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Abstract

The mixed H3/H oo control problem can be motivated as
a nominal LQG optimal control problem, subject to robust
stability constraints, expressed in the form of an He norm
bound. A related modified problem consisting on minimiz-
ing an upper bound of the H3 cost subject to H oo constraints
was introduced in [2]. Although there presently exist effi-
cient methods to solve this modified problem, the original
problem remains, to a large extent, still open. In [8] we de-
veloped a method to solve exactly the simpler SISO case. In
this paper we extend this method to general MIMO systems.
As in [8], the main result of this paper shows that the pro-
posed method involves solving a sequence of problems, each
one consisting of a finite-dimensional convex optimization
and an unconstrained Ho, problem

1. Introduction

During the last decade, a large research effort
has been devoted to the problem of designing ro-
bust controllers, capable of guaranteeing stability
in the face of plant uncertainty. As a result, a
powerful M, framework has been developed, ad-
dressing the issue of robust stability in the pres-
ence of norm-bounded plant perturbations. Since
suboptimal H controllers are not unique, the ex-
tra degrees of freedom available can then be used
to optimize some performance measure. This leads
naturally to a robust performance problem: design
a controller guaranteeing a desired level of perfor-
mance in the face of plant uncertainty. However,
in spite of a large research effort [10], this problem
has not completely been solved.

Alternatively, the extra degrees of freedom can
be used to solve a problem of the form nominal
performance with robust stability. In this case the
controller yields a desired performance level for the
nominal system while guaranteeing stability for all
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possible plant perturbations. A problem of this
form that has been the object of much attention
lately is the mixed H3/H control problem: Given
the system represented by the block diagram 1,
where the signals we, € RP* (an I? signal) and
wy € RP? (white noise) represent exogenous dis-
turbances, 4 € RP* represents the control action,
{0 € R™ and (3 € R™ represent regulated out-
puts, and where y € R™v represents the mea-
surements; find an internally stabilizing controller
u(z) = K(z)y(z) such that the RMS value of the
performance output (3 due to w; is minimized, sub-
ject to the specification ||T¢ w.. ()]l < 7.
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Figure 1: The Generalized Plant

Different versions of this problem have been stud-
ied recently. Bernstein and Haddad [2] consid-
ered the case where w; = wo and obtained nec-
essary conditions for solving the modified problem
of minimizing an upper bound of ||Ty,¢,[|2, sub-
ject to the Mo, constraint. In [11] the dual prob-
lem of minimizing this upper bound for the case
w3 # We, (2 = (x was considered and suffi-
cient conditions for optimality where given. Fi-
nally, in [9] these conditions where shown to be nec-
essary and sufficient. In [4] Khargonekar and Rotea
showed that the modified problem can be cast into
the format of a constrained convex optimization
problem over a bounded set of matrices and solved
using non—differentiable optimization techniques.

The approaches mentioned above provide a so-
lution to the modified problem. However, recent
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numerical results [1] suggest that the gap between
the upper bound and the true H; cost may be sig-
nificant. Since little is known about the quality of
this approximation, it is interesting to seek exact
solutions, even if they are computationally more
involved. Recently, mixed H3/H, control using
fixed—order controllers was analyzed using a La-
grange multipliers based approach and necessary
conditions for optimality were obtained [5]. How-
ever, these conditions involve solving coupled non~
linear matrix equations and finding the neutrally
stable solution to a Lyapunov equation, which leads
to numerical difficulties. Moreover, in [6] it was
shown that even in the state-feedback case, the
optimal controller must be dynamic, and it is con-
jectured that in the general case it may have higher
order than the plant. This makes a fixed order ap-
proach less attractive, since there is little a priori
information on the order of the optimal controller.

Recently, an exact solution method was devel-
oped for the simpler case of SISO systems [8]. In
this paper we extend this approach to MIMO sys-
tems. As in [8], the main result of the paper shows
that a suboptimal solution to the mixed Ha/Hoo
problem, with performance arbitrarily close to
the optimal, can be obtained by solving a finite-
dimensional convex optimization problema and an
unconstrained Hy problem.

2. Preliminaries

2.1. Notation

Lo denotes the Lebesgue space of complex valued
matrix functions which are essentially bounded on
the unit circle. By Hoo(Hoo ) we denote the space
of transfer matrices G(z) € Lo which are ana-
lytic outside (inside) the unit disk. If G(z) € Lo
then its norm is defined in the standard way as

||G(z)||mé°:1;;<>*i(G(e“)) where 7 denotes the

largest singular value. By RHo, we denote the
subspace of real rational transfer matrices of M.
Similarly, RH o, s denotes the subspace of transfer
matrices in RMo which are analytic outside the
disk of radius §, 0 < § < 1, equipped with the norm

1G(2)l|eos2 sup 7 (G(6€7%)). ||G(2)lla is defined
0<o<r

in the usual way as HG”%éz—:- $ai=1 |—cﬂ:—ll-zldz where
|l-|l» denotes the Frobenious norm. For a transfer
matrix G(z), G 26T (1). Throughout the paper we
will use packed notation to represent state—space
realizations, i.e. G(z) € RH will be written as:

2252

- -]
C(zI- A *B+D=D+ Zc,q-‘gz-(m)

=0
A B
c D

For notational convenience, we will sometimes
write Go = D and G; = CA*!'B,i = 1,2, -,
and define Gn2[Go Gn_1). Finally, given

Ty T :
Ty, Tzz) and @ with
appropriate dimensions, the lower linear fractional
transformation is defined as:

G(z)

>

two transfer matrices 7' =

Fi(T, Q)éTu + T12Q(I ~ T22Q) ™' Ty

2.2. Problem Transformation

Assume that the system S has the following
state-space realization (where without loss of gen-
erality we assume that all weighting factors have
been absorbed into the plant):

A | B B B
1 Dyy Dya Dis (8)
Ch Dyy D33 Dsa
Cs D3; D3z Das

where D3 has full column rank, D3; has full row
rank, and where the pairs (A, B3) and (Cj3, A) are
stabilizable and detectable respectively. It is well
known (see for instance [10]) that the set of all in-
ternally stabilizing controllers can be parametrized
in terms of a free parameter Q € Hy, as:

K= ]'-I(J:Q) (1)

where a state-space realization of (J) can be found
for instance in [10] By using this parametrization,
the closed-loop transfer matrices T o, and T¢,u,
can be written as:

Tiwwan(2) T11(2) + Tha(2)Q(2)T21(2)

Ttawa2) V11(2) + V12(2)Q(2)Vay

where T;;, V;; are stable transfer matrices. By us-
ing this parametrization the mixed H;/H prob-
lem can be now precisely stated as:

(@)

Problem 1 (Mized H3/Ho control problem:)
Find the optimal value of the performance measure:

*= ol (| Teuslls (Ha/Heo)

B = eern,

8. t. [[T1a(2) + T12(2)Q(2) 151 (2)lleo < v



where {V;} and {Q:} are the coefficients of the im-
pulse responses of T¢,u, and Q respectively.

Remark 1 It is well known (see for instance [10]),
that it is possible to select (J) in such a way that
T12(z) is inner and Ty is co~inner. If Tig (Tay) is
not square, it is possible to choose T131 (T31.) such
that Ti2.2 [Tiza Tiav ] (Tn(é[Tn" T2117]) is
a unitary matriz. This fact can be used to reduce
1Tt o wee lloo to the form:

T11 + Ti2q

(3 3]

where GéTglaTu"Tlga € RHo has a state-apace
realization:

Temuall ] Toe|

i

,&i l Ba Bb
G= Cu Daa Da.b (4)
Cy Dya Dny

Remark 2 In the sequel, for notational simplicity
we will call:

Bc = [Ba Bb]
e. =[]
5
D, = [Dua Dab] ( )
_ Dy,
Dec - [Dbu

We will also assume, without loss of generalily, that
v=1ond that | 1T + T12QTarfleo 29" < 1.
This last assumplion guarantees both the ezistence

of suboptimal Hy, controllers and non-trivial solu-
tions to the mized Ha/Hoo problem.

inf
ERH

3. Problem Solution

Problem (H3/H ) is an infinite-dimensional op-
timization problem. In principle, one can attempt
to solve this problem following an approach similar
to the one in [3]. This entails a double approxima-
tion, since the free parameter Q is approximated
by a finite impulse response while the constraint
is approximated by computing its value at a finite
number of frequency points. Thus, there is neither
guarantee that the solution obtained be feasible,
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nor that the actual cost be bounded above by the
objective function. Moreover, the computational
cost associated with such a scheme may be pro-
hibitively expensive. In this paper we will pursue
a different route. Using some results from [8][7],
we will show that, as in the simpler SISO case,
the mixed H3/Ho control problem can be solved
by considering a sequence of problems, each one
requiring the solution of a finite dimensional con-
vex optimization problem. To establish this result
we will proceed as follows: i) introduce a modified
‘H3/Ho problem, ii) show that the original prob-
lem can be solved by solving a sequence of modified
problems (Lemma 1); iii) show that an approxi-
mate solution (arbitrarily close to the optimum) to
each modified problem can be found by solving a
truncated problem (Lemma 3); and finally iv) show
that solving the truncated problem entails solving
a finite dimensional convex optimization problem
and a standard Mo, problem (Theorem 2).

3.1. A Modified H;/H Problem

In this section we show that a rational subopti-
mal solution to Hz/H o, with cost arbitrarily close
to the optimum, can be found by solving a sequence
of truncated problems, each one requiring consid-
eration of only a finite number of elements of the
impulse response of T¢,.,.

Problem 2 (Modified H3/Ho, problem:) Given
Vii(2), Tij(2) € RH e, find

\ [IV11 + V12QVa1lla

pf = inf

subject to:
0
1R+ [Qf,’) 0] looss < 1
where § < 1 and R2G € RHoo 5.

Lemma 1 Consider an increasing sequence 6; —
1. Let p° and p; denote the solution to problems
Ha/Heo and Hy[Heo,s, respectively. Then the se-
quence [y — u°.

Proof: The proof, ommited for space reasons, is
gimilar to the proof of Lemma 1 in [8].

Lemma 2 For every ¢ > 0, there ezists N(¢,6)
such that if Q € Moo salisfies the consiraint

[|R(z) + [ng) g] lloos < 7, it also satisfies



o0
Y IVell: < €2, where Vi denote the coefficients
=N
of the impulse response of T¢,u, = V11 + V12QVas.

Proof: Since Q € Heo, s, T¢,uw, i8 analytic in [z]| > &
and:
(6)

k-1
= — T zZ)z dz
27|'] 12|=4 (2“‘2( )

Hence:
Villr < /maa(Vi) \
< \/“mz|ch,;u;Il«;,56 (7)
T¢aws |2, 56
TRN ViR < mp Tl

Since ||.||co,s 18 submultiplicative, we have:

”Tﬁwa(z)”w,ﬁ
< V1alloo,s + |V12)]00,5]| @1l 00,51 Va1llco,s
< Milleo,s + [[V12lloo, 51| Va1lloo,6(1 + (| Rlloo,5)

ck
(8)
The desired result follows by selecting N > N, =
1loge?(1-62)—malogK? o
2 logd

Lemma 3 Consider the following optimization
problem:

o.M lluy + V12QVail|F (Ha/H 5)
Q) 0
s.t.lG’(z)+[ o o <1
00,§
where:
vy = [Vl Visg -1 17
F Vlﬂc
V12 Vz cae 0
Viz = .1 He .
L Vian- V;
AN CERO
Q Qo ... 0
Q= : .
LON-1 Qo r
Vi = [Val valf Vain-1 7]

and where Qi,V;;, denote the k** element of the
impulse response of Q(z), V;j(z) respectively. Let
Q* and Tf, . denote the oplimal solution and de-
fine pug = ||T¢,,,ll2- Then pf < p§ < p§ +e.

Proof: The proof, ommited for space reasons fol-
lows from Lemma 2 and the definitions of 4¢ and
H§-
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By combining the results of Lemmas 1, 2 and 3,
the following result is now apparent:

Lemma 4 Consider an increasing sequence §; —
1. Let p° and pf, denote the solution to problems
Ha/Ho ond Hg/?'lf”‘,‘_ respectively. Then the se-
quence pj. has an accumulation point fi, such that
W< < p’+e

3.2. Handling the H,, Constraint

In the previous section we showed that the
H3/He problem can be solved by solving a se-
quence of truncated problems. In this section we
show that each problem H3 /M, ; can be ezactly
solved by solving a finite dimensional convex opti-
mization problem and an unconstrained M, prob-
lem. To establish this result we recall first a re-
sult from [7] establishing a necessary and suffi-
cient condition for the feasibility of the Ho, con-
straint when the first N parameters in the expan-
sion Q(z) = Qo+ @1z~ *+---+ Qn_1z= (=D ...
are fixed. We begin by considering the following
Riccati equations:

X = ARAT +B.BT + (AXcg + B.DZ',.)

~~

I-DuDY, - C XCF) ™ (c,;? AT 4 D.,B,T)
= ATPA+CTC. + (Ar?s, + cg'n.,)
-1
(1 ~DT.Dec— 33931) (szn + D?,'CCG)
(10)

From [7], there exist a Q satisfying the strici Hoo
constraint if and only if there exist positive-definite
solutions X and Y to these Riccati equations such

that p(XY) < 1. For ease of notation, let z2X1/3,
Ay1/3
y=Y*/4,

Theorem 1 Let G have & state-space realiza-
n-1

tion as in (4), and let Q*(z) = Y Qiz~%.
=0

Then there ezists a Q7. (2) € Moo such that

n-1 )
[Gu—ig Q?z‘_zﬂQ'&“(z) Gn] <1i4f
G Gaa

[ ]



and only if (W(Qn)) < 1, where:

r vArz  yA*-'B. vABa yBa yAr'B, yA"-2B, yAB, yBy ]
Cad"—z CoA"~?B, CaBa Dsa CadA™~2B, C,A"*B, GaBy,  Dab
CaAn~2z C.A™3B, Do 0 CaAn=3B, C.A"%B, Dgay 0
WQn)=| G D O o O Da 0 0 . 0
CpAn-iz C,A"-?B, CyBa Dya CyA™—2?B, CyA™—3B, <+ CoBy -Q5
CyAn—2z C,A"-3B, Dya O Codn3B, C,A"*B, -Qt -qt
L Cpz Do 0 e 0 "'Qa "Q: _Q; = ?,...1) J

Proof: see [7].

3.3. Mixed H3/Ho Controller Design
Combining Lemma 4 and Theorem 1 yields the
main result of the paper:

Theorem 2 A suboptimal solution to the mized
Ha/Hoo,s control problem, with cost ps < p§ <
ps + € is given by Q° = Q% + 2~V Q% where Q% =
N-1

Y Qiz™, Q° =[Qo...Qn-1] solves the follow-

ing finite dimensional convez optimization problem:
Q° = argmin
- Qe R™sNmy
[Whlla < 1

[lvs + V12QVa1lla

and Qg solves the approzimation problem

QR%(2) = Qa.rgnmin 1T11(2) + T12Q% Ta1(2)

RE 00,6

+2" ¥ T13Q(2)T51(2)|co,5
(11)
where N (e, §) is selected according to Lemma 2, v,
and V;; are defined in (9), and W is defined in
Theorem 1.

From Theorem 2 it follows that a suboptimal so-
lution to the mixed H;/Hoo control problem (with
cost arbitrarily close to the optimum) can be found
using the following iterative algorithm:

1. Data: An increasing sequence §; — 1l,¢ >
0,v>0.

2. Solve the unconstrained H; control problem
(using the standard H; (LQG) theory). Com-

pute HT(eo‘Wu”W' IfHT(eoWunW s 1 BtOp, else
set 1= 1.

3. For each i, find a suboptimal solution to
problem M3/He,s proceeding as follows:

-

(a) Obtain Tj; (2), Vi (2) € RH o6, with
Ty3(z) and T31(z) inner and co~inner in
RHoo,s;, respectively. This can be ac-
complished by using the change of vari-
able z = §;Z before performing the fac-
torization (1).

(b) Compute N (¢, é;) from Lemma 2.

(c) Find Q(z) using Theorem 2.

4. Compute ||T¢ pue(2)lloor If | Ttwen (2)l]oo >
vy — v stop, else set :+ =7+ 1 and go to 3.1.

Remark 3 From the mazimum modulus theorem,
it follows that at each stage the algorithm produces
a feasible solution to the mized Hy/Hy control
problem, with cost y; which is an upper bound of
the optimal cost p°.

4. A Simple Example

Consider the following plant:

[ 1.1314 11815 -.1791
A = -.9064 .2005  .1689
| -.5154 -.3643 7966
—.0715 0142  .1967
B = ~.1253 By = | -.0043 .0906
0104 0519  ~.0999
" —.0831
By = —.2842
| —.1383
C: = [1173 0853 - .0379)
¢ = [.1612 —.0574 -.2350]
2318  .1363  —.0082
Cs = [-.0815 .1149 - .1224]
-.0834 -.0197 .0897 ~—.1230
D = -.0339 -.0621 -.0507 —.0369
= -~1171 -.0060 .0297  .0050
1279 -.1227 .0144  .0687
(13)

The pure Ho, problem (i.e., the minimization of
[ITleo) yields ||T*|lcc = 0.912 and ||S|[z = 1.037.
On the other hand, the minimization of the M3
part of the problem gives ||T|lc = 2.243 and



11S*|la = 0.3722. Finally, minimizing ||S||s subject
to |{T|lco < 1 using the proposed synthesis method
yields ||S||z = 0.5. Fig. 4 shows the frequency re-
sponse plots of the controllers obtained for increas-
ing value of N. Note that the low frequency be-
havior of the controller is achieved with relatively
short horizon lengths, and subsequently meaning-
ful changes occur only in the high frequency range.
For N = 50, the resulting controller would be of

a b
60 10
40
E]
20|
0 [
10" 10° 10' 10" 10° 10
¢ ¢
10 10
5 s
0 0
10" 10° 10' 10" 10° 10'

Figure 2: Controller frequency responses: a. n = 5,
10, 15. b. n = 20, 25 30. ¢. n = 35, 40 50.
d. n = 50 and reduced order.

order 52 to control a plant with two states, how-
ever, by using balanced truncations we computed
an eleventh order controller which satisfied the H o
constraint and achieved virtually the same ;-
norm. This controller was further model reduced to
third order again using balanced truncation, at the
expense of a slight violation of the H, constraint
and achieving essentially the same %3 norm. This
controller has a transfer function:

5.047323 4 9.139522 4 4.62762z + 1.2564

k =
+(2) 23 + .95482% + 4584z + .1811

(14)

5. Conclusions

In this paper we provide a sub~optimal solution
to discrete-time MIMO mixed H;/H problems.
Unlike previous approaches, our method yields a
global minimum of the actual H3 cost rather than
of an upper bound and it is not limited to cases
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where either the disturbances or the regulated out-
puts coincide.

Perhaps the most severe limitation of the pro-
posed method is that may result in very large order
controllers (roughly N), necessitating some type of
model reduction. Note however that this disadvan-
tage is shared by some widely used design methods,
such as p-synthesis or /; optimal control theory,
that will also produce controliers with no guaran-
teed complexity bound. Application of some well
established methods in order reduction (notewor-
thy, weighted balanced truncation) usually succeed
in producing controllers of manageable order. Re-
search is currently under way addressing the issue
of model reduction in the presence of mixed perfor-
mance objectives.
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