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Abstract 
A successful controller design paradigm must take into 

account both model uncertainty and design specifications. 
Model uncertainty can be addrrased using either %, or t' 
robust control theory, depending upon the uncertainty char- 
acterization. However, these frameworks cannot accommo- 
date the realistic case where the design specificationa include 
both time and frequency domain constraints. H this paper 
we present a design procedure for suboptimal L'lW, con- 
trollers. These controllers allows for minimizing the worst- 
case peak output due to bounded persistent disturbances, 
while, at the same time, satisfying an %,-norm constraint 
upon some closed-loop transfer function of interest. The 
main result of the paper shows that rational mixed L'/X, 
suboptimal controllers can be obtained by solvinga sequence 
of problems, each one consisting of a fmite-dimemional con- 
vex optimization and a standard, unconstrained ?-loo prob- 
lem. 

1. Introduction 

A large number of control problems involve designing 
a controller capable of stabilizing a given linear time 
invariant system while minimizing the worst case re- 
sponse to some exogenous disturbances. This problem 
is relevant for instance for disturbance rejection, track- 
ing and robustness to model uncertainty (see [l] and ref- 
erences therein). When the exogenous disturbances are 
modeled as bounded energy signals and performance is 
measured in terms of the energy of the output, this 
problem leads to the well known 74, theory [2]. This 
framework, combined with p-analysie [3] has been SUC- 

cessfully applied to a number of hard practical con- 
trol problems (see for instance [4]). However, being a 
frequency-domain based method, 'H, can address only 
a subset of the common performance requirements. 

The case where the signals involved are persistent 
bounded signals leads to the I 1  optimal control theory 
[1,5-71. These methods are attractive since they allow 
for an explicit solution to the robust performance prob- 
lem [SI. However, they cannot accommodate some com- 
mon classes of frequency domain specifications (such as 
312 or Z, bounds). 
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Finally, in [9] a solution was given to a discrete-time 
mixed l l / ' H ,  problem, where the It norm of the closed- 
loop transfer function between an input-output pair 
of signals in minimised, subject to an 3-1, constraint 
upon the transfer function between a different pair of 
signals. Although this result represents an important 
step towards developing a metodology capable of han- 
dling mixed time-frequency domain specifications, it 
does not presently have a continuous-time counterpart. 
Conceivably, this difficulty could be solved by using a 
discretetime controller, designed using the theory de- 
veloped in [9], connected to the continuous-time plant 
through sample and hold devices [lo-131. However, the 
use of sample and hold elements usually entails a perfor- 
mance loss, which may be significant, since the control 
is constrained to remain constant during the sampling 
period. 

In this paper we propose a method to design ratio- 
nal suboptimal &' /%, controllers for continuous-time 
systems. Thin method ia based upon solving an auxil- 
iary discretetime l l / l i m  problem [9], obtained using 
the simple transformation c = 1 +- 7 8 ,  and then trans- 
forming back the resulting controller to the a domain. 
Thus it only entails solving a finite dimensional con- 
vex constrained optimization problem and an uncon- 
strained li, problem. The main results of the paper 
show that: i) the performance of the resulting closed- 
loop continuous-time system is bounded above (both in 
the frequency and time domains) by the performance 
of the auxiliary diecretttime system used in the de- 
sign; and ii) optimal performance is recovered as the 
parameter T -t 0. 

The paper is organized aa follows: In section I1 we 
introduce the notation to  be used and we give a for- 
mal definition to the mixed t ' / W ,  control problem. 
Section I11 contains the bulk of the theoretical results. 
Here we introduce the discrete time Euler approximat- 
ing system (EAS) and we show that the peak values of 
the time and frequency responses of the EAS are upper 
bounds of the corresponding continuous-time quanti- 
ties. As an immediate consequence, it follows that sub- 
optimal C ' / l i o D  controllers with guaranteed cost can 
be designed by applying ll/'Km theory to  the EAS. 
In section N we present a simple design example and 
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we compare our controller to the unconstrained optimal 
3-1, controller. Finally, in section V, we summarize our 
results and we indicate directions for future research. 
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2.1. Notation 
By Lm(j'R) we denote the Lebesgue space of com- 
plex valued transfer functions which are essen- 
tially bounded on the imaginary axis with norm 
IIT(8)llmisup IT(jw)l .  3iW(jR) (?fHm(j72)-) denotes 

the set of stable (antistable) complex functions G(8) E 
&,(in), i.e analytic in !??(a) 2 O (R(0) < 0). Sim- 
ilarly, &,(T) denotes the Lebesgue space of complex 
valued transfer functions which are essentially bounded 
on the unit circle with norm /JT(z)ll,2sup lT(ejW)I, 

and 'H,(T) (3-1H,(T)) denotes the set of stable (an- 
tistable) complex functions G(z)  E &,(T), i.e an- 
alytic in IzI > 1 (1.1 < 1). L' (R+)  denotes the 
space of measurable functions f ( t )  equipped with the 

norm: llflll = J l / ( t ) l d t  < 00 ; similarly I' denotes 

the space of real sequences, equipped with the norm 

llhlll = lhkl < 00. The prefix 72 will be used to 

denote subspaces consisting of rational transfer func- 
tions. Given a sequence h E I1 (a  function h( t )  E f?) 
we d denote its a-transform (Laplace transform) by 
H ( z )  ( H ( 0 ) ) .  By a slight abuse of notation given 
H ( z )  E 'R'H,(T) ( H ( 8 )  E 'R'Hm(ja)) we w d  denote 

W 

W 

m 

0 

0 

k=O 

I l ~ ( 4 I I 1 ~ l l h l l l  (llfl(a)111 $11 h(t>lll>. 

Given two transfer matrices T = (E: E:) andQ 

with appropriate dimensions, the lower linear fractional 
transformation is defined as: 

Fi(T, Q)bTii + T12Q(Z- TnQ)-'Tzi 

For a discrete-time transfer matrix G(z),  we define 
its conjugate as G'gG'( i), where ' denotes transpose. 
Similarly, C-(a) = G'(--b). Finally, throughout the pa- 
per we will use packed notation to represent state-space 
realizations, i.e. 

2.2. Statement of the Problem 
Consider the system represented by the block dia- 

gram l, where the scalar signals wm (a bounded en- 
ergy signal), WI (a persistent &" signal) and U rep- 
resent exogenous disturbances and the control action 
respectively; and Cm, (1 and represent the regulated 
outputs and the measurements respectively. Then, the 

mixed &'/'Hm control problem can be stated as: Given 
the nominal system (S), find an internally stabilizing 
controller K(0)  such that worst c u e  peak amplitude of 
the performance output ll(1 due to signals inside the 
&'-unity ball is minimized, subject to the constraint 

5 ,  

5 ,  
Y 

Figure 1: The  Generalized Plant  

where Ti, Tim, Q are stable transfer functions. Moreover 
(see [J4]), it is possible to select F and L in such a way 
that T,"(s) is inner (i.e. T2"T2Oo = I). By using this 
parametrization the mixed &'/'Hm problem can be now 
precisely stated as solving: 
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3. Problem Solution 

In this section we present a method for finding sub- 
optimal rational t ' / 'Hm controllers, based upon the 
use of discrete-time l I / ' H ,  theory. The main result 
of this section shows that suboptimal controllers, with 
cost arbitrarily close to the optimum, can be found by 
solving a finite-dimensional convex constrained opti- 
mization problem and an unconstrained 71, problem. 

3.1. Definitions 
Definition 1 Consider the continuow time system 
(S). Its Euler Approximating System (EAS) is defined 
as the following discrete time system: 

Dsi Dsa Dss 

where r > 0. 

3.2. Properties of the Euler Approximat ing  
Sys t em 

In this section we recall some properties of the EAS. 
The main result of this section shows that the 11 and 
'H- norms of the Euler Approximating system are 
upper bounds of the corresponding continuous-time 
quantities. Moreover, these upper bounds are non- 
increasing with r and converge to the exact value as 
7 --t 0. 

Theorem 1 Consider the system: 

Z = A z + B ~ v  
( = Ciz+Daav 

Assume that the corresponding (EAS): 

(3) 

(4) 
zk+i = (I +TA)=& + r&vk 
{ k  = c z z h  + DaiVk 

is asymptotically stable. Then, the system (4) is asymp- 
totically stable and such that: 

SUP IlC(t>ll= I'Tc~(a)lll = 11,.1151 

5 ~ ~ $ ~ A s ) ( z ~ ~ ) ~ ~ ~  = SUP IIchlloo (5) 
..=0 

*€I.=- .  I lVl l<l  
1 0  =o 

Conversely, if (4) is asymptotically stable and 
I I T ~ v I I I ~ ~ ~  then for a11 p > p, there esists r *  > 0 such 
that for all 0 < r 5 r *  the EAS (4) is asymptotically 
stable and such that IITifAS)(z,r)lll 5 p. 

Proof: See [15] 

L e m m a  1 Consider a strictly decreauing sequence 
7; -+ 0, Then the se- 
quence p; is non-increauing and such that pi + 111. 

and let p; = (IT~As(z,r;)lJi. 

Proof: See [15] 
Next we show that the 11.11, norm of the transfer 

function of the EAS provides an upper bound of the 
Il.llm norm of the transfer function of the continuous- 
time system. 

L e m m a  2 Assume that (4) is asymptotically stable 
and consider a strictly decreasing sequence geqr; + 
0. Let TCV(a)  denote the transfer function of (4) and 
TgAS(z,7;) the tronsfer function of the EAS corre- 
sponding to ri . Then: 

I IT~v(s) l lm 5 IITgAs(z,Ti)IIm V i 
(ITEAS(z,ri)ll= 5 IIT$AS(Z,rj)(Jm i > j 

ss lim -0 IIT@S(z,Ti)llm = I IT~~(~) I I=  
(6) 

Proof: The proof, omitted for space reasons, follows 
from applying the maximum modulus theorem to the 
d i sh  C;, centered at U = with radius &, and to the 
closed RHP. 

Combining the results of Theorem 1 and Lemmas 1 
and 2 yields the main result of this section: 

Theorem 2 Assume that inf ~ ~ T ( o o w m ( s ) ~ ~ m  = 

r0 < 7 .  Consider a strictly decreasing sequencer; + 0, 
and the corresponding EAS(ri). Let 

QERUm 

Then the sequence pi is non-increasing and such that 
pi + PO. 

Proof: Given a controller K(z ,r ; )  that internally stabi- 
lises EAS(T;), let S,i(K, z ,  r;) denote the closed-loop 
system, and Tclwl(K,z,r;) and TcmW,(K,z,r;) the 
corresponding transfer functions. Assume that K( I, r;) 
is such that IIT(mw,(K,~,r;)llm 5 7.  Given any j > i, 
consider the controller K ( z )  obtained from K; using 
the change of variable z + (1 + w) and the corre- 
sponding closed-loop system &(k, z ,  rj). Since j > i, 
it follows from Theorem 1 that Sci(k, z ,  r j )  is internally 
stable. Moreover, from Lemma 2 we have that: 

I I T ( m w m ( k t Z , r j ) I I w  I IIT(ww,(Kiz,7i)llw 5 7  (8) 

Hence, k is a feasible controller for EAS(rj). From 
Theorem 1 we have that: 

IIT(lw1(k,zirj)II1 I I I T c l w l ( K , z i r ; ) I I 1  (9) 

It follows then that 

gj = i$ l l ~ ~ , w l ( ~ ~ ~ ~ ~ j ) l l l  I 

K = inf l P ' c , w l ( K s ~ ~ 7 i ) ~ l ~ ~  for j > i 
IIT<,w, ST 

IIT<wwm 67 
(10) 
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Since pi ia a non-increasing sequence, bounded be- 
low by pol it has a limit /i 2 p,. We will show 
that f i  = po by contradiction. Assume that f i  > 
p, and define c s f i  - p,. Since inf llTp"(8) + 
Tz?'(s)Q(s)llm < 7, there exists Q1 E 7231, such that 
IITlm(s) + T z ( ~ ) Q ~ ( ~ ) I I ,  = 71 < 7. From the defini- 
tion of p. it follows that there exists Q. E R31, such 
that IITP"(s) + T,O(s)Qo(~)ll= I 7 and llTclwl(8)(li I 
p. + ;. Let QAQ. + ~ ( ( 2 1  - (2.). It  follows that: 

QER" 

IF1 + T;?olIl I 

+ 
P" + i + TIITZ(Q1 - Qo)lll 

(1 - v)IITp" + TamQollm < 7 
IITim + T,"QIla I TIITp" + T~aQllloo 

(11) 
Hence, by taking 7 small enough we have that the con- 
troller K = E ( J ,  0) yields IITclwl(s)I(l 5 p,, + f e  and 
I ITcWwOD(8)l lm < 7. It follows, from Lemmas 1 and 2, 
that for T small enough we have: 

P(R)%lwl(k, 2 ,  .)Ill L Po + )e (12) 
I ITCOOWW(KI ZI T)Ilm I 7 

Where & ~ ) k K ( s ) l ~ = ~ + ~ , .  Hence a(&) < which 
contradicts the definition of f i  

0 

Remark 1 Theorem 2 shows that the L'/Rm prob- 
lem can be solved by solving a sequence of discrete-time 
1 l / ? i m  problems, each one having the form: 

where T;,T;" E 7231,(T). 

3.3. A Suboptimal Solution to SISO Mixed 
ll/'Hm Problems 

In [9] it was shown that a rational suboptimal so- 
lution to the mixed 11/'7fm problem, with cost arbi- 
trarily close to the optimum, can be found by solving a 
finite-dimensional convex optimization problem and an 
unconstrained 8,  problem. In thie section we briefly 
review this result: 

Lemma 3 (9) Given 6 < 1, let 31,,6k{Q(%) E 
31,: Q(z)  analytic in151 2 6}, and consider the follow- 
ing modified 11/8, problem: 

PS = inf IITCiwi 111 (ll/H-J) 
Q E R OD, 6 

IITY(=)+T,OD ( * ) Q ( = ) l l ~ ~ , ~  5-f 

Next, we recall the main result of [9], showing that if 
(11/3im,6) ia feasible, then a rotiond suboptimal solu- 
tion, arbitrarily close to the optimum, can be found 

by solving a truncated problem. Moreover, solving 
this truncated problem only entails solving a finite- 
dimensional convex optimization problem and an un- 
constrained 31, problem. 

Theorem 3 Given c > 0, a suboptimal solution to 

i s  given by Q" = q p  + where Q$ = qiz-i; 

- go = ( qo . . . qN-1 )' solves the following finite dimen- 
sionol convez optimization problem: 

(b/'Hoo,6), W i t h  Cost such that /b6 s p; 5 p6 + c 
N-1 

i=O 

and Q"R solves the unconstrained approximation prob- 
lem: 

and Q = 

~ A Z X  vAg-'bo ... ... y A a b o  yb 

CQA~- 'X caAz-'b ... ... d e  + P O  91 

C Q A ~ - ' X  caAg-'b ... ... cab* d o  + P O  

CQAQ+ C Q ~ Q  & + 9 0  . . e  PN-s PN-2 
CQX +PO (I1 e - .  PN--9 PN-1 

where x > 0 and Y > 0 are the discrete controllability 
and obsetvability grammians of G; z and y are the POS- 
ative square roots of X and Y respectively; N is selected 
such that: 

and: 

A ti = (t l .  ... tlN-1)' 

A 4 = (Po QN-1)' 

where ti* denotes the kth element of the impulse re- 
sponae of Ti(r) 

Proof: The proof follows from combining Lemma 3 in 
[9] with the corollary to Theorem 3 in [17]. 
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3.4. Proposed Design Method 
From the definition of the EAS it is easily seen that 

the closed-loop transfer function obtained by apply- 
ing the rational controller K ( s )  to ( S )  is the same as 
the closed-loop transfer function obtained by applying 
the controller K( G) to the EAS, up to the complex 
transformation z = 7s + 1. Therefore, if a rational 
compensator K ( z )  yielding an 11 /%, cost P d  is found 
for the EAS, then Klrs + 1) internally stabilizes (S) 
and yields an &'/'H, cost p ,  5 C(d. It follows that 
a rational compensator can be synthesized using the 
EAS with a suitably small r .  These observations are 
formalised in the following lemma: 

Lemma 4 Consider the mixed tl/'Hm controlproblem 
for SISO continuous time-systems. A suboptimal ratio- 
nal solution can be obtained by solving a discrete-time 
mixed 11/'H,,6 control problem for the corresponding 
EAS, with 6 = 1 - 7'. Moreover, if K ( z )  denotes the 
11 /'H, controller for the EAS, the suboptimal t ' / W -  
controller is given by K(r8 + 1). 

Finally, we show that by taking r + 0, the proposed 
design method yields controllers with cost arbitrarily 
close to the optimal t ' / ' H ,  cost. 

Theorem 4 Let r; 4 0 be a strictly decreasing se- 
quence. Denote by Ki the controller obtained using 
the design procedure of Lemma 4 with r = r; and 
by Tcl wl ( 8 ,  K i )  the corresponding closed loop trans- 
fer function. Then the sequence Pi=IITclwl ( U ,  Ki)ll1 i s  
non-increasing and such that ,lim p ;  = p,. 

Proof: Using an argument similar to the proof of The- 
orem 2, it can be easily shown that the sequence pi is 
non-increasing, bounded below by po. Let ji= Jim Pi. 

To complete the proof we need to show that ji = p,. 

Assume to the contrary that ji > p, and let,E=ji - p o .  
Proceeding as in (11)-(12), we can find an internally 
stabilizing controller K ( s )  such that: 

A 

1-400 

A 
1-OD 

A 

From Theorems 1 and 2 it follows that there exists 71 

such that the closed loop EAS obtained using the con- 
troller K( 1 + r 1 r )  satisfies: 

Moreover, all the poles of the closed-loop continuous- 
time system are contained in C1, a diek with radius k, centered at a = -L. Let E(r) denote the disk 
centered at with radius G. Since the closed- 
loop system is internally stable, there exists r such that 
all the poles of Tcm wDD (I) are contained in the region 
E(.) n C1. Since Tcm ( a )  is analytic outside this re- 

71 

@on and IITcmwm(zl~i)llm = SUP ITcmww(i)l < 71 it 
rEBC1 

follows from continuity, that there exist r small enough 
such that sup- ITcmwm(r)l I y. Hence, from 

the maximum modulus theorem we have that: 
.€s(clnc(T)) 

IITceeWu..(z, r)lln,,a = SUP l T c m w w ( Z , r ) l  

= SUP ITcmwm(l +r8)1 

l z l i 6  

.Ed??(T) 

I SUP- I T C O D W ~  (1 + 7r)l 5 7 
r€e(clnc(T)) 

(20) 
It follows then that K ( z ) ,  = 1 + r a ,  is an admissible 
controller for problem 11/Nm,6, yielding a cost p ( K )  5 
po + f < and hence, for ri 5 r we have: 

pi I ~ ( 7 )  = inf IC l I ~ c l W l ( ~ , ~ , ~ ) l l l  

l l = ~ m w ~ l l w  57 
5 c c ( K ) S P o + :  

(21) 
But, since the sequence pi is non-increasing this con- 

tradicts the assumption that ji = lim pi = p o  + e .  
i-+m 

0 

4. A Simple Example 

Consider the SISO plant used in [6, 151 

8 - 1  
a-2 

P(u) = - 
The controller that minimises llTll1 kIIPC(l+PC)-' 111 
t given by: 

(23) 
( a  - 2)(1.7071 - 4.1213e-0.8814' 
(s - l)(-0.7071 + 4.1213e-0.a814a 1 KL1 = 

and yields T ( r )  = 1.7071-4.1213e-0~8814' , with llTlll = 
5.8284. It is easily seen that S(s)g(l + PC)-' = 
0.7071 + 4.1213e-0.8814' , with llSll, = 4.8284. Given 
the difficulty of physically implementing a non-rational 
controller, in [E] we developed a method for synthe- 
sising rational approximations to the optimal 13' con- 
troller. The rational approximation proposed there 
yields: 

(24) 
T(r)  = 1.8414 - 4 . 3 4 2 3 h q  
S(8) = -0.8414 + 4 . 3 4 2 3 1  

with ~ ~ S ~ I ,  = 3.9 and llTll1 = 6.18. The 'H, controller 
that minimizes IlSIl- t given by C(s) = - f  and yields 
IlSll.. = 3 and llTlll = 10. Finally, a mixed L1/'Hm 
design yields llTlll = 6.41 and ~ ~ S ~ ~ , , ,  = 3.45 The dif- 
ferent trequency responses for S and the corresponding 
impulse responses for T are shown in Figure 2. 

5. Discussion and Conclusions 

In this paper we address the problem of finding in- 
ternally stabiliring controllers that minimize the peak 
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Figure 2: Impulse and Frequency Responses for Dif- 
ferent Designs. 

amplitude of the worst-case output due to per& 
ten bounded signals, subject to robustness constraints 
given in the form of an 7c, constraint upon the norm 
of a relevant transfer function. This problem is of im- 
portance for example for tracking applications, distur- 
bance rejection, or cases where either the control ac- 
tion or some outputs are subject to hard bounds. It 
can be thought as the problem of designing a controller 
capable of guaranteeing an adequate robustness level 
agains dynamic uncertainty while using the extra avail- 
able degrees of freedom to optimize a time-domain per- 
formance. 

The main result of the paper shows that the resulting 
convex optimization problem can be decoupled into a fi- 
nite dimensional, albeit non-differentiable, constrained 
optimization and an unconstrained Nehari approximw 
tion problem. This is a notorious departure fiom pre- 
vious approaches to solving this types of problems [I& 
191, where several approximations where required in or- 
der to obtain a tractable mathematical problem. 
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