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Abstract 

During the past few years the problem of stabiliz- 
ing a Linear Parameter Varying system, while, at  
the same time, optimizing some measure of perfor- 
mance has been the object of increasing attention. 
In contrast to the case of linear systems where sev- 
eral optimal synthesis techniques (such as El,, El2 
and el)  are well established, the counterparts for 
LPV systems are just starting to emerge. More- 
over, at the present time, only sufficient conditions 
for performance are available, thus leading to po- 
tentially conservative designs. In this paper we 
propose a simple way to improve performance by 
combining the LMI-based tools currently available 
with receding horizon techniques. 

1 Introduction 

A large number of control problems involve design- 
ing a controller capable of stabilizing a given sys- 
tem while simultaneously optimizing some perfor- 
mance index. In the case of linear dynamics this 
problem has been thoroughly explored during the 
past decade, leading to powerful formalisms such 
as psynthesis and t1 optimal control theory that 
have been successfully employed to solve some hard 
practical problems. More recently, these techniques 
have been extended to handle multiple, perhaps 
conflicting, performance specifications [I 11. 

In the case of nonlinear dynamics, a widely used 
idea among control engineers is to linearize the 
plant around several operating points and to use 
linear control tools t o  design a controller for each of 
these points. The actual controller is implemented 
using gain scheduling, i.e. the parameters in the 
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linear control law are changed according to the op- 
erating condition. While this idea is intuitively 
appealing, it has several pitfalls [5, 6, 71. Moti- 
vated by these shortcomings, during the past few 
years considerably attention has been devoted to 
the problem of synthesizing controllers for Linear 
Parameter Varying Systems, where the state-space 
matrices of the plant depend on time-varying pa- 
rameters whose values are not known a priori, but 
can be measured by the controller. Assuming that 
bounds on both the parameter values and their rate 
of change are known then Affine Matrix Inequali- 
ties based conditions are available guaranteeing ex- 
ponential stability of the system. Moreover, these 
conditions can be easily used to synthesize stabi- 
lizing controllers guaranteeing worst case perfor- 
mance bounds (for instance in an El2 or X,,, sense, 
see [l, 3, 131 and references therein). 

However, a potential drawback of these techniques 
is that they are based on sufficient conditions, ob- 
tained using parameter dependent quadratic Lya- 
punov functions. Thus, the resulting controllers 
can be potentially very conservative. Motivated by 
the approach pursued in 1121 and in [8, 9, 101 in 
this paper we show that performance can be im- 
proved by combining these AMI-based tools with 
receding horizon techniques, and we illustrate these 
results with a simple example. In the sequel, we 
consider for simplicity the problem of optimizing 
the E l 2  norm (in a sense that will be precisely de- 
fined in the next section), but the results can be 
easily translated to the El, (or even multiobjec- 
tive) case. 
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2 Preliminaries 

2.1 Nota t ion  and Definitions 
We consider the following class of LPV systems: 

i: = A M t ) l  .(t) + B1 [&)I w ( t )  + B2 b ( t ) l U ( t >  

(1) 

z = c1 [&)I e(t) + Dl2 Wl U ( t )  
Y = c2 [ a ( t ) l X ( t )  + 4 1  b(t) lw(t> 

where x E P a ,  U E R",, w E R",, z E PI, and 
y E R n y  represent the state, control, exogenous 
disturbances, regulated variables and outputs avail- 
able to the controller respectively, p E Rnp denotes 
a vector of time-varying parameters and where the 
matrix functions A(.), B( . ) ,  C(.) and D(.)  are con- 
tinuous. Further, we will assume that at all times 
p ( t )  E P c R n p I  where P is a given compact set, 
and that the set of admissible parameter trajecto- 
ries is given by: 

{ p  E C1(R, R n p )  : p ( t )  E P ,  F,, & 
3 5 a(t) 5 Vi, i = 1, . . n p  V t E R+} 

(2) 
where % and pi are given numbers. 

Definition 1 ('Ha LPV performance) A s s u m e  
tha t  x = 0 is a n  exponentially stable equilibrium 
po in t  of the  s y s t e m  

(3) 
for any  trajectory p(. )  E F,, . T h e n  given a n  ini t ial  
condi t ion p(0) w e  define the  'HZ n o r m  of s y s t em 
(9) as the  w o ~ s t  case, over all admissible parameter  
trajectories, of the  La n o r m  of its impulse response, 
averaged over all possible directions for the  input .  
Equivalently, w e  can  assume a n  ini t ial  condi t ion 
of the  form x ( 0 )  = Blw, where w, is a r a n d o m  
variable satisfying & ( w , w ~ )  = I .  Thus 

r m  

where the  expectation is t a k e n  w i th  respect t o  w,. 

For simplicity, in the sequel we make the following 
standard assumptions: 

DT2D12 = I, CID& = 0, c2 = I, D2l = 0 (5) 

i.e we consider the state feedback case. 

L e m m a  1 [2] A s s u m e  that  there ezis t  0 differen- 
tiable f i n c t i o n  X(p) > 0, V p  E P and such tha t  t he  

Using this lemma it can be shown that, under as- 
sumptions (5) a parameter dependent state feed- 
back controller with guaranteed 1 1 . 1 1 . ~ ~  performance 
can be synthesized by solving the following opti- 
mization problem (see [2] for details): 

subject to: 

(10) 
for all p E P. The corresponding control action is 

given by 

and the closed loop X2 norm bounded by: 
U = -B:(p)X-l(p)z (11) 

While this approach yields a stabilizing controller 
with guaranteed performance bounds, it is poten- 
tially conservative due to the facts (in addition to 
condition (6) being only sufficient) that (i) it uses 
a quadratic parameter dependent Lyapunov func- 
tion (zTX-l(p)x), (ii) allows for all posgible com- 
binations of the parameters and their derivatives, 
and (iii) the control law is obtained by minimizing 
an upper bound (suppcp Trace(BTX-lB1)) of the 
cost. In the sequel, we indicate how to improve per- 
formance by combining the AMI (6) with receding 
horizon ideas. 
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2.2 The Quadra t ic  Regulator  Problem for 
L P V  systems 
Consider the LPV system (1). In the sequel we 
consider the following problem. Given an initial 
condition xo and an initial value of the parameter 
p, find a parameter dependent state-feedback con- 
trol law u[z(t) ,  p ( t ) ]  that minimizes the following 
performance index 

J(z0, POI U )  = 

p E T v  O 

P ( 0 )  = Po 

00 

sup J [zTC:Clz + ,Tu] d t ,  r(0) = 20 

(13) 
By using Pontryagin's principle it can be shown 

that solving this problem is equivalent to solving 
the following Hamilton-Jacobi-Bellman type par- 
tial differential equation: 

O =  EA(P)+ - :%Bl(P)BaT(P)g' + Z T Q ( P ) Z  

+m=5svjgvi C:2'", $$+, V(0, PI = 0 
(14) 

where Q(p) & CT(p)Cl (p ) .  If this equation admits 
a C1 nonnegative solution V,  then the optimal con- 
trol is given by u(z ,p )  = and V ( z , p )  
is the corresponding optimal cost (or storage func- 
tion), i.e. 

00 

V(z, p) = min sup (zTQa + uTu) dt 
P € %  J 

0 

Note that if the solution to (14) is a quadratic func- 
tion of the form V ( z ,  p) = a T X ( p ) z  with X ( p )  > 0, 
then X-l satisfies (6). 

3 A n  Equivalent Finite Horizon Regulat ion 
Problem 

Unfortunately, the complexity of equation (14) pre- 
vents its solution except in some very simple, low 
dimensional cases. To solve this difficulty, in this 
section we introduce a finite horizon approximation 
of the LPV regulation problem, and we analyze its 
properties. This approximation forms the basis of 
the proposed method. 

Lemma 2 Consider a compact set S containing 
the origin in its interior and assume that the op- 
timal storage function V ( x , p )  is known for all 
z E S , p  E P .  Let c = minZEas suppEp V(z, p) 
where as denotes the boundary of S. Fanally, define 

the set S,, = {a: supqcp V(c ,  p) 5 c } .  Consider the 
following two optimazation problems: 

m 

P ( 0 )  = Po 

+ W T ) I  P(T)lI 
(16) 

subject to (1) with z(0)  = zo. Then an optimal solution 
of problem (16) is also optimal for (15) in the interval 
[ O , T ]  provided that z(T) E S,. 

This lemma shows that if a solution to the HJB 
equation (14) is known in a neighborhood of the 
origin, then it can be extended via an explicit finite 
horizon optimization, well suited for an on-line im- 
plementation. This suggest a receding horizon type 
control combining an an off-line phase to find a lo- 
cal solution to (14) with an on-line phase where a 
sequence of problems of the form (16) with increas- 
ing T is solved, until a solution such that z(T)  E S,, 
is found. Specifically, let a ( t )  and p( t )  denote the 
current state of system (1) and the value of the 
parameter respectively. Then the proposed control 
law is given by: 

Algorithm 1 

0.- Data: a region S,, the optimaI return func- 
tion *(a, p) for a l l 2  E S, . 

BV x,p 1.- If z(t)  E s,, 21 = -pa+ 
2.- If z ( t )  S, then solve a sequence of opti- 

mization problems of the form (16) until a 
solution such that x(T) E S, is found. Use 
the corresponding control law u(t) in  the in- 
ternal [to, to + b t ] .  

From the results above it is clear that the resulting 
control law is globally optimal and thus globally 
stabilizing. However, the computational complex- 
ity associated with finding V ( c , p )  (even only in 
the region S,,) may preclude the use of this control 
law in many practical cases. Additionally, the re- 
quirement that T should be large enough so that 
a(T) E S,, could pose a problem, specially in cases 
where the system has fast dynamics. Thus, it is of 
interest to consider a modified control law where an 
approximation q(z, p) (rather than V ( z ,  p)) and a 
fixed horizon T are used. To this effect consider a 
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compact set S containing the origin in its interior 
and let 8 : S x P +  R+, 8 EC1(R”- x R”p,R) be 
a Control Lyapunov Function for system (1) in the 
sense that the following condition holds: 

SUP { E [Ab12 + B2 ( P ) I I  
p € P I S  5 vi 5 ii; 

+E; %vi} i -‘1121)2 < 0; vz € s v  

(17) 
for some fixed number a > 0 and some control 

action U. Let 

c = min m u g ( = ,  p) 
ZEBS P E P  

and define the set 

optimality, it can be easily shown that in this case 
the constraint (19) i s  redundantl since it is satis- 
fied by the  control law that  min imizes  (18). As w e  
show ne&, f o r  this choice of !PI the  control law 9 
performs no worse t h a n  the  AMI based control law 
(l l) ,  in the  sense tha t  both have the  same worse- 
case upper bound. 

Lemma 3 For any  feasible parameter trajectory p 
the  following holds: 

(20) 
J , ( zo ,  p )  2 J,“ p;oz, + ii;i.) d t  

5 40) X-l(Po)=(o) 

where 2, and i& denote the trajectory and con- 
trol corresponding t o  the parameter trajectory @, 
obtained w h e n  w i n g  the  control law (18). 

Then we propose the following modified law: 
4 Illustrative Example 

Algorithm 2 

0.- Data: 0 C I F  @(alp), t h e  region S9, 0 hori- 
zon T. 

1.- If z ( t )  E s,, *(z) = 

argmin U: sup ( E [ A ( p ) z +  

+ ~ a ( p ) u ]  + E; ev; 5 -allzlla < 0) 

14 { P E P , ~ ~ Y i l i i i  

2.- I f  z(t )  Sq t h e n  

Theorem 1 T h e  control law U* generated by Al- 
gor i thm 2 has  the  following properties: 

1. It renders the  origin 0 globally asymptotically 

2. Coincides wi th  the  globally optimal control 
stable equilibrium poin t  of (1) 

law w h e n  *(a, p) = V ( z , p ) .  

Remark 1 A suitable choice f o r  8 is given by 
8(z, p) = zTX-l(p)z, where X denotes 0 solution 
t o  t h e  set  of AMIS (10) introduced in section 2. 
Moreover, f r o m  the  E v l e r  Lagrange conditions f o r  

Consider an LPV system with the following state 
space realization: 

] , s = [ o   IT, A = [ O  1 
1 0 . 5 ~ -  1.5 

Cl = J z [ o  1 -1 0 ] , D 1 2 = [ 0  1IT 

P = ( p : O < p < l ) ; g = - 2 , F = 2  
(21) 

It can be easily verified that the following matrix 
function satisfies the AMIs (10): 

X(p)  = Xo + Xip + Xapa 

0.2210 -0.3505 
-0.3505 1.1272 
-0.0239 0.0924 
0.0924 -0.3577 x1 = 

1 0.0243 -0.0683 
-0.0683 0.2180 Xa = [ 

for all p E Fu. Figure 1 trajectories starting 
from the initial condition [0 2IT for the AMI-based 
(zlami , zpam;) and the proposed controller respec- 
tively. The latter was implemented using T = 2 
as horizon and 8 = z T X - l ( p ) z .  For the specific 
parameter history shown there, the receding hori- 
zon controller yields J = 6.91 versus J = 8.30 for 
the control law (ll),  a performance improvement 
of roughly 20%. Similar results were obtained for 
other initial conditions and parameter trajectories. 
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Figure 1: state, control and (normalised) parameter 
trajectories for the Example 

5 Conclusions 

In contrast with the case of linear plants, tools 
for simultaneously addressing performance and sta- 
bility of linear parameter varying systems have 
emerged relatively recently. Moreover, these tools 
are based on sufficient conditions and thus they can 
be arbitrarily conservative. 

In this paper, motivated by some earlier results 
on regulation of LTV systems [12] we propose a 
new suboptimal Z 2  regulator for LPV systems. 
This regulator is based upon recasting the infinite 
horizon regulation problem into a (approximately) 
equivalent finite horizon form, using an idea orig- 
inally proposed in [9] and latter extended to the 
nonlinear case [lo]. The main result of the paper 
shows that this control law is guaranteed to sta- 
bilize the system and yield optimal performance, 
provided that the optimal return function V ( z ,  p )  
is known in a neighborhood of the origin and that 
there is enough time to solve, on line, certain op- 
timization problem. In the second part of the  pi^ 

per we propose a simplified control law that re- 
quires knowing only an approximation IE (rather 
that V ) .  Such an approximation is readily avail- 
able from techniques currently used to deal with 
LPV systems. The main result of this section shows 
that the proposed control law is stabilizing f o r  any 
choice of the horizon TI and, in the worst case, is 
guaranteed to perform no worse than an AMI based 
controller. These results were illustrated with a 
simple example where the proposed controller re- 
sulted in about 20% performance improvement. 

An additional advantage of the proposed frame- 
work is that it can be easily extended to incorpo- 
rate constraints or nonlinear dynamics, proceeding 
as in [lo]. Research in this direction is currently 
being pursued, as well as into incorporating robust 
stability and performance. 
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