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Abstract 

In this paper we study the problem of minimizing 
the ' H a  norm of a given transfer function subject 
to time-domain constraints on the time response of 
a different transfer function to a given test signal. 
The main result of the paper shows that this prob- 
lem admits a minimizing solution in 3-12. Moreover, 
rational solutions with performance arbitrarily close 
to optimal can be found by constructing a family of 
approximating problems. Each one of these prob- 
lems entails solving a finite-dimensional quadratic 
programming problem whose dimension can be de- 
termined before hand. 

1 Introduction 

In many cases the objective of a control system 
design can be stated simply as synthesizing an 
internally stabilizing controller that minimizes 
the response to  some exogenous inputs. When 
these exogenous inputs are assumed arbitrary 
but with bounded energy and the outputs are 
also measured in terms of energy, this problem 
leads to  the minimization of an 3tm-norm of 
the closed loop system. The case where the ex- 
ogenous inputs are bounded persistent signals 
and the outputs are measured in terms of the 
peak time-domain magnitude, leads to  the min- 
imization of an C1/tl-norm. X,-optimal con- 
trol can now be solved by elegant state space 
formulae [5] while L1/.tl-optimal control can be 
(approximately) solved by finite linear program- 
ming [4]. Finally, the case where the input is a 
bounded energy signal and performance is mea- 
sured in terms of the t- norm leads to  the gen- 
eralized 2 1 2  problem [9], also solvable via finite- 
dimensional convex optimization. 

closed-loop system to a given, fixed test input 
(such as bounds on the rise time, settling time 
or maximum error to  a step). In this case, if 
the output is measured in terms of its energy 
the problems leads to  the minimization of the 
closed-loop '&-norm, extensively studied in the 
1960's and 1970's. On the other hand, if the 
outputs are measured in terms of the peak time- 
domain magnitude, it leads to the minimization 
of Cm/tm-norm [3, 10, 11, 12, 7, 6, 13. 
In general, a realistic control problem is likely 
to involve specifications on both the energy and 
peak values of the output. It is well known that, 
for discrete-time stable systems, the 7-12 norm 
is an upper bound of the f? norm. Thus, in 
principle one can try to enforce restrictions on 
the peak value of a (weighted) time-domain re- 
sponse through the minimization of a weighted 
2 1 2  norm. However, this approach can be arbi- 
trarily conservative. 

In this paper we propose a solution to 2 1 2  

problems subject to  time domain constraints 
given in terms of the response to a fixed, given 
signal. The main result of the paper shows 
that these problems admit a solution in 2 1 2 .  

Moreover, we show that computing a ratio- 
nal (and thus implementable) controller yield- 
ing performance €-away from the optimal can 
be accomplished by solving a sequence of finite- 
dimensional quadratic programs. 

2 Preliminaries 

2.1 Notation 
t1 denotes the space of absolutely summable 
sequences h = {hi} equipped with the norm - 

In many cases, following a common practice in l l h l l L 1  lhkl < denotes the Ba- 
engineering, some of the performance require- 
ments are stated in terms of the response of the Ihk I < 00. 
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sup lh;l < o. We denote by lP, the space 

of bounded vector sequences (h(k) E RP). 
In this space we define the norm 1lhlltm I 
s u p I l h i ( k ) l J ~ ~ .  Given a sequence h E .!I, its 

z-transform is defined as H ( z )  = biz-'. In 

the sequel, by a slight abuse of notation we will 
sometimes use the notation llHlltm to denote 

By 'Hz(X2') we denote the Banach space 
of complex valued matrix functions G(z )  
with analytic continuation outside (inside) 
the unit disk, and square integrable there, 
equipped with the usual 3 t z  norm 11G11: G 
s u ~ ~ > ~  & l ~ ( z ) I $ $ ,  where 1 1 . 1 1 ~  denotes 
the Frobenious norm. 72x2 denotes the sub- 
space of ' H z  consisting of real rational transfer 
matrices. 

The projection operator P,, : 'HZ 4 R'Hz is 
defined by 

k/O 

i 
00 

i=O 

Ilhllt- 

7%-1 

P, [G(z)] G G;z-; (2 - 1) 
i=O 

2.2 The 7 l 2  with time domain constraints 
problem 

Figure 1: The 'H2 with time domain 
setup 

constraints 

Consider the system shown in Figure 1, where 
the signal wz E RPy (white noise) and d E R 
represent exogenous disturbances and a known, 
given test signal respectively, U E RP- repre- 
sents the control action, CZ E R"' and Ct E R 
represent regulated outputs, and where y E 
R". represents the measurements available to 
the controller. 

Assume that the generalized discrete-time plant 
P is finite-dimensional, linear time invariant. 
Let T(z) and S(z) denote the closed-loop trans- 
fer matrices from wz to & and from d to &, re- 

spectively, obtained when connecting a stabiliz- 
ing controller from y to U. Using the Youla Pa- 
rameterization, the set of all such transfer ma- 
trices can be parameterized by [13] 

"(2) = Tii(z) + Tiz(z)Q(z)Tzi(z) 
S(z) = Sii(z) + ~12(z)Q(~)~zi(z) 

where T;,, Si, are stable transfer matrices, and 
Q(z) E Xz is the "free parameter" in the param- 
eterization. In order to stress the dependence on 
Q, the notation T(Q), S(Q) is sometimes used 
in the sequel. The parameterization allows for 
precisely stating the ' H 2  with time-domain con- 
straints problem as: 

Problem 1 G i v e n  sequences of upper  and 
lower bounds (ub i )  and {Ib i ) ,  f ind  the  opt imal  
value of t h e  per formance  measure: 

subject t o  lb; 5 (S * d); < ubi, i = 0,1, .  . . and 
the  corresponding optimal controller &* . 

Without loss of generality (by using weight- 
ing functions and absorbing these weights in 
the generalized plant (see [ll] for details)) this 
problem can be recast into the following form: 

Problem 2 Find t h e  optimal value of the per- 
f o r m a n c e  measure: 

Lemma 1 
L e t  T12, Tzl have generically full column and 

row rank respectively, and assume t h a t  a sola- 
t i o n  t o  Problem 2 exists. T h e n  this solution is 
unique. 

In the sequel we solve Problem 2 by constructing 
sequences of super and sub-optimal controllers, 
{Q} and {a} respectively such that the cor- 
responding S(Qi) satisfies IIS(Qi)lll.. < 1 and 
such that IIT(Qi)llz -+ p. 

3 Problem Solution 
3.1 Problem Transformation 
It is a standard result that the parameteriza- 
tion of all stabilizing controllers can be selected 
so that Tlz, Tal are inner and co-inner respec- 
tively and such that R G T12"T11T21- E R'H; 
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[13]. Since the 7-12 norm is invariant under 
pre(post)-multiplication by inner (outer) matri- 
ces, we have that 

where G,, denotes the strictly proper part of 
G G R" and DO its feed-through term. It fol- 
lows that Problem 1 may be reformulated as 
follows. 

Problem 3 

Problem 3 is a convex infinite-dimensional prob- 
lem, for which no closed-form solution is known 
to exist. In this paper, a solution will be com- 
puted by taking the limit of the solution to 
some finite-dimensional minimization problems. 
For notational simplicity, in the sequel we con- 
sider SISO systems, but the proofs generalize 
to the MIMO case at  the price of a more in- 
volved notation. Additionally, by redefining S11 
as S11 - S l z D ~ S a l  if necessary, we can assume 
without loss of generality that DG = 0. 

3.2 Computation of super-optimal solu- 
tions 
In this section, a sequence of finite dimen- 
sional convex optimization problems is intro- 
duced. The n-th problem has U(n) variables, 
and its optimal cost pn satisfies pn 5 p. The 
sequence of problems approximates Problem 1 
in the sense that pn --t p and the partial solu- 
tions converge to the optimal solution (in the 
7-12 norm) as + 00. 

Using the projection operator defined in (2-1), 
consider the optimization problem 

Problem 4 

subject to IIPn(S1 + S2Q)IIt- 5 1. 

subject to 

Theorem 1 Assume that there exists Q E 7-12 

such that llSl+ SzQlltm 5 1. Then E'' t p and 
119" - Q*l12 --+ 0, where Q* E 7-12 is a solution 
to Problem 2. 

3.3 Computation of sub-optimal solu- 
tions 
Theorem 1 shows that a solution to Problem 
2 can be obtained by solving a sequence of 
quadratic programming problems. However, it 
does not furnish information on how to select n 
to achieve some desired error bound. To solve 
this difficulty, in this section we introduce a se- 
quence of suboptimal solutions converging to 
the optimal from above. 

Consider the following finitely many variables 
approximation to Problem 2: 

Problem 5 
n-1 

Theorem 2 jP 1 p and I/&"  - &*I12 -+ 0, 
where Q* E 7-12 is the solution to Problem 2. 

In principle, Problem 5 is a semi-infinite dimen- 
sional quadratic programming problem, since it 
has an infinite number of constraints. However, 
as we show in the sequel, under mild conditions 
only finitely many of these constraints are ac- 
tive. 

Problem 4 can be thought of as a finitely-many 
constraints approximation to the original prob- 
lem, where the constraints are enforced only 
over a finite horizon n. In the sequel we show 
that this problem is equivalent to a finite di- 

Theorem 3 Assume that S2 does not have any 
zeros on IzI = 1. Then Problem 5 is equivalent 
to: 

n-1 

min ~ I I Q T l I $  -n 
c 1 =  

mensional quadratic programming problem. [Qg Q; ... Q2-ll i=d 
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subject to 5 MQ, i = 0 , l . .  . , n and 

where MQ and N are constants that depend 
only on the problem data. 

4 The continuous-time case 

In this section we consider the continuous-time 
counterpart of Problem 2, namely: 

Problem 6 Given upper and lower boundfinc- 
tions ub(t) and Zb(t), find the optimal value of 
the performance measure: 

subject t o  2b(t) 5 ( S  * d) ( t )  5 ub(t),t 2 0 ,  and 
the corresponding optimal controller Q* . 

The main result of this section shows that this 
problem is equivalent to a discrete-time prob- 
lem similar to Problem 2 that can be solved pro- 
ceeding as in section 3. To establish this result, 
begin by introducing the Laguerre functions, de- 
fined as 

, i =  1 , 2  ... V Q i j  s-a <-l 
Zi(S) = - - 

s + a  L + a )  

where a is a positive real. It is a standard fact 
(see for instance 181, Chap. 18) that the family 
{Zi} is an orthonormal basis in 312 .  Therefore, 
any function G(s) E 312 can be expanded as: 

G(s) = I’ili. Since these functions are or- 

thonormal it follows that llGll: = IlI’ill$. In 

the sequel, for simplicity, we will assume that 
Sl ( s )  is strictly proper. Since Q E 3-12 this 
implies that C(&) = SI + S2Q is also strictly 
proper. Let SI, S2, Q, ub and Zb have the follow- 
ing Laguerre expansions: 

00 

i= l  
m 

a=O 

yield the expansion for @(s) = xiEl 4 i l i ( s )  
where 

and Zb(t) 5 (S * d ) ( t )  5 ub(t),t 2 0 . 
lbi 5 q5i 5 ubi , i  = 1, .... Hence Prob- 

lem 6 is equivalent to the following discrete- 
time problem: 

Problem 7 

pt = min f(Q) 
Q E U a  

sabject to lbi 5 l&(z) + .!&(z)Q(z)li 

l,..., where &(z)  = nl,iz-ij 
M 

i = l  

Clearly this problem is similar to Problem 2 (the 
only difference being in the objective quadratic 
function) and thus can be solved using the tech- 
niques proposed in section 3. 

5 Illustrative Example 
Consider the problem of minimizing the 7 - l ~  
norm of the sensitivity function for the unsta- 
ble nonminimum phase system shown in Fig- 
ure 2, subject to a constraint on the peak of 
the control due to a unit-impulse disturbance 
w .  Assume that the transfer function of the 

Figure 2: Block diagram for the example 
00 m 

%(s)  = u ~ , d i ( S ) ,  &(s) = ~ Z , O  u z , i k ( s >  plant is given by P ( z )  = =&. In this case the 

Ub(8)  = Ubi l i (S ) ,  Zb(s) = Ibi l i (5)  ~ / T ’ w ~ ~ ~ 2  = 1.5155’ with IITvwIIl_ = 9.0600. 
Suppose that it is required that the magnitude 

~ ( $ 1  = e,c(S) of the control action must remain below 6 . 8 ,  i.e. 
[ITvw I I l -  5 6 . 8 l .  An inner-outer factorization 

‘Using the techniques in [3] it can b e  shown that 

i=l i=l optimal (unconstrained) TLz  controller achieves 
00 W 

i=l i=l 
m 

i=l 

Straightforward but tedious computations using 
the fact that I ; ( . )  * l j ( s )  = (k+j-l  - k + j )  infQ l l ~ ~ ~ l l t ~  = 6.75 
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of the plant is given by 

1.85 0.084 0.006 
0.086 -0.048 -0.0034 

1.0 0 
11.14 0.48 0.034 

K q t =  [ -0.43 -:” 1 -0.057 

lmoulse resonse of T w  

stape 

Figure 3: Impulse responses of Tu, 

6 Conclusions 
In this paper we consider the problem of op- 
timizing the 3 t z  norm of a given system sub- 
ject to additional specifications given in terms 
of the response to a given test signal. The main 
result shows that both in the discrete and con- 
tinuous time cases this problem admits a so- 
lution in 7&. Moreover, suboptimal solutions 
can be obtained by solving sequences of finite- 
dimensional quadratic programming problems 
until the gap between upper and lower bounds _ -  - _  

of the solution is smaller than a pre-specified 
3233 

tolerance. Additional results show that the se- 
quence of controllers thus obtained converges 
strongly to the optimal solution. 
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