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Abstract 
The mixed 3-12/3-1, control problem can be motivated 

as a nominal LQG optimal control problem subject to 
robust stability constraints, expressed in the form of an 
3-1, norm bound. While at the present time there exist 
efficient methods to solve a modified problem consisting on 
minimizing an q p e r  b o m d  of the 2 2  cost subject to the 
IH, constraint, the original problem remains, to a large 
extent, still open. 

This paper contains a solution to  general continuous- 
time mixed IHz/IH, problems, based upon constructing a 
family of approximating problems. Each of these approxi- 
mations consists on a finite-dimensional convex optimiza- 
tion and an unconstrained standard IH, problem. The 
set oi solutions is such that in the limit the performance 
of the optimal controller is recovered, allowing to estab- 
lish the existence of an optimal solution. Although the 
optimal controller is not necessarily finite-dimensional, it 
is shown that a performance arbitrarily close to the op- 
timal can be achieved with rational (and thus physically 
implementable) controllers. Moreover, t h  computation of 
a controller yielding a performance e-away from optimal 
requires the solution of a single optimization problem. 

1. Introduction 
Consider the system illustrated in Fig. 1, where the 

signals w,(an Za signal) and wp(white noise) represent 
exogenous disturbances, U represents the control action, 
Cm and (2 represent regulated outputs, and where y rep- 
resents the measurements. The mixed R2/3c, control 
problem consists of finding an internally stabilizing con- 
troller u ( s )  = K(s)y(s) such that the RMS value of the 
performance output (2 due to  wz is minimized, subject to 
the specification ~ ~ T ~ o o w ~ ( s ) ~ ~ o o  5 7. This problem was 
originally introduced in [Z] and has received considerable 

attention since. A large portion cf this work (see for in- 
stance [Z, 5, 20, 18, 8 ,  71 and references therein) addresses 
the related problem of minimizing an upper bound of the 
3 t 2  norm, subject to the 3t, constraint. This modified 
problem, having the advantage of leading to a mathemat- 
ically tractable formulation, is based upon the intuitively 
plausible idea that minimizing this upper bound should 
also reduce the actual objective function. Unfortunately, 
this may not be the case; numerical results [l] suggest that 
for some examples the solution to the ‘modified” problem 
may yield an Z2 norm larger than the one achieved by 
the “central” solution to the pure 3-1, problem. These 
examples illustrate the need to develop tools for solving 
the exact ‘M2/‘M, problem. 

I 

Figure 1: The Generalized Plant 

In the state-feedback case, some partial results in this 
directions were presented in [13]. By fixing instead the 
order of the controller, [12]. used Lagrange multipliers to 
find necessary conditions for optimality. Unfortunately 
this approach is prone to numerical difficulties. Moreover, 
the relationship between controller order and achievable 
performance is not clear. 

An alternative approach is to use the Youla 
parametrization to recast the 3-12/%, problem as an in- 
finite dimensional convex optimization [3]. Truncation 
then yields a finite-dimensional problem which is tractable 
[4]. However, at this moment is not clear how to select 

1 Supported in part by NSF under ECS-9211169 and EcS- the truncation horizon and the effect of this choice upon 
9625920 achievable performance. 

3500 



The approach that we pursue in this paper evolves 
from the solution to discrete-time mixed 3-12/3-1, prob- 
lems presented in [17, 141 combined with some of the ideas 
in [15,16]. As in [17, 141 we will show that a suboptimal so- 
lution to the mixed 3-12/3-1, problem, i.e., a solution satis- 
fying the 31, constraint and with performance arbitrarily 
close to the optimal, can be obtained by solving a finite- 
dimensional convex optimization problem followed by an 
unconstrained X, minimization. Furthermore, sharper 
results include the existence of an optimal solution, the 
convergence in the 3-12 topology, and the fact that the 
optimal performance achieved over 3-1, and the smaller 
(and physically more meaningful) space A, (see bellow 
for a definition) is the same. Proofs of these results are 
omitted due to space limitations. 

2. Preliminaries 
2.1. Notation 
Cm denotes the Lebesgue space of complex valued matrix 
functions which are essentially bounded on the j w  axis, 
equipped with the norm: 

11G(s)11, G esssupr(G(jw))  

where F denotes the largest singular value. By R,(X,-) 
we denote the subspace of functions in Cm with a bounded 
analytic continuation in Re(s) > 0 (Re(s) < 0)). 7231, 
denotes the subspace of real rational transfer matrices of 
31, and A, denotes the subset of 3-1, functions contin- 
uous in the closed right-half plane. The norm on 3t, is 
defined by l l G ( ~ ) 1 1 ~  L esssupRL(I1),O~(G(s)). By E2 we 
denote the space of complex valued matrix functions G(s) 
with analytic continuation in Re(s)  > 0 and square inte- 
grable on the j w  axis, equipped with the usual 3 1 2  norm: 

w 

-" . ,  

where 11.llp denotes the Frobenious norm. 
The discrete time counterparts of C", 31, and R2 

will be denoted as C w ( D ) , X W ( D )  and 3-12(D) respec- 
tively, i.e. L w ( D )  denotes the space of complex-valued 
functions bounded on the unit circle, equipped with the 
norm IIG(z)ll, esssupl,l,l i f (G( jw) ) .  'Hm(D) denotes 
the subspace of C"(D) formed by functions analytic in- 
side the unit disk, while 'HwID) denotes the subspace of 
functions analytic outside the unit disk. Note that with 
these definitions stable functions have all their poles out- 
side the unit disk, rather than inside. Also of interest 
in this discrete-time setting is the space of trans- 
fer functions in 3-1, which are analytic inside the disk of 
radius 6, where 6 > 1 (usually 6 R 1). When equipped 
with the norm IIG(z)llm,6 A ~ u p ~ ~ ~ ~ ~ ~ ( G ( z ) ) ,  Z,,s be- 
comes a Banach space. Similarly, the space %2,6 is defined 
as the Banach space of transfer matrices having analytic 

continuation inside IzI = 6 and square integrable there, 
equipped with the norm: 

The Laguerre functions are defined as 
i- 1 

, i =  1,2  ... (1) 
J@ij s - a  l i ( ~ )  = - - 
s + a  ( s + a )  

where a is a positive real. It is a standard fact (see for 
instance [9], Chap. 18) that the family { l i }  is an orthonor- 
mal basis in 3 t 2 .  Therefore, any function G(s) E 3 1 2  can 
be expanded as: G(s) = I'il,. Since these functions 

are orthonormal it follows that llGllg = IlI'ill$. The 

projection operator 'Pn : ?& -+ R3-12 is defined by 

a, 

i=O 

n 

i=l 

2.2. The Mixed N 2 / N ,  Control Problem 
Assume that the generalized plant P is finite- 

dimensional and linear time invariant. Let T(s)  and S(s) 
denote the closed-loop transfer matrices from woo to Cm 
and from w2 to respectively, obtained when connecting 
a stabilizing controller from y to U. Using the Youla Pa- 
rameterization, the set of all such transfer matrices can be 
parameterized by [19] 

T(3) = Til($) - Tiz(s)Q(s)Tzi(s) 
S(s) = Sli(3) - Slz(s)Q(s)Szi(s), 

where Ti, , Si, are stable transfer matrices, and &(s) E 7-fm 
is the ufree parameter" in the parametrization. It is a 
standard result that the parametrization (3) can be se- 
lected so that 2'12, 2'21 are inner and co-inner respectively, 
and there exist 2 ' 1 2 ~ ~  T211 such that [ 2'12 2 ' 1 2 ~  ] and 

[ zL ] are unitary. This will be assumed in the sequel. 

Finally, for simplicity we will assume that all the signals 
involved are scalar, although the results presented here 
can be generalized to the MIMO case (at the cost of more 
involved notation) proceeding as in [14]. In this case (3) 
reduces to 

(3) 

T(3) = Tl(S) - 2'2(s)B(3) 
S(3)  = Si($) - s 2 ( 3 ) Q ( s ) ,  

where Tz(3) is an inner function (Le. T ~ ( - s ) ~ ' : , ( s )  = 
1). This parametrization allows for precisely stating the 
mixed E 2 / E m  problem as: 

Problem 1 (Mixed 7i2/Xm Control Problem) 
Find the optimal value of the performance measure: 

P 2 inf ([IS, - SaQll2  3. 1. 112'1 - ZQllw I 1) 
Q E X m  

and, given B > 0 ,  a controller Q such that i lS(Q) l l2  5 p + e  
and llT(Q)llco 5 1 -  
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Note that from the strict convexity of the 'H2  norm if a 
solution to problem 1 exists then it is unique. In general, 
Problem 1 admits a minimizing solution in 3-1, but not 
in A, [lo], implying that the optimal controller cannot be 
approximated by a rational transfer function. Moreover 
the optimal closed-loop system is in general not exponen- 
tially stable, since exponentially stable functions belong 
to A,. From an engineering standpoint, these undesirable 
properties motivate the following problem: 

Problem 2 (Mixed 3-12/3-1, Control Problem in A,) 

Find the optimal value of the performance measure: 

p~ 5 inf {]IS, - szQllz S. t .  /[Ti - TzQIIm I 1) 
QEAo 

In the sequel we solve these problems by construct- 
ing an optimizing sequence of controllers {Q,} such that 
the corresponding T(Qi) satisfies IIT(Qi)ll, 5 1 and such 
that IlS(Qi)llz * pCL. 

3. Problem Solution 
3.1. Computation of a Solution over 3c, 

In this section, a sequence of finite dimensional convex 
optimization problems is introduced. The n-th problem 
has U ( n )  variables, and its optimal cost p" satisfies p" 5 
p. The sequence of problems approximates Problem 1 in 
the sense that p" 4 p and the partial solutions converge 
to the optimal solution as n + CO. 

Using the projection operator defined in (2), consider 
the optimization problem 

Problem 3 
Find the optimal value of the performance measure: 

and the corresponding optimal controller Q". 

The number n is called the "horizonn in the sequel. 

Lemma 1 Problem 3 is convex and p" 5 p"+l 5 p .  

As a consequence of Lemma 1, kn - /dim. The equality 
pzim = p is established next. 

Theorem 1 
Assume that a feasible solution t o  Problem 1 ezists, and 

that S2 f 0 .  Then p" p and the sequence of solutions 
{Q"(s)} conveTges normally to a solution of Problem 1 .  
Moreover, for a fized n the solution to Problem 3 can be 
found b y  solving a finite-dimensional convez optimization 
problem and an unconstrained 3t, problem. 

~ 
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Since the sequence (Q"} converges normally, so does 
the sequence of truncated closed-loop transfer matrices 
Sn = 7'" [SI - SzQ"]. Moreover, it can also be easily 
shown that the sequence S,, is Cauchy sequence in the 3-12 
topology and hence converges in the '?&-norm. However, 
since normal convergence does not imply uniform conver- 
gence, one cannot de that Q" will provide an approximate 
solution to the problem, even if n is taken very large. This 
difficulty is addressed in the next section. 

4. Computation of a Solution over R'7-t- 
In this section we show that a rational €-suboptimal 

solution to the mixed 7iz/31, problem can be found by 
solving a sequence of truncated problems, each one re- 
quiring only a finite number of elements of the Laguerre 
expansion of S. To establish this result we will show that: 
(i)  Problem 1 can be solved by considering a sequence of 
modified problems; (ii) the optimal cost achievable with 
controllers in R3-1, can be made arbitrarily close to the 
optimum over 3-1, (i.e. p~ = p ) ;  and (iii) a suboptimal 
solution to a modified problem, with cost within E of the 
optimum, can be found by solving a truncated problem. 
We begin by considering the following change of variables. 

4.1. A Change of Variables 

fine the mapping 
Consider a real rational transfer matrix F ( s ) ,  and de- 

a s + a ~  F c ( s )  A F(--), 0 < E ,  a > 0 
l + € U + E S  

This amounts to considering the bilinear transformation 

(4) 
h e - 8  ~. U - s = a - ,  a=- 
E S  - a 1 + E  

that maps the closed left half plane of the s-plane to 
De,  a closed-disk centered at s = -a%, with radius 
r = U%$. Thus if F ( s )  is stable then F C ( s )  has all its 
poles in De.  In the sequel we will denote by X , ( D C )  the 
subspace of 3-1, formed by functions analytic outside D e ,  
equipped with the norm IIFllm,r 2 supaeD, IF(s)l. More- 
over, we will assume that E is selected small enough so that 
z,Sj E 'Kw(Dc) .  Note that from the Maximum Mod- 
ulus Theorem it follows that IIF(s)]lm = IIFc(s)llm,a > 
llF'(s)llw 

4.2. A Modified X 2 / X ,  Problem 
Consider the following modified 7-fz/3t, problem: 

Problem 4 ( Problem 3 t ~ / 7 i ~ , ~ )  Find 

and the corresponding controller Q*, where - denotes clo- 
SuTe. 



Note that the set (Q E : [IT1 - T2Qllm,c 5. 1) is 
compact in the E, topology and thus Q' is well defined. 
Comparing the solution to this Optimization problem for 
decreasing E with the solution to Problem 1 gives the fol- 
lowing result. 

Theorem 2 Given €1 > 0 there ezists E > 0 such that 
C l a I p + e r .  

Corollary 3 (i) pc 2 p ~ .  (ii) The optimal cost of Prob- 
lems 1 and 2 are equal, i.e., p = pR. 

Thus, although the optimal solution of the 7i2/X, prob- 
lem is not generically in A,, the infimum achievable with 
controllers in the closure of RX, is actually equal to the 
optimal cost over X,. 

Finally, we show convergence of the closed-loop sys- 
tems and of the controllers in the X2 topology. 

Lemma 2 Consider a sequence 0 < E; 1 0 .  Then, the 
sequence of corresponding closed loops Si = Si - S2Qi 
converges in the '& topology.  Moreover, if S 2  does not 
have zeros on the jw-azis then the sequence of controllers 
converges in the 7 i 2  topoiogy, i.e. /IQi - Qiiml12 + 0.  

4.3. Computing an Approximate Solution 
From the proof of Theorem 2, if a sub-optimality level 

el  > 0 is given, then for an E which can be computed in 
terms of the data, the solution Q' to Problem 4 satisfies 
p, _< p+~1 .  Moreover, Q* can be approximated arbitrarily 
close by 

where On = ( d l  O2 ... O n )  solves the following 
finite-dimensional convex optimization problem: 

S A .  5(Wc(@n)) 5 1 

where W,(@n) is obtained from W(qn) defined in [17, 141 
through the change of variables 

and where n is larger than some pre-computable bound 
Ne. To see this, solve Problem 4 for a fixed E > 0. If 
Q: & Q;Z;+ (z) Qyair(s) denotes the solution, then 

Tn = 2'1 - T2Qn is such that IIFIloo,c 5 1. Moreover, by 
using the bilinear transformation (4) before performing 
the Youla Parameterization (3) so that Tz is inner over D, 
we have that IIQnlloo,c 5 1 + I I T I ~ ~ ~ , ~ .  Hence, 

n n 

i = l  

Expanding S1 - S2Qn = Czlcr;li, it follows that l ~ ; l  5 (s)i-l M for some constant M , which yields the fol- 
lowing bound for the truncation error: 

By taking n sufficiently large, say n 2 NE, p: approxi- 
mates p, as closely as desired. Note, though, that N, is 
usually very large and hence may not be useful for compu- 
tations. This difficulty can be circumvented by combining 
the upper bound introduced in this section with the lower 
bound introduced in Section 3.1 to obtain sequences of 
suboptimal and super-optimal solutions. 

5. Numerical Example 
In this section we present a numerical example to il- 

lustrate the results discussed above. Consider the system 
with the following state space realization: 

L i  - 1 1 1  1 o J  

The mixed X2/31, problem of interest is to minimize 
/ 1 T ' a W : , I I z  subject to IITcmw,l]oo 5 4-10 

The optimal 3c2 controller yields IITcawal12 = 16.64 
and IITcmw,llw = 6.338. The optimal 31, controller 
yields llTcawaIla = 89.41 and l/Tcmwm[[oo = 2.667. The 
proposed method results in a 7th order controller (af- 
ter model reduction), yielding IIT'awaI12 = 17.81 and 
IITcmw, 11, = 4.041. These results are summarized in Ta- 
ble l. The frequency responses of Tcaw, and Tc,,, with 
different controllers are shown in Figure 2. 

Type Order l l ~ a w a l l 2  IIT'mwmIlm ~ 

optimal 7 i 2  2 16.64 6.338 
oDtimal 7i, 2 89.41 2.667 

Table 1: Comparison of results: mixed 'Ho/'H, problem 

6. Conclusions 
In this paper we have proposed a solution to general 

mixed 7 i2 /7 i t ,  control problems. As opposed to most of 
the literature on the subject (but see the introduction for 
some exceptions) we deal with the ezact 7 i 2  object instead 
of an-auxiliary cost function which over-bounds it. The 
main idea is to construct a family of optimization prob- 
lems and then show that the set of solutions thus gen- 
erated converges, in a rather strong sense, to a solution 
of the original problem. At each step, the optimization 
problems are convex and have a structure which allows 
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Figure 2: Frequency responses of closed-loop system: (a) 
Tcawrr; (b) Tc,w, 

for efficient computations. Our approach provides addi- 
tional new insight into some properties of the optimal so- 
lutions. This includes the fact that, although an optimal 
solution is not in general “well-behaved” since it is not 
continuous on the border of the region of stability (and 
thus the resulting closed-loop system is not exponentially 
stable), the optimal performance can be approached arbi- 
trarily close by a real-rational controller. Moreover, from 
a practical standpoint, our approach allows for finding ex- 
ponentially stable suboptimal solutions with a prescribed 
degree of stability, by selecting e > 0 in Problem 4. 
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