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Abstract 

The mixed 'H, f 'HOD control problem can be motivated as 
a nominal LQG optimal control problem, subject to robust 
stability constraints, expressed in the form of an ?im norm 
bound. A related modified problem consisting on miNmiz- 
ing an upper bound of the ' H a  cost subject to 'H, constraints 
WM introduced in [a]. Although there prerently exist effi- 
cient methods to solve this modified problem, the original 
problem remains, to a large extent, still open. In [SI we de- 
veloped a method to solve exactly the simpler SISO CMC. In 
this paper we extend this method to general MIMO systems. 
As in [a], the main result of this paper shows that the pro- 
posed method involves solving a sequence of problem, each 
one consisting of a finite-dimursional convex optimimtion 
and an unconstrained 'H, problem 

possible plant perturbations. A problem of this 
form that has been the object of much attention 
lately is the mixed ' H a / % ,  control problem: Given 
the system represented by the block diagram 1, 
where the signals woo E RPl (an la signal) and 
wa E R P a  (white noise) represent exogenous dis- 
turbances, U E P* represents the control action, 
Coo E R"'1 and (2  E P a  represent regulated out- 
puts, and where y E Rmy represents the mea- 
surements; find an internally stabilizing controller 
U(.) = K(z)y(z) such that the RMS value of the 
performance output 42 due to wa is minimized, sub- 
ject to the specification IIT~~,,,~(z)~l, 5 7. 

1. Introduction 

During the last decade, a large research effort 
has been devoted to the problem of designing ro- 
bust controllers, capable of guaranteeing stability 
in the face of plant uncertainty. As a result, a 
powerful Zoo framework has been developed, ad- 
dressing the issue of robust stability in the pres- 
ence of norm-bounded plant perturbations. Since 
suboptimal 'H, controllers are not unique, the ex- 
tra degrees of freedom available can then be used 
to optimize some performance measure. This leads 
naturally to a robust performance problem: design 
a controller guaranteeing a desired level of perfor- 
mance in the face of plant uncertainty. However, 
in spite of a large research effort [lo], this problem 
has not completely been solved. 

Alternatively, the extra degrees of freedom can 
be used to solve a problem of the form nominal 
performance with robust stability. In this case the 
controller yields a desired performance level for the 
nominal system while guaranteeing stability for all 
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Figure 1: The Generalized Plant 

Different versions of this problem have been stud- 
ied recently. Bernstein and Haddad [2] consid- 
ered the case where wa = waD and obtained nec- 
essary conditions for solving the modified problem 
of minimizing an upper bound of IITua~a(Ja, sub- 
ject to the 'H, constraint. In [ll] the dual prob- 
lem of minimizing this upper bound for the case 

# w,, ( a  = (, was considered and suffi- 
cient conditions for optimality where given. Fi- 
nally, in [B] these conditions where shown to be nec- 
essary and sufficient. In [4] Khargonekar and Rotea 
showed that the modified problem can be cast into 
the format of a constrained convex optimization 
problem over a bounded set of matrices and solved 
using non-differentiable optimization techniques. 

The approaches mentioned above provide a so- 
lution to the modified problem. However, recent 
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numerical results [I] suggest that the gap between 
the upper bound and the true 'Ha cost may be sig- 
nificant. Since little is known about the quality of 
this approximation, it is interesting to seek exact 
solutions, even if they are computationally more 
involved. Recently, mixed H a / H ,  control using 
fixed-order controllers was analyzed using a La- 
grange multipliers based approach and necessary 
conditions for optimality were obtained [5]. How- 
ever, these conditions involve solving coupled non- 
linear matrix equations and finding the neutrally 
stable solution to a Lyapunov equation, which leads 
to numerical difficulties. Moreover, in [6] it was 
shown that even in the state-feedback case, the 
optimal controller must be dynamic, and it is con- 
jectured that in the general case it may have higher 
order than the plant. This makes a fixed order a p  
proach less attractive, since there is little a priori 
information on the order of the optimal controller. 

Recently, an exact solution method was devel- 
oped for the simpler case of SISO systems [8]. In 
this paper we extend this approach to MIMO sys- 
tems. As in [8], the main result of the paper shows 
that a suboptimal solution to the mixed H a / % ,  
problem, with performance arbitrarily close to 
the optimal, can be obtained by solving a finite- 
dimensional convex optimization problema and an 
unconstrained H, problem. 

2. Preliminaries 

2.1. Notation 
15, denotes the Lebesgue space of complex valued 
matrix functions which are essentially bounded. on 
the unit circle. By H,(H,-) we denote the space 
of transfer matrices G(z) E Lm which are ana- 
lytic outside (inside) the unit disk. If G(z) E C, 
then its norm is defined in the standard way as 
IIG(z)ll,= sup a(G(de) )  where 8 denotes the 

largest singular value. By RH, we denote the 
subspace of real rational transfer matrices of H-. 
Similarly, R31,,s denotes the subspace of transfer 
matrices in 'RH, which are analytic outside the 
disk of radius 6,O < 6 < 1, equipped with the norm 
llG(~)11~,6= sup B (G(6eJe)). 11G(z)11~ is defined 

in the usual way as llGll{=& &,=l q d z  where 
1 1 . 1 1 ~  denotes the Frobenious norm. For a transfer 
matrix G(z), G"g@( 3). Throughout the paper we 
will use packed notation to represent state-space 
realizations, i.e. G(z) E RH, will be written as: 

A 

A 

osesr 
A 

(*) 
For notational convenience, we will sometimes 
write Go = D and Gi = CAi-lB, i = 1,2,..., 
and define Gne [Go G,-1]. Finally, given 

two transfer matrices T = (:: ::) and Q with 

appropriate dimensions, the lower linear fractional 
transformation is defined as: 

2.2. Problem Transformation 
Assume that the system S has the following 

statespace realization (where without loss of gen- 
erality we assume that all weighting factors have 
been absorbed into the plant): 

where Dl3 has full column rank, D31 has full row 
rank, and where the pairs (A, B3) and (C3, A) are 
stabilizable and detectable respectively. It is well 
known (see for instance [lo]) that the set of all in- 
ternally stabilizing controllers can be parametrized 
in terms of a free parameter Q E E, as: 

K = E ( J ,  Q) (1) 

where a state-space realisation of (J) can be found 
for instance in [lo] By using this parametrization, 
the closed-loop transfer matrices Tcwww and Tcptua 
can be written BS: 

T(-W,,(Z) = Tll(Z) + T12(z)Q(z)T21(z) 
T(awa(z) = VU(Z) + Via(z)Q(z)Vzi @) 

where Ti,, Qj are stable transfer matrices. By us- 
ing this parametriaation the mixed H z / H ,  prob- 
lem can be now precisely stated as: 

Problem 1 (Mked H a / H m  control problem:) 
Find the optimal value of the performance measure: 
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where {Q} and {Si} are the coefficients of the im- 
pulse responses of Tc,,, and Q respectively. 

Remark 1 It w well known (see for instance [IO]), 
that it i s  possible to select (J) in such a way that 
T12(z) i s  inner and Tzl is co-inner. If Tn (Tal) is 
not square, it i s  possible to choose T12l (Tall) such 

a unitary matriz. This fact can be used to reduce 

A that T12a= [TU T1al ] ( Tala-& [T~I' TzIL']) i s  

llT(,w, llw to the f o r m :  

A where G=T21aT11-T12, E R31, has a state-space 
realization: 

Remark 2 In the sequel, for notational simplicity 
we will call: 

(5) 

We will also assume, without loss of generality, that 
7 = 1 and that inf llT11+T12QT211100=y* c 1. A 

QE'R'H.. 
This last assumption guarantees both the ezistence 
of suboptimal 'H, controllers and non-trivial solu- 
tions to the mized 3 C z / ' H ,  problem. 

3. Problem Solution 

Problem ('H2/7&,) is an infinite-dimensional o p  
timisation problem. In principle, one can attempt 
to solve this problem following an approach similar 
to the one in [3]. This entails a double approximb 
tion, since the free parameter Q is approximated 
by a finite impulse response while the constraint 
is approximated by computing its value at a finite 
number of frequency points. Thus, there is neither 
guarantee that the solution obtained be feasible, 

nor that the actual cost be bounded above by the 
objective function. Moreover, the computational 
cost associated with such a scheme may be pro- 
hibitively expensive. In this paper we will pursue 
a different route. Using some results from [8][7], 
we will show that, as in the simpler SISO case, 
the mixed 31a/'H, control problem can be solved 
by considering a sequence of problems, each one 
requiring the solution of a finite dimensional con- 
vex optimization problem. To establish this result 
we will proceed ae follows: i) introduce a modified 
'H2/3CW problem, ii) show that the original prob- 
lem can be solved by solving a sequence of modified 
problems (Lemma 1); iii) show that an approxi- 
mate solution (arbitrarily close to the optimum) to 
each modified problem can be found by solving a 
truncated problem (Lemma 3); and finally iv) show 
that solving the truncated problem entails solving 
a finite dimensional convex optimbation problem 
and a standard 'H, problem (Theorem 2). 

3.1. A Modified ?i2/'H, Problem 
In this section we show that a rational subopti- 

mal solution to 'H2/'Hm, with cost arbitrarily close 
to the optimum, can be found by solving a sequence 
of truncated problems, each one requiring consid- 
eration of only a finite number of elements of the 
impulse response of T(pwa. 

Problem 2 (Modified ' H a / ' H ,  problem:) Given 
Kj(z))Zj(z) E RXw,a, find 

subject to: 

Lemma 1 Consider an increasing sequence 6, - 
1. Let p0 and fi  denote the solution t o  problems 
' H p / ' ? i ,  and 'H2/?im,6i respectively. Then the se- 
quence & -+ po. 

Proof: The proof, ommited for apace reasons, is 
similar to the proof of Lemma 1 in [8]. 

Lemma 2 For every E > 0 ,  there ezists N ( E ,  5 )  
such that if Q E 'HM,~ satwfies the constraint 

llR(z) + [ W 0 0 ,-,I Ilw,6 5 7 ,  it ab0 
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m 

i = N  
Ilvkll$ <, ea, where Vk denote the coeficients 

of the impulse response of TC,,, = Vir + ViaQVzi. 

Lemma 3 Consider the following optimization 
problem: 

where: 

LQN-, ... 
vr1 = [VZl: Val? * * a  %1N-lTIT 

and where Q k , v j k  denote the k th  element of the 
impulse response of Q(z), vj ( z )  respectively. Let 
Q' and Tlawa denote the optimal solution and de-  
fine = llT[awalla. Then pi <, & < p; + e. 

Proof: The proof, ommited for space reasons fol- 
lows from Lemma 2 and the definitions of p i  and 
P I .  

By combining the results of Lemmas 1, 2 and 3, 
the following result is now apparent: 

Lemma 4 Consider an increauing sequence 6i 4 
1. Let p0 and &i denote the solution to problems 
Ra/'Hm and Ra/RL,6i respectively. Then the se- 
quence pii has an accdmulation point pc such that 
/.bo 5 p c  5 po f c .  

3.2. Handling the Rm Constraint 
In the previous section we showed that the 

Ra/Rm problem can be solved by solving a se- 
quence of truncated problems. In this section we 
show that each problem Ra/R& can be ezactly 
solved by solving a finite dimensional convex opti- 
mization problem and an unconstrained R, prob- 
lem. To establish this result we recall first a re- 
sult from [7] establishing a necessary and suffi- 
cient condition for the feasibility of the Rm con- 
straint when the first N parameters in the expan- 
sion Q(z) = QO + Qlt-'+ - -+ Q,,-lz-("-l) +. 
are fixed. We begin by considering the following 
Riccati equations: 

From (71, there exist a Q satisfying the strict H m  
constraint if and only if there exist positive-definite 
solutions 2 and ? to these Riccati equations such 
that p ( X P )  < 1. For ease of notation, let &X1Ia, 
y 4 i . w .  

Theorem 1 Let G have a state-space realita- 

tion as in ( I ) ,  and let Q"(z) = Qiz-'. 

Then there ezwls a QYaii(z) E R m  such that 

n-1 

i = O  
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and on19 i f ~ ( W ( Q n ) )  5 1, where: 

Proof: see [7]. 

3.3. Mixed 3Ca/3C, Controller Design 
Combining Lemma 4 and Theorem 1 yields the 

main result of the paper: 

Theorem 2 A suboptimal solution to  the mized 
'?iz/'h!,,a control problem, with cost p6 5 p i  5 
pa + E is given b y  Q" = Q$ + r N Q &  where 8% = 
N-1 

QiZ-', Q" = [ Q o . .  . Q N - ~ ]  solves the f o b w -  
i = O  
ing finite dimensional convez optimization problem: 

and QR solves the approzimation problem 

(11) 
where N(E] 6 )  i s  selected according to Lemmu 2, c1 
and Vij are defined in (9), and W is  defined in 
Theorem 1.  

From Theorem 2 it follows that a suboptimal so- 
lution to the mixed 3co/3cw control problem (with 
cost arbitrarily close to the optimum) can be found 
using the following iterative algorithm: 

1. Data: An increasing sequence 6i 3 1 , ~  > 
0, v > 0. 

2. Solve the unconstrained Ha control problem 
(using the standard 7 i a  (LQG) theory). Com- 

set i =  1. 

3. For each i, find a Suboptimal solution to 
problem 7 i2 /7 iW,s  proceeding as follows: 

pute Il~{,w,lloO. ~ f l l ~ L w , l l o o  5 1  stop1 else 

(a) Obtain z j ( Z ) , K j ( Z )  E R7ioo,6,, with 
TI~(z) and Tal(z) inner and co-inner in 
R?fm,6,, respectively. This can be ac- 
complished by using the change of vari- 
able z = 6,Z before performing the fac- 
torization (1). 

(b) Compute N(E] 6j) from Lemma 2. 
(c) Find Q(z) using Theorem 2. 

4. Compute II'<mw,(Z)llm. If I IT {mww(~) l lm  2 
y - v stop, else set i = i + 1 and go to 3.1. 

Remark 3 From the mazimum modulus theorem, 
it follows that at each stage the algorithm produces 
a feasible solution to the mized 3 t z / 7 i o o  control 
problem, with cost pi which is an upper bound of 
the optimal cost p" .  

4. A Simple Example 

Consider the following plant: 

1 

1 

1 1.1314 1.1815 -.1791 
A =  -.go64 .2005 .1689 

-.5154 -.3643 .7966 
-.0715 

B1 = -.1253 
.0142 .1967 

Bz = [ -.0043 .0906 
.0519 -.OS99 

- .0631 
Bs = - .2842 

-.1383 
C1 = [:1173 .OS53 - .0379] 

.1612 -.0674 -.a380 
= [ .2318 .1363 -.0082 ] 

C' = [-.OS15 .1149 - .1224] 

-.1171 -.0060 .0297 .0050 ' 

-.OS34 -.0197 ,0897 -.1230 
-.0339 -.062l -.0507 -.0369 

(13) 
The pure H, problem (i.e., the minimiation of 

llTll,) yields llT*llm = 0.912 and IlSll2 = 1.037. 
On the other hand, the minimization of the 7 i a  
part of the problem gives llTll, = 2.243 and 

.1279 -.1227 ,0144 .0687 
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11s’ 112 = 0.3722. Finally, minimizing IlS(l2 subject 
to \lTlloo 5 1 using the proposed synthesis method 
yields JJSIIa = 0.5. Fig. 4 shows the frequency re- 
sponse plots of the controllers obtained for increas- 
ing value of N. Note that the low frequency be- 
havior of the controller is achieved with relatively 
short horizon lengths, and subsequently meaning- 
ful changes occur only in the high frequency range. 
For N = 50, the resulting controller would be of 

Figure 2: Controller frequency responses: a. n = 5, 
10, 15. b. n = 20, 25 30. c. n = 35, 40 50. 
d. n = 50 and reduced order. 

order 52 to control a plant with two states, how- 
ever, by using balanced truncations we computed 
an eleventh order controller which satisfied the 31, 
constraint and achieved virtually the same 312- 
norm. This controller was further model reduced to 
third order again using balanced truncation, at  the 
expense of a slight violation of the 31, constraint 
and achieving essentially the same 312 norm. This 
controller has a transfer function: 

5 . 0 4 7 3 ~ ~  + 9 . 1 3 9 5 ~ ~  + 4.62762 + 1.2564 
z3 + .9548za + .45842 + .1811 

* kr(2)  = 
(14) 

5. Conclusions 

In this paper we provide a sub-optimal solution 
to discretctime MIMO mixed 312/3C, problems. 
Unlike previous approaches, our method yields a 
global minimum of the actual cost rather than 
of an upper bound and it is not limited to cases 

where either the disturbances or the regulated out- 
puts coincide. 

Perhaps the most severe limitation of the pro- 
posed method is that may result in very large order 
controllers (roughly N), necessitating some type of 
model reduction. Note however that this disadvan- 
tage is shared by some widely used design methods, 
such as ysynthesis or I1 optimal control theory, 
that will also produce controllers with no guaran- 
teed complexity bound. Application of some well 
established methods in order reduction (notewor- 
thy, weighted balanced truncation) usually succeed 
in producing controllers of manageable order. Re- 
search is currently under way addressing the issue 
of model reduction in the presence of mixed perfor- 
mance objectives. 
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