminate the bias but the fre-
quency weighting would then not be fixed.

In this paper, we describe and analyze a closed-loop identification
method that is consistent and, in the case of undermodeling, allows
fitting the model to the data with arbitrary frequency weighting. This
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