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Abstract 

In this paper we propose an alternative solution to rl-blodr 1' 
problems. This altemativeis based upon the idea of transform- 
ing the I' problem into an equivalent (in the sense of having 
the same solution) mixed ll/'Hm problem that can be solved 
using convex optimieation techniques. The proposed algorithm 
has the advantage of generating, at each step, an upper bound 
of the cost that converges uniformly to the optimal cost. More- 
over, it allows for easily incorporating frequency and regional 
pole placement constraints. Finally, it does not require either 
solving large LP problems or obtaining the zero structure of 
the plant and computing the so-called zero interpolation and 
the rank interpolation conditions. The main drawback of this 
method is that it may suRer from order idation. However, 
consistent numerical experience shows that the controllers ob- 
tained, albeit of high order, are amenable to model reduction 
by standard methods, with virtually no loss of performance. 

1. Introduction 

A large number of control problems involve design- 
ing a controller capable of stabilizing a given linear 
time invariant system while minimizing the worst case 
response to some exogenous disturbances. This prob- 
lem is relevant to for instance disturbance rejection, 
tracking and robustness to model uncertainty (see [8] 
and references therein). When the exogenous distur- 
bances are modeled as bounded energy signals and 
performance is measured in terms of the energy of 
the output, this problem leads to the well known X, 
theory. On the other hand, if performance is mea- 
sured in terms of the peak value of the output, it 
leads to theory. Finally, the case where the sig- 
nals involved are persistent bounded signals, with size 
measured in terms of the peak time-domain values, 
leads to the l1 optimal control theory, formulated by 
Vidyasagar [8, 91, and solved by Dahleh and Pear- 
son in both the discrete and continuous time cases 
[l, 21, by using duality to recast the problem into a 
linear-programming form. 

l1 optimal control theory is appealing because 
it directly incorporates time-domain specifications. 

Moreover, it furnishes a complete solution to the ro- 
bust performance analysis problems [5]. In the SISO 
and 1-Block (i.e. square) MIMO cases, by exploit- 
ing duality theory, the l1 control problem can be re- 
cast into a finite-dimensional optimization problem. 
In contrast, multiblock MIMO problems do not lead, 
in general, to finite-dimensional linear programming 
problems. Rather, at this stage they are solved itera- 
tively, through methods furnishing sequences of upper 
and lower bounds [3]. In principle, one can attempt to 
solve the problem by using finite-dimensional approx- 
imations. This idea leads to the Finitely Many Vuri- 
ables (FMV) method, where the closed-loop system is 
constrained to be an FIR of some given order, and its 
dual the Finitely Many Equations (FME) where the 
dual problem is approximated by a finite-dimensional 
problem. Clearly, the FMV method produces a feasi- 
ble suboptimal solution yielding an upper bound j i  of 
the optimal cost, while the FME yields an unfeasible 
super-optimal solution providing a lower bound p of 
the cost. A combination of the FMV/FME meth<ds 
allows for generating a uniform sequence of lower and 
upper bounds converging to the true optimal, and the 
optimization stops when the difference between the 
upper and lower bounds is smaller than a given toler- 
ance. Although this method is easy to implement, its 
major drawback is that suffers from order inflation, 
leading to high-order controllers. Moreover, if a low- 
order optimal controller exists, it may be missed by 
the method (see [SI). 

An elegant alternative to the FMV/FME method is 
given by the delay augmentation (DA) method, hav- 
ing the advantages of avoiding order inflation (in some 
cases yielding exact solutions) and providing more in- 
sight into the structure of the optimal solutions. Here 
the idea is to augment the plant with delays, in order 
to obtain a one-block problem, whose solution can 
be obtained by using finite-dimensional linear pro- 
gramming. Clearly, the optimal cost for this modified 
problem provides a lower bound p of the optimal cost; 
however, the controller obtainez this way is infeasi- 
ble for the original problem. A feasible controller can 
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be recovered by simply discarding the inputs and out- 
puts associated with the delays. This controller yields 
a cost p that is an upper bound of the true cost. It 
can be shown that, under very mild conditions, the 
lower bound always converges to the true cost. The 
convergence properties of the upper bound are harder 
to ascertain. It is shown in [3] that, when the opti- 
mal solution is such that the first n, rows of the opti- 
mal closed-loop (where nu is the number of controls) 
achieve the optimal norm, then p + po, the optimal 
cost. Under this condition, there exists a sequence 
of optimal closed-loops systems dx that converges 
strongly to the optimal solution. It follows that the 
convergence properties are strongly dependent on the 
ordering of the inputs and the outputs. Thus, a crit- 
ical step in the optimization is to reorder inputs and 
outputs in such a way that the set of input-output 
pairs of minimum order corresponds to the first n, in- 
puts and outputs. Hence, in general the upper bound 
p will not be uniformly non-increasing as N increases. 

In this paper we propose an alternative solution to 
4-block l1 problems. This alternative is based upon 
the idea of transforming the I 1  problem into an equiv- 
alent (in the sense of having the same solution) mixed 
ll/R, problem. Using the methods in [i'] this lat- 
ter problem can be solved by solving a sequence of 
problems, each one consisting of a constrained con- 
vex optimization problem and an unconstrained 'H, 
problem. The proposed algorithm has the advantage 
of generating, at each step, an upper bound of the cost 
that converges uniformly to the optimal cost. More- 
over, it allows for easily incorporating frequency and 
regional pole placement constraints. Finally, it does 
not require either solving large LP problems or ob- 
taining the zero structure of the plant and computing 
the so-called zero interpolation and the rank interpo- 
lation conditions. The main drawback of the method 
is that it may suffer from order inflation. However, 
consistent numerical experience shows that the con- 
trollers obtained, albeit of high order, are amenable 
to model reduction by standard methods, with virtu- 
ally no loss of performance. 

The paper is organized as follows: In section 2 we 
introduce the notation to be used and some prelim- 
inary results. In section 3 we show that, when suit- 
ably modified, the l1 problem is equivalent to a mixed 
ll/'H, problem, that in the limit solves the original, 
unmodified problem. Here, we also recall the main re- 
sult of [7], showing that this modified problem can be 
reduced to a finite-dimensional convex optimization 
and an unconstrained 'Hm problem. The applicability 
of the method is illustrated in section 4 with a simple 
design example. Finally, in section 5, we summarize 
our results and we present some concluding remarks. 

2. Preliminaries 

2.1. Notation and Preliminary Results 
Given a matrix A, we denote by Ai its i-th row. 

For z E Rn we define IzI as the vector with compo- 

nents Iql. We denote the 1-norm as l1zll1= Izil 

and the infinity norm as 1 1 ~ 1 1 ~ =  m q  [ail. 11 denotes 
the space of absolutely summable sequences h = {hi} 
equipped with the norm Ilhlll= \hi1 < 00. 1 ,  

denotes the space of bounded sequences h = (a} 
equipped with the norm llhllo. G s u p l a ]  < 00. We 

denote by l', the space of bounded vector sequences 
(h(k) E P}. In this space we define the norm 
Ilh(lo. supIlh(k)llo.. Assume now that H : Z& + 

ZP, is a bounded linear operator defined by the usual 
convolution relation y = H * U. If we denote by H ( k )  
the Markov parameters of H, its induced l& -+ 1% 
norm is given by: 

A n  

i=O 
A 

A m  

i = O  

i > O  

i 

C, denotes the Lebesgue space of complex val- 
ued matrix functions which are essentially bounded 
on the unit circle. 3-1, denotes the space of trans- 
fer matrices G(z)  E C, which are analytic outside 
the unit disk, equipped with the norm 11G(~)11~ A 

sup (G(eje)), where 5 denotes the largest singu- 
o g < T  
lar value. 

Next, we recall two well known properties relating 
and 11 norm of a stable, finite-dimensional, the 

linear time-invariant (FDLTI) system: 

Lemma 1 Let G be a p x m stable FDLTI system, 
with McMillen degree n. Then: 

2.2. The MIMO I' Optimal Control Prob- 
lems 

By using the YJBK parametrization of all stabi- 
lizing controllers [1][10], the MIMO discrete-time Z 1  
control problem can be recast into the following norm 
minimization form: 

Problem 1 
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where T11 E l;fsXnwl T12 E FXnm and Tzl E l~yxnw, 
and where n,,, %, n, and n,, are the dimensions of 
the output available to the controller, the exogenous 
disturbance, the performance variable and the control 
input respectively (see [3] for details). Existence of a 
solution is guaranteed if T12 and Tal do not have aeros 
on the unit circle. 

Remark 1 B y  using duality theory, problem (1) can 
be recast into a h e a r  programming problem. How- 
ever, in contrast to  the l-block case, in the 4-block 
case both the primal and the dual problems have an in- 
finite number of variables and constraints. The reader 
i s  referred t o  [3] for an eztensive treatment of multi- 
block problems and in particular the conditions un- 
der which these problems admit an ezact solution with 
finite-support. 

3. Main Results 

In this section we propose a method, based upon 
convex optimization, for solving problem (1). The 
main idea of the method is to recast (1) into an equiv- 
alent mixed ll/?i, problem, which can be solved by 
exploiting the results in [7]. 

Lemma 2 Assume that p, & inf IIT,, - 
QE If' ' "y 

T12QT2llll 5 7.  Then the 1' optimal controlprob- 
lem ( I )  i s  equivalent to  the following mized 11/3t, 
problem: 

Problem 2 Find: 

Proof: The proof follows immediately f r o m  Lemma 1 
by noting that at the optimum the X, constraint is 
inactive. 

Remark 2 Lemma 2 states that i f  an upper bound 
of the  optimal 11 cost i s  available, it can be used to  
transformproblem (1) into (2). This bound can be ob- 
tained, for instance, by finding the optimal ?i, con- 
troller for the plant and then using the second part 
of Lemma 1. Alternatively, this upper bound can be 
obtained by using the F M V  method. 

Next we recall the main result of [7] showing 
that problem (2) can be solved by solving a se- 
quence of problems. Each one entails solving a 

finite-dimensional constrained convex optimi~ation 
and a standard ?i, problem. In this section we 
briefly review this result, established by showing 
that: i) ( l l / X , )  can be solved by considering a se- 
quence of modified problems; ii) Given e > 0, an e- 
suboptimal solution to the modified problem can be 
found by solving a truncated problem; and iii) this 
truncated problem can be decoupled into a finite- 
dimensional constrained convex optimization and an 
unconstrained 7 i ,  problem. 

Let R?it,,6 denote the subspace of transfer ma- 
trices in RX, which are analytic outside the disk 
of radius 6, 0 < 6 < 1, equipped with the norm 
llG(z)llw,6 sup 3 (G(6ej')), and consider the fol- 

lowing modified problem: 
o<egr 

subject to: 

where 0 < 6 < 1. 

Remark 1 Without loss of generality, it can be as- 
sumed that T12 and Tal are respectively inner and 
co-inner in R77!wl6 (i.e. Ti2($) T12(6~) = I 
and T21(6z) Ti,(-&) = I ,  where indicates trans- 
pose). Moreover, i f  TlZ(T21) i s  not square, it i s  
possible to  choose Tla~(T21~) such that T1Z0 = 
[TIZL T1z](Ti10 = [Ti,, T!,]') i s  unitary in 
R?iw,6. This  can be accomplished by using the 
change of variable z = 62 coupled with a standard 
inner-outer factorization (see [7] for  details). 

Remark 2 From the maz imum modulus theorem, ,> 

lows that any feasible transfer matriz for Problem 2 
i s  also feasible for Problem 3. Since both problems 
have the same objective function, it follows that i.4 
is an upper bound for p,. The same reasoning also 
shows that Pa, 2 P62 whenever 61 < 62. 

11T11 - T12QT2lllm I 11% - T I ~ Q T z I ) ~ ~ , ~ .  I t  for- 

Lemma 3 Consider a n  increasing sequence Sj --* 1. 
Let p,, and Pa; denote the solution to  problems (2) 
and (3) respectively. Then  the sequence Phi * pa. 

Proof: see Lemma 1 in ['?I. 
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Theorem 1 Let G = T2la<1T1la,  where <1 = 
Ti,(&). Swppose G has a state space realization: 

Then, a suboptimal solution to  the mixed f 1 / 7 i = , 6  
control problem, with cost pi ,  pg I p: 5 + E ,  

-.A, 

. VAN+ yAN-' Ba .. .yABay3, yAANe1Bb y A N - ' 3 b  .. .#AB* y 3 b  . 
C,AN-1xC,AN-2B, .  . .C,B,D,,C,AN-aBbC,AN-SBb.. .C,Bb Dab 
C , ~ ~ - z x C , ~ ~ - ~ B o . .  . D,, C a ~ ~ - ~ ~ b ~ , ~ ~ - ' 3 b .  .. D~~ 

. . . .  . . .  
6 . I .  ; 

C b A N - 2 Z C b ~ N - S B a * . .  Dbr 0 CbA"SBbCbAN-'Bb''* Q; QT 

. . .  . .  , .  . . .  
Cax Daw 0 * . .  0 Dbb 

C ~ A N - ~ ~ C ~ A N - ~ B ~ . .  . C ~ B , I ) ~ , C ~ A . N - - ~ B ~ C ~ R N - S B ~ .  . . c ~ B ~  Q; 

. . .  . . . .  . . .  . . .  . . .  . . .  
CbX o b ,  0 0 Q f  QT ...... QZ-1- 

is given by  Q0 = Q$ + z - ~ Q ~  ,where Q& = 
r Q~ o . . . o  1 

It is clear that at  each stage the algorithm produces 
Note 

that the 7-l, constraint subsumes information on the 

N, rather than just truncating the objective ( as in 

an upper bound of the true optimal 11 cost. 

behavior of the objective function after the horizon 

the FMV method). 

N- 1 &I Q o . * *  0 
solves the follow- I : *. .  

c ~ ~ 2 - i ; ~  - = 
i=0 

1 Q N - ~ * - * * * * Q ~  1 
ing finite dimensional convex optimization problem: 

--Il&lla I T  

and QR(z)  solves the approzimation problem 

Q & = argmin IITi1 ( z )+Tiz  (z)Q %Tar ( z ) + z - ~  TIZ ( z )Q ~ T z i  ( . ) I  1 o3 ,J 
QREa?-l , ,6  

where: 

and where, for notational simplicity, we defined: 

3.1. Solution to MIMO 1' Problems 
Combining the results of Lemmas 2, 3 and Theo- 

rem 1, it follows that a solution to MIMO 4-block I' 
problems can be obtained using the following algo- 
rithm: 

1. 
2. 

3. 

4. 

Data: a sequence 6i -+ 1, iii < 1. 
Find an upper bound yj such 

U 

. . . . . .  
upper bound can be found using for instance 
the change of variable z + Sz and the FMV 
method (or standard 7-1, methods). 
Solve the mixed l1/7im,8 problem using Theo- 
rem 1 
Repeat until the 11 cost is sufficiently close to 
a lower bound (obtained for instance using the 
FME or DA methods). 

Q f Q l =  
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The objective is to design a compensator K to mini- 

where S denotes the sensitivity func- 

tion and the weights are chosen as W1 = 0.01 and 
W2 = (y [3] for details). In order to ob- 
tain a discrete-time problem, the plant is discretized 
via a zero-order hold at  the inputs and sampling at 
Ts = &. Constraining all the closed-loop to the 
interior of the 6 = 0.967 disk vields N = 100 and 

WIKS = 4.08. Model reduction yields the fol- II was // 1 
lowing 6tK order controller (with the same perfor- 
mance): 

K ( z )  = 
- 73.S73Sz6+32.3619z6+134.8z4-4S.0132z~- 116.146z2+S6.8364z- 16.3469 

r e  + 0.0612zS - 0.334124 - 1.1922~s - 0.6960~2 + 0.77662 + 0.3936 
The frequency response of the controller is shown 

in Figure 1. It is interesting to compare this con- 
troller with the controller obtained in [4] using the 
DA method. Both controllers have the same order 
and similar frequency responses. The controller in [3] 
achieves a higher I1 cost (4.1) while placing a closed- 
loop pole within of the unit circle. Thus, it 
can potentially lead to large settling times. On the 
other hand, the controller obtained using our proce- 
dure places all the poles within the 6 = 0.967 disk, 
and lower cost is achieved. Note also in passing that 
the large value of N in this example is partially due 
to the open loop pole very close to z = 1, due to the 
choice of weighting functions. 

io* 106 10.‘ 10“ 10“ 1w‘ 100 10’ 
h - M  

Figure 1: frequency response of the controller 

5. Conclusion 

Z1/3-1, problem. Using the methods in [7] this lat- 
ter problem can be solved by solving a sequence of 
problems, each one consisting of a finite-dimensional 
constrained convex optimization problem and an un- 
constrained 3-1, problem. The proposed algorithm o 

has the advantage of generating, at  each step, an u p  
per bound of the cost that converges uniformly to 
the optimal cost. Moreover, it allows for easily in- 
corporating frequency and regional pole placement 
constraints. Finally, it requires neither solving large 
LP problems nor obtaining the zero structure of T12 

and T21 and computing the so-called zero interpola- 
tion and the rank interpolation conditions. The main 
drawback of the method is the fact that it may suf- 
fer from order inflation. However, consistent numer- 
ical experience shows that the controllers obtained, 
albeit of high order, are amenable to model reduc- 
tion by standard methods, with virtually no loss of 
performance. 

We believe that the proposed method provides a 
useful alternative to Delay Augmentation, specially 
for cases where the number of inputs or outputs is not 
small. In these cases, DA will tend to result in larger 
L P  problems, and it may require a large number of 
trial and error type iterations (reordering inputs and 
outputs) in order to satisfy Che sufficient conditions 
for convergence of the upper bound. 
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