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Abstract

A successful controller design paradigm must take into
account both model uncertainty and design specifications.
Model uncertainty can be addressed using either Hoo or £1
robust control theory, depending upon the uncertainty char-
acterization. However, these frameworks cannot accommo-
date the realistic case where the design specifications include
both time and frequency domain constraints. In this paper
we present a design procedure for suboptimal £} /H con-
trollers. These controllers allows for minimizing the worst—
case peak output due to bounded persistent disturbances,
while, at the same time, satisfying an H o —norm constraint
upon some closed-loop transfer function of interest. The
main result of the paper shows that rational mixed £!/Heo
suboptimal controllers can be obtained by solving a sequence
of problems, each one consisting of a finite—~dimensional con-
vex optimization and a standard, unconstrained Hoo prob-
lem.

1. Introduction

A large number of control problems involve designing
a controller capable of stabilizing a given linear time
invariant system while minimizing the worst case re-
sponse to some exogenous disturbances. This problem
is relevant for instance for disturbance rejection, track-
ing and robustness to model uncertainty (see [1] and ref-
erences therein). When the exogenous disturbances are
modeled as bounded energy signals and performance is
measured in terms of the energy of the output, this
problem leads to the well known Ho, theory [2]. This

framework, combined with u—analysis [3] has been suc--

cessfully applied to a number of hard practical con-
trol problems (see for instance {4]). However, being a
frequency-domain based method, H.. can address only
a subset of the common performance requirements.

The case where the signals involved are persistent
bounded signals leads to the {; optimal control theory
(1,5-7]. These methods are atiractive since they allow
for an explicit solution to the robust performance prob-
lem [8]. However, they cannot accommodate some com-
mon classes of frequency domain specifications (such as
H3z or Heo bounds).

1 Supported in part by NSF under grant ECS-9211169

Franco Blanchini

Dipartimento di Matematica e Informatica

1613

Universita degli Studi di Udine
Via Zannon 6, 33100, Udine, Italy
blanchini@uduniv.cineca.it

Finally, in [9] a solution was given to a discrete-time
mixed I, /Hoo problem, where the l; norm of the closed-
loop transfer function between an input-output pair
of signals is minimized, subject to an He constraint
upon the transfer function between a different pair of
signals. Although this result represents an important
step towards developing a metodology capable of han-
dling mixed time-frequency domain specifications, it
does not presently have a continuous-time counterpart.
Conceivably, this difficulty could be solved by using a
discrete-time controller, designed using the theory de-
veloped in [9], connected to the continuous-time plant
through sample and hold devices [10-13). However, the
use of sample and hold elements usually entails a perfor-
mance loss, which may be significant, since the control
is constrained to remain constant during the sampling
period.

In this paper we propose a method to design ratio-
nal suboptimal £} /H, controllers for continuous—time
systems. This method is based upon solving an auxil-
iary discrete-time Iy /Hoo problem [9], obtained using
the simple transformation z = 1 + rs, and then trans-
forming back the resulting controller to the s domain.
Thus it only entails solving a finite dimensional con-
vex constrained optimization problem and an uncon-
strained Ho, problem. The main results of the paper
show that: i) the performance of the resulting closed-
loop continuous-time system is bounded above (both in
the frequency and time domains) by the performance
of the auxiliary discrete-time system used in the de-
sign; and ii) optimal performance is recovered as the
parameter 7 — 0.

The paper is organized as follows: In section II we
introduce the notation to be used and we give a for-
mal definition to the mixed £!/Ho control problem.
Section III contains the bulk of the theoretical results.
Here we introduce the discrete time Euler approximat-
ing system (EAS) and we show that the peak values of
the time and frequency responses of the EAS are upper
bounds of the corresponding continuous-time quanti-
ties. As an immediate consequence, it follows that sub-
optimal L!/Me controllers with guaranteed cost can
be designed by applying li/He theory to the EAS.
In section IV we present a simple design example and
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we compare our controller to the unconstrained optimal
Hoo controller. Finally, in section V, we summarize our
results and we indicate directions for future research.

2. Problem Formulation

2.1. Notation

By Lo(jR) we denote the Lebesgue space of com-
plex valued transfer functions which are essen-
tially bounded on the imaginary axis with norm

IIT(s)ll»és\;p IT(jw)l. Ho(jR) (Hes(iR)™) denotes

the set of stable (antistable) complex functions G(s) €
Lw(jR), i.e analytic in R(s) > 0 (R(s) < 0). Sim-
ilarly, Loo(T) denotes the Lebesgue space of complex
valued transfer functions which are essentially bounded

on the unit circle with norm ”T(z)“mésup IT(e7)],

and Heo(T) (H%(T)) denotes the set of stable (an-
tistable) complex functions G(z) € Lwo(T), ie an-
alytic in |z| > 1 (|z] < 1). C£!'(R;) denotes the
space of measurable functions f(t) equipped with the

norm: ||f|li = [f(t)ldt < oo ; similarly I' denotes
0

the space of real sequences, equipped with the norm
o

Rl = 3 |hal < oo. The prefix R will be used to
k=0

denote subspaces consisting of rational transfer func-
tions. Given a sequence h € l; (a function h(t) € L')
we will denote its z2-transform (Laplace transform) by
H(z) (H(s)). By a slight abuse of notation given
H(z) € RHoo(T) (H(8) € RHeo(jR)) we will denote
OIS LN (OIS IO
Given two transfer matrices T = Tu Ta
T T
with appropriate dimensions, the lower linear fractional
transformation is defined as:

and Q

F(T, Q)éTu + T2 Q(I - TzzQ)-szx

For a discrete-time transfer matrix G(z), we define

its conjugate as G'éG’(%), where ’ denotes transpose.
Similarly, G*(s) = G'(—3). Finally, throughout the pa-
per we will use packed notation to represent state-space
realizations, i.e.

G(s)=C(sl — A)™'B + D2 (M—B)

c| b

2.2. Statement of the Problem

Consider the system represented by the block dia-
gram 1, where the scalar signals we (2 bounded en-
ergy signal), w), (a persistent £* signal) and u rep-
resent exogenous disturbances and the control action
respectively; and (e, {1 and y represent the regulated
outputs and the measurements respectively. Then, the
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mixed £ /Ha control problem can be stated as: Given
the nominal system (S), find an internally stabilizing
controller K(s) such that worst case peak amplitude of
the performance output ||(1||co due to signals inside the
L'-unity ball is minimized, subject to the constraint
“T(oc"’co ”°° S v

Figure 1: The Generalized Plant

2.3. Problem Transformation

Assume that the system S has the following state-
space realization (where without loss of generality we
assume that all weighting factors have been absorbed
into the plant):

A I B]_ Bz Ba

(&) Dii D1z D (5)
C, D2y D2z Do

Cs Dsy Dsz Das

where D, has full column rank, Ds; has full row rank,
and where the pairs (A, By) and (Cs, A) are stabiliz-
able and detectable respectively. It is well known (see
for instance [14]) that the set of all internally stabiliz-
ing controllers can be parametrized in terms of a free
parameter Q € Heo as K = Fi(J,Q) where J has the
following state—space realization:

A+ ByF +LCs +LDssF | -L Bs+LDss
F o I
—(Ca +D33F) I ~Dsy

()
and where F and L are selected such that A+ By F and
A+ LCy are stable. By using this parametrization, the
scalar closed-loop transfer functions T¢o, wee 8nd T¢,w,
can be written as:

Toowoo (8)
Teyuy (")

T (s) + T5° (8)Q(s)

Ty(s) + Ta(5)Q(s) (1)

I

where T;, T, Q are stable transfer functions. Moreover
(see [14]), it is possible to select F and L in such a way
that T7°(s) is inner (i.e. T7°"T5° = I). By using this
parametrization the mixed £! /Mo problem can be now
precisely stated as solving:

°= inf ||Te,w
u QERH o “ < 1"1 (2

5. t. ITE(3) + T2()Q(0)] < 7



3. Problem Solution

In this section we present a method for finding sub-
optimal rational £'/He controllers, based upon the
use of discrete-time lj /Ho theory. The main result
of this section shows that suboptimal controllers, with
cost arbitrarily close to the optimum, can be found by
solving & finite-dimensional convex constrained opti-
mization problem and an unconstrained Heo problem.

3.1. Definitions

Definition 1 Consider the continuous time system
(S). Its EBuler Approzimating System (EAS) is defined
as the following discrete time system:

I+rA B, rB2 7TBs
C Dy, Dz Dy EAS
C; D21 D2z Das ( )
Cs D3y, Disz Dss

where > 0.

3.2. Properties of the Euler Approximating
System

In this section we recall some properties of the EAS.
The main result of this section shows that the l; and
Heo norms of the Euler Approximating system are
upper bounds of the corresponding continuous-time
quantities. Moreover, these upper bounds are non-
increasing with 7 and converge to the exact value as
T — 0.

Theorem 1 Consider the system:

z Az + Bav

( = sz + Dzz‘v (3)
Assume that the corresponding (EAS):
zupr = (I + TA)zi + TBava (4)

Cr = Cazp + Daavs

is asymptotically stable. Then, the system (4) is asymp-
totically stable and such that:

ITeu(a)ih = sup  ji¢(t)lleo
vece, |lvliss

g = 5
TEA = sup ol O

e s
Conversely, if (4) is asymptotically stable and

][Tc,,“;éyc then for all p > u. there exists v > 0 such
that for all 0 < 7 < 7° the EAS (4) is asymptotically
stable and such that ||T§f"s)(z,‘r)||1 < p.

Proof: See [15]
Lemma 1 Consider a strictly decreasing sequence

7 — 0, andlet u; = ||TEAS(z,7:)|l1. Then the se-
quence p; i3 non—increasing and such that pi — || T¢o || -
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Proof: See [15]

Next we show that the ||.|looc norm of the transfer
function of the EAS provides an upper bound of the
|llec norm of the transfer function of the continuous—
time system.

Lemma 2 Assume that (4) is asymptotically stable
and consider a strictly decreasing sequence geqr; —
0. Let T¢y(s) denote the transfer function of (4) and
Tg,‘s(z,r;) the transfer function of the EAS corre-
sponding to ;. Then:

1Teo (8o
IITé"S(z.T")IIm
Jlim I, v (2,10

ITEAS (2,70 ¥ 4
IT5A% (2,75 lew § > §
1 Tev (#)ll0

HIAIA

(6)

Proof: The proof, omitted for space reasons, follows
from applying the maximum modulus theorem to the
disks C;, centered at s = ! with radius %, and to the
closed RHP. :

Combining the results of Theorem 1 and Lemmas 1
and 2 yields the main result of this section:

”Tfoo“‘uo (’)“°° =

oo

Yo < . Consider a strictly decreasing sequence ;i — 0,
and the corresponding EAS(7:). Let

Theorem 2 Assume that inf
QERH

R : BAS) .
woo=nf TN )l

1T¢ 0o we lloo S7 )
Ho = Qeﬂ!)xili(:il) 1Ty s ()]s

0T¢ 0o woo lloo S

Then the sequence u; is non—increasing and such that
Bi — p°.

Proof: Given a controller K(z,7;) that internally stabi-
lizes EAS(7), let Sa(K,z,7:) denote the closed-loop
system, and T¢,u,(K,2,7) and T¢pwe (K, 2,7i) the
corresponding transfer functions. Assume that K(z,7:)
is such that | T¢, wee (K, 2, )]l < 7. Given any j > 4,
consider the controller K(z) obtained from K; using
the change of variable z — (1+ M;‘;‘—Q) and the corre-
sponding closed-loop system Sa(K, z,7;). Since j > i,
it follows from Theorem 1 that S.i( K, z, ;) is internally
stable. Moreover, from Lemma 2 we have that:

||T¢mwa(Kl zl"’.’l‘)""a s ”TC&‘"w(Klzrf‘l)”W S Y (8)

Hence, K is a feasible controller for EAS(r;). From
Theorem 1 we have that:

”Tﬁ'ﬂx(i(:zvri)"’- STty wy (K, 2, m0)ll0 (9)
It follows then that
M = inf T¢ w, (Ky 2,75l <
HT¢ 0o wao S7
Bi = inf {|Te w, (K k7l for 3 >4
1T¢ 00 woo S
(10)



Since 4; is a non-increasing sequence, bounded be-

low by po, it has a limit 4 > p,. We will show

that 2 = po by contradiction. Assume that g >
a- _ : 3 00

fo and define e=g — uo. Since Qex%t‘;te. 1T (8) +

T5°(8)Q(8)]lo < 7, there exists @1 € RHo such that
1T () + T2(2)Q(s)llec = 7 < 7. From the defini-
tion of p. it follows that there exists Qo € RH oo such
that [|T°(s) + T5°(8)Qo(8)lleo < v and ||T¢,u, (8)lh <
po + & Let Q2Q. 4+ n(Q: — Qo). It follows that:

1Ty +T2Qllh £ #°+ § +nlT2(Q1 - Qollx

1T + Tz‘”é”w < AT + anQl-”N

+ (1-IT® + T3°Qolleo < ¥
(11)

Hence, by taking n small enough we have that the con-

troller K = Fi(J, Q) yields ||T¢,w, (8)lls < po + ;e and

1Tt oo wao (8)lleo < ¥. It follows, from Lemmas 1 and 2,

that for v small enough we have:

""(R)é”T(xwx(i{rsz)”l < Bot %5 (12)
”TCneWoo(K! z, T)"‘X’ S ki

Where K(z)2K(s)|s=14rs. Hence p(K) < i which

contradicts the definition of 2

[w]

Remark 1 Theorem 2 shows that the L'/Ho probd-

lem can be solved by solving a sequence of discrete~time

li /He problems, each one having the form:
un° inf 1Ty + T2Q|x

QERHoo(T)
IT ST Qoo <7

(1 /Hen)
where T, T € RHoo(T).

3.3. A Suboptimal Solution to SISO Mixed
li/Hew Problems

In [9] it was shown that a rational suboptimal so-
lution to the mixed !} /He problem, with cost arbi-
trarily close to the optimum, can be found by solving a
finite-dimensional convex optimization problem and an
unconstrained Ho problem. In this section we briefly
review this result:

Lemma 8 (9) Given § < 1, let 'H.,,;.e-{Q(z) €
Heo: Q(z) analytic in|s| > §}, and consider the follow-
ing modified I, /Ho problem:
inf
QERH g8
ITE ()4 T5° (R0l 2 gy 5 S7

Hé = “Tﬁ'ﬂl"l (II/HN-‘)
where uonu,.,.,é]sw;p 1Q(z)l.  Then s >
z|=6

Em ps = po.
§—1

ko and

Next, we recall the main result of [9], showing that if
(li/Hoo,s) is feasible, then a rational suboptimal solu-
tion, arbitrarily close to the optimum, can be found
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by solving a truncated problem. Moreover, solving
this truncated problem only entails solving a finite~
dimensional convex optimization problem and an un-
constrained Ho problem.

Theorem 3 Given ¢ > 0, a suboptimal solution to

(l/Heo,6), with cost p§ such that ps < pf < ps +e¢
N-1 .

is given by Q° = Q% + 27 NQ} where Q3 = Y @iz ™Y
=0

¢° = (go...gn-1) solves the following finite dimen-

sional convez optimization problem:

qv° = argmin |it; + Tqlh (13)
g€ RY

lQlls < v

and Q% solves the unconstrained approzimation prob-
lem:

Qh(z) = argmin [|G(z)"+ Q% + 27V Qr(2)lw.s

QRERM o, s
(14)
where:
Ag b
GAT T 2 ( ) (15)
ca | do
and @ =
yAgz yAg“bq yAgba vb
cgAR "'z AN cgbe dg+ q

cgAy T’z cgAR dg + 9o aQ

N2
N1

N3
dN-2

cgbg dg+aq
de + 9 Qu

cghgz
cgz

where X > 0 and Y > 0 are the discrete controllability
and observability grammians of G; z and y are the pos-
itive aquare roots of X and Y respectively; N is selected
such that:

loge(l =§)—logK
N2 (16)
K = |TP)le.s + 1T llos (7 + IG | 00,6)
and:
L = (t10 tinog)
t20 0
t2 t20
T & N an
tan_y t2,
q 2 (g an-1 )

where t;, denotes the k** element of the impulse re-
sponase of Ti(z)

Proof: The proof follows from combining Lemma 3 in
[9] with the corollary to Theorem 3 in [17].



3.4. Proposed Design Method

From the definition of the EAS it is easily seen that
the closed-loop transfer function obtained by apply-
ing the rational controller K(s) to (5) is the same as
the closed-loop transfer function obtained by applying
the controller K(2:1) to the EAS, up to the complex
transformation z = ra + 1. Therefore, if a rational
compensator K(z) yielding an l; /Ho cost g is found
for the EAS, then K(7s + 1) internally stabilizes (S)
and yields an £'/Ho cost u. < pa. It follows that
a rational compensator can be synthesized using the
EAS with a suitably small 7. These observations are
formalized in the following lemma:

Lemma 4 Consider the mized L' /Hoo control problem
for SISO continuous time-systems. A suboptimal ratio-
nal solution can be obtained by solving a discrete~time
mived l; /Heo,s control problem for the corresponding
EAS, with § = 1 — 2. Moreover, if K(z) denotes the
Iy /Hoo controller for the EAS, the suboptimal L* [Heo
controller is given by K(rs+ 1).

Finally, we show that by taking 7 — 0, the proposed
design method yields controllers with cost arbitrarily
close to the optimal £ /H e cost.

Theorem 4 Let 7; — 0 be a strictly decreasing se-
quence. Denote by K; the controller obtained using
the design procedure of Lemma 4 with + = 7; and
by T¢,w,(s, Ki) the corresponding closed loop trans-
fer function. Then the sequence u.é”T;,w,(l, Ky s
non-increasing and such that lim u; = go.
31—+ 00
Proof: Using an argument similar to the proof of The-
orem 2, it can be easily shown that the sequence u; is
non-increasing, bounded below by u,. Let fté Em p;.
=00

To complete the proof we need to show that g = u,.
Assume to the contrary that & > u, and letveéﬁ - lo.
Proceeding as in (11)-(12), we can find an internally
stabilizing controller K(s) such that:

1Ty wi (8 KDlls < po+ 7 (18)
(1 T¢00 wao (8 K)lleo < ¥

From Theorems 1 and 2 it follows that there exists m,
such that the closed loop EAS obtained using the con-
troller K(1 + 7138) satisfies:

B(E)R | Teyun (K, 2,7l € bo + he

19
“T(uoweo(K)zy'rl)"cn <% ( )

Moreover, all the poles of the closed-loop continuous—
time system are contained in (i, a disk with radius
%, centered at s+ = —L. Let C(r) denote the disk

centered at =l with radius Since the closed-

loop system is internally stable, there exists 7 such that

all the poles of T¢,, w., (8) are contained in the region

C(r) N Ci. Since T¢oue, (8) is analytic outside this re-

gion 804 [Tewuen (517 )0 = 39 [Tmum (o)) < 7, it
2€8C,y

1-73

et
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follows from continuity, that there exist r small enough

such that sup [T¢eweo (8)| € v. Hence, from
+€8(C1nT())

the maximum modulus theorem we have that:

”T(‘“w,,(z, T)”‘Hoa.l = I‘}'PJ ,TCeeWeo (zi ‘r)l
z|=
= sup ITcnoWw(l + T’)l
5€8C(1)

< sup
2€8(C,nC(7))

[Ttwowee (1 +T8)| S ¥

(20)
It follows then that K(z), z =1+ 74, is an admissible
controller for problem I /H oo s, yielding a cost u(K) <
Bo + § < ji and hence, for 7; < T we have:

i < “(r) = u}(f "T(xwx(K1z)T)“1

1T o0 woo lloe S7
< WK)<Lpo+ 3
(21)

But, since the sequence u; is non-~increasing this con-
tradicts the assumption that 4= lim g; = po +¢€.
1=+ 00

o

4. A Simple Example

Consider the SISO plant used in {6, 15)

s—1
22
-2 (22)

The controller that minimises ||T||; é”PC(l.,_p(;)—i I
is given by:

_ (3 =2)(1.7071 — 4.12130-88142) (23)
T (s — 1)(—0.7071 + 4.1213e~0-88145)

and yields T'(s) = 1.7071—4.1213¢~°-%*"** with || T, =
5.8284. It is easily seen that S(2)2(1 + PC)™* =
0.7071 + 4.1213¢~0-%%14*  with ||S||e = 4.8284. Given
the difficulty of physically implementing & non-rational
controller, in [15] we developed a method for synthe-
sising rational approximations to the optimal £! con-

“ P(s) =

K.

troller. The rational approximation proposed there
yields:
_ _ L
T() = 1814~ 4342 ey (24)
S(,) = -0.84144 4.3423m—o_1—‘y§'

with ||S]le = 3.9 and ||T||; = 6.18. The He controller
that minimizes ||S||co is given by C(s) = —$ and yields
[[Sllec = 3 and ||T}|, = 10. Finally, a mixed £'/Ho
design yields ||T|l; = 6.41 and ||S|lc = 3.45 The dif-
ferent frequency responses for S and the corresponding

impulse responses for T are shown in Figure 2.

5. Discussion and Conclusions

In this paper we address the problem of finding in-
ternally stabilising controllers that minimize the peak
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Figure 2: Impulse and Frequency Responses for Dif-
ferent Designs.

amplitude of the worst-case output due to persis-
ten bounded signals, subject to robustness constraints
given in the form of an o constraint upon the norm
of a relevant transfer function. This problem is of im-
portance for example for tracking applications, distur-
bance rejection, or cases where either the control ac-
tion or some outputs are subject to hard bounds. It
can be thought as the problem of designing a controller
capable of guaranteecing an adequate robustness level
agains dynamic uncertainty while using the extra avail-
able degrees of freedom to optimize a time—domain per-
formance.

The main result of the paper shows that the resulting
convex optimization problem can be decoupled into a fi-
nite dimensional, albeit non-differentiable, constrained
optimization and an unconstrained Nehari approxima-
tion problem. This is a notorious departure from pre-
vious approaches to solving this types of problems [18-
19), where several approximations where required in or-
der to obtain a tractable mathematical problem.
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