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Abstract

The mixed (712/o,4) control problem can be motivated as a nomninal
LQG optimal control problem, subject to robust stability constraints, ex-

pressed in the form of an 1,,, norm bound. A related modified problem
consisting on minimizing an upper bound of the 712 cost subject to 7Hoo
con-straints was introduced in [1]. Although there presently exist efficient
methods to solve this modified problem, the oriial problem remains, to
a large extent, still open. In this paper we propose a method for solving
general discrete-time SSO (72/71.) problems. This method involves solving
a sequence of problems, each one consisting of a finite-dimensional convex

optimization and an unconstrained Nehari approximation problem

1. Introduction

During the last decade, a large research effort has been devoted to
the problem of designing robust controllers, capable of guaranteeing
stability in the face of plant uncertainty. As a result, a powerful
XD framework has been developed, addressing the issue of robust
stability in the presence of norm-bounded plant perturbations. Since
its introduction, the original formulation of Zamnes [2] has been sub-
stantially simplified, resulting in efficient computational schemnes for
finding solutions. Of particular importance is [3] where a state-space
approach is developed and an efficient procedure is given to compute
suboptimal 7XOD controllers. In general, these controllers are preferred,
since optimal 71,,,, controllers may exhibit some undesirable properties.
Since suboptimal controllers are seldom unique, the extra degrees of
freedom available can then be used to optimize some performance
measure. This leads naturally to a robust performance problem: design
a controller guaranteeing a desired level of performance in the face of
plant uncertainty. However, in spite of a large research effort [4], this
problem has not completely been solved.

Alternatively, the extra degrees of freedom can be used to solve a
problem of the form nominal performance. with robust stability. In this
case the controller yields a desired performance level for the nominal
system while guaranteeing stability for all possible plant perturbations.
A problem of this form that has been the object of much attention
lately is the mixed (721/71o0) control problem.

Figure 1: The Generalized Plant

Consider the system represented by the block diagram 1, where
S represents the system to be controlled; the scalar signals wt, (a
bounded power signal), w2 (white noise) and u represent exogenous
disturbances and the control action respectively; and C.,, (2 and y
represent the regulated outputs and the measurements respectively.
Then, the mixed (7/7) control problem can be stated as: Given
the nominal system (S), find an internally stabilizing controller

u(z) = K:(z)y(z) (C)
such that the power semi-norm of the performance output 11(211P due
to 102 is mrinimized subject to the specification:

sup 1K(c,0p==ITc..CW.(z)II0 <, (P)
w..E P, Iw. I I
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Different versions of this problem have been studied recently.
Bernstein and Haddad 11] considered the case where w.= and
obtained necessary conditions for solving the modified problem of
minimizing an upper bound of IrrT,,CJJ2, subject to the 1,, constraint.
In [5] and [6] the dual problem of minimizing this upper bond for
the case W2 w,, (2 = (c, was considered and sufficient conditions
for optimality where given. Finaly, in [7] these conditions where
shown to be necessary and sufficient. However these conditions involve
solving several coupled Riccati equations, and at this point there are
no effective procedures for achieving this. In [8] Khargonekar and
Rotea (see also [9] for the discrete-time version) showed that the
modified problem can be cast into the format of a constrained convex
optimization problem over a bounded set of matrices and solved using
non-differentiable optimization techniques.

The approaches mentioned above provide a solution to the modified
problem. However, at this time there is no information regarding the
gap between the upper bound minimized in the modified problem
and the true 72 cost. Very little work has been done concerning
the original problem, which remains, to a large extent, still open. In
[10] Rotea and Khargonekar addressed a simultaneous (721/IN) state-
feedback control problem and showed that a solution to this problem,
when it exists, also solves the mixed (712/4,,,) problem. Although
this provides some insight into the structure of the problem, there are
cases (most notably the case where B1 = B2) where the simultaneous
problem provides little help in solving the original problem. Recently,
mixed (72/710) control using fixed-order controllers was analyzed
using a Lagrange multipliers based approach and necessary conditions
for optimality were obtained [11]. However, these conditions involve
solving coupled non-inear matrix equations and finding the neutraly
stable solution -to a Lyapunov equation, which leads. to numerical
difficulties. Moreover, in [10] it was shown that even,in the state-
feedback case, the optimal controller must be dynamic, and it is
conjectured that in the general case it may have higher order than
the plant. This makes a fixed order appproach less attractive, since
there is little a priori information on the order of the optimal controller.

In this paper we propose a solution to general discrete-time SISO
mixed (712/71) problems. Our approach resembles that of Boyd et.
al. [12] in the sense that we use the Youla parametrization to cast the
problem into a semi-infiite convex optimization form [13]. However,
rather than approximately solving this problem by discretizing the
constraints, we follow an approach in the spirit of [14] and [15] to
show that the problem can be decoupled into a finite dimensional
constrained optimization followed by the solution to an unconstrained
Nehari approximation problem.

The paper is organized as follows: In section II we introduce
the notation to be Used and some preliminary results. Section III
contains the proposed solution method. The main result of the session
shows that the mixed (72/7o1) problem can be solved by solving a

sequence of modified problems, each one requiring the solutiontof a
finite dimensional convex, constrained optimization problem and an

unconstrained Nehari approximation problem. In section IV we present
a simple design ex)ample. Finally, in section V, we summarize our

results and we indicate directions for future research.

2. Preliminaries

2.1 Notation

By 11 we denote the space of real sequences {qi}, equipped with the

norm IIqIll E tq, I < oo. Given a sequence q E 41 we will denote its
k=O

Z-transform by Q(z). P denotes the space of bounded power signals
equipped with the seminorm: Ilulli.2 Im. 2=k iIU11I2

denotes the Lebesgue space of complex valued transfer matri-
ces which are essentially bounded on the unit Circle with norm
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11T(z)IIa= sup ome(T(z)). 71w (X,c) denotes the set of stable

(antistable) complex matrices G(z) E Lo., i.e. analytic in Izl > I
(jZj < 1). i2 denotes the space of complex matrices square integrable
in the unit circle and analytic in Izl > 1, equipped with the norm:

0GI1 =2 f Trace{G(z)'G(z)}zdz

where ' indicates transpose conjugate. The prefix R denotes real
rational transfer matrices. Given R E L<, rH1(R) denotes its maximum
Hankel singular value. Throughout the paper we will use packed
notation to represent state-space realizations, i.e.

G(z)= C(zI -A)- B+D-( | D)

Given two transfer matrices T = (T Tf2) and Q with appropriate
dimensions, the lower linear frctional transformation is defined as:

-FI(T,Q)_TI 1 T12Q(I -T22Q)-1

Finally, for a transfer matrix G(z), #T=G(1).

2.2 Problem Transformation

Assume that the system S has the following state-space realization
(where without loss of generality we assume that all weighting factors
have been absorbed into the plant):

A B1 B2 B3
C1 Di, D12 D13
C2 D21 D22 D23 (S)
C3 D31 D32 D33

Moreover (see [15]), it is possible to select F and L in such a way that
T1,(z) and fl2'(z) are inner and co-inner respectively (i.e. T17Tj =
Remar21F2or c1t c
Remark 1: For the SISO case, eq-uation (2) reduces to:

TC,O.,e(z) = Tr (z) + 7'(z)Q(Z)
TC2 2(Z) = Ti(Z) + Ti(Z)Q(Z) (4)

where Ti, TJ',Q are stable transfer functions and where T2 is inner.
Since j.I>is invariant under multiplication by an inner function, we
have:

IITc.w,.o11lo= rTr + T2 Qlloo = hIR + Qll0 (5)
where R(z)=TC(z)T2r-(z) has all its poles outside the unit disk. A
state-space realization of R in terms of the state-space realization of
(S) is given in [15].
By using this parametrization the mixed (X2 /710o) problem can be now
precisely stated as solving:

00 i
A = id IITczwj112 = inf E)iti I,

QEnH. q~iE ~i=O
(XH2/Ho )

subject to:
IIT (z) + Tr (z)Q(z)1II < 7 (6)

where {t,} and {qj} are the coefficients of the impulse responses of
TC2(,, and Q respectively.

3. Problem Solution
In this section we show that the mixed (72 /Woo) problem can

be solved by solving a sequence of problems, each one requiring the
solution of a finite dimensional convex optimization problem and an
unconstrained Nehari extension problem.

where D13 has full column rank, D31 has full row rank, and where
pairs (A,B3) and (C3,A) are stabilizable and detectable respectiv
It is well known (see for instance [4]) that the set of all intern,
stabilizing controllers can be parametrized in terms of a free parami
Q ENX as:

K = (J.Q)
where J has the following state-space realization:

A + B3F + LC3 + LD33F I -L B3 + LD33
F 0 I

-(C3 + D33F) I -D33

where F and L are selected such that A + B3F and A + I
are stable. By using this parametrization, the closed-loop tran
functions TC.,,,. and T(,., can be written as:

TC.Woo< = Yi(To, Q) = Tll + Tf' QT2'
2 = Y4(T,Q) = T1l + Ti2QT21

where Ti,Ti00 E RNioo and where T and To. have the following sta
space realizations:

AF -B3F
0 AL

To =.
Ci + D13F -D13F

O C2

AF -B3F

ALT= °+ AL
C2 + D23F -D23F

O C3

AF = A + B3F
AL =A + LC3

Bi B3
B1 + LD31 0

D1i D13
D31 0

B2 B3
B2+LD32 0

D22 D23
D32 0

the
rely.
ally
eter

(1)

(J)

Lfr
Lsfer

3.1 A Modified (712/71) Problem

Since all the solutions to a suboptimal Nehari extension problem of
the form 11R+Q1I 1 < 7 can be parametrized in terms of a free parame-
ter W(z) E RNH0, 11WI0> <-s ' problem (H12/Wo0) can be thought of as
an optimization problem inside the origin centered r-1-ball. However,
even though the space 7100 is complete, it is easily seen that the v-ball
is not compact. Thus a minimizimg solution may not exist. Motivated
by this difficulty, we introduce the following modified mixed (72/710)
problem. Let 74 = (Q(z) e74.,Q(z) analytic inizl > 6} and define
the (72/H6) problem as follows: Given Ti(z),T2(z),Tf'(z),Tr(z) E
RN6, find

A6= in IITc2w2112 (H2/7H6)
subject to:

IlTr(Z) + T2(z)Q(Z)IIa < 7

(2) where 6 < 1 and 1IQ1Ia sup IQ(z)l. In section 3.2 we will show that
lz-6

ite- (N2/i/a), if feasible, always has a minimizing solution. Moreover, this
ate- optimal solution is rational (i.e. Q E RN6).

Remark 2: From the maximum modulus theorem, it follows that
any solution Q to (72/74) is an admissible solution for (72/710). It
follows that p4 is an upper bound for t.

Remark 3: Problem (N2/W5) can be thought as solving problem
(72/710) with the additional constraint that all the poles of the closed-
loop system must be inside the disk of radius 6. A parametrization of
all achievable closed-loop transfer functions, such that T,T°° satisfy

(3) this additional constraint can be obtained from (1) by simply changing
the stability region from the unit-disk to the 6-disk using the transfor-
mation z = 6i before performing the factorization. Furthermore, by
combining this transformation with the inner-coiner factorization,
the resulting T2r(z) satisfies Th0(6z)T2700(i') = 1.

Next we show that a suboptimal solution to (72/7o1), with cost
arbitrarily close to the optimum, can be found by solving a sequence
of truncated problems, each one requiring consideration of only a finite
number of elements of the impulse response of TC,w,. To establish this
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result we wil show that: i) (712/X4) can be solved by considering a
sequence of modified problems (i2/Xt). ii) Given s > 0, a suboptimal
solution to (72/Its) with cost no greater than p1 + E can be found by
solving a truncated problem.

* Lemma 1: Consider an increasing sequence _i 1. Let p0 and ji
denote the solution to problems (i2/7it) and (Hi2/i6,) respectively
and assume that rH(R) < -y. Then the sequence pi -. p0.

Proof: The proof, omitted for space reasons, follows from the maxi-
mum modulus theorem and continuity arguments.

Next we show show that, given e > 0, a suboptimal solution to
(742/is), with cost p14 such that p1 < p4 < 1A4 + E can be found by
solving a truncated problem.
.
Lemma 2: Let E > 0 be given. Then, there exists N(e,6) such that

if Q E its satisfies the constraint 11R + Q11a < y then it also satisfies

2 tk5P 5 2, where tk denote the coefficiens of the impilse response
i=N
of TC2W= T, + T2Q-

Proof: Since Q E 7t, T2,,,2 is analytic in Izl > 6 and:

tk = 2 2jTfSw(Z)zk. dz (7)

Hence
Z tkl . IITC2w2ll6N

: ltk 12 < ,IITC2W2 266

i=N
1-6

(8)

If Q satisfies hIR + Qll S r, since 11116 is submultiplicative, we have:

IITci23(z)l1s . IITiIIs + JIT21161lQIIs
.< IllTds + IlT2zl1(y + lIRuIs)-K

(9)

The desired result follows by selecting N > No Ilo=4 4-o_K O

. Lemma 3: Consider the following optimization problem:

(H2/7t")

subject to:

where:

{N-i i
miex tE il,l = SLt + Ti l2l

IIR + Q116s5 7

tiA(tio . tlN )

3.2 The 7i:, Performance Constraint

In the last section we showed that (7t2/XH) can be solved by
solving a sequence of truncated problems. In principle these problems
have the form of a semi-infinite optimiiation problem, and can be
approximately solved by discretizing the unit-circle and applying
outer approximation methods (see [13J). In this section we show
that each problem (t2/7it) can be exactly solved by solving a finite
dimensional convex optimization problem and an unconstrained Nehari
approximation problem. Moreover, since the solution to this Nehari
approximation problem is rational, it follows that the solution to
(7t2/it") is also rational. The key to establish this result is to note that:
i) the objective function of the truncated problem involves only the
first N terms of the impulse response of Q and ii) If the first N terms
of the impulse response of Q are fixed, the existence of Q such that
OJR + QJ[a < j is equivalent to a finite dimensional convex constraint.

eTheorem 1: Let R± (AR 5 ,with McMillan degree
kCR dR) 7

N-1
n, and QF = £ qjzi be given. Then there exist QR E Ri,,, such

i=o
that IIR + QF + Z-NQRI1IN < y, f IIQI12 5 7 where Q, a symmet-
ric matrix affine in the coefficients of QF, has the following form:

w (I ° L
Lc = (Y L)

LC1j= Lc

e= N

A = (ANbR AF(Ni)&R.

hy hN-_I )N-CR... h f

hN &lN2
(= o N..

hvN hN_
hN-/hN

hi = qN-i + bR(A') c1R 1 < < N - 1
hPN = qo + dR

t2 0°. 0

= tiI t20 ° (10)

t2N-1 .-. t2o

(q .. qN-1 )

and where qk, tk* denote the kth element of the impulse response of
Q(z), Tj(z) respectively. Let Q* and Ti denote the optimal solution
and definep1 = llTi,,h112. ThenA <I.14+e

Proof: < p1 is immediate from the defintion of p1. Denote
by T4,,,2 and TC,6, the solution to problems (i2/7it) and (72/74)
respectively an'd let tt, t4 be the corresponding impulse responses.
Then:

0A N-i
(,4=)2 _IIT&, ll=21E itl 2 Iti2 + tte

1=0 i=0 i=N

N-1 0

< 1 Itff2 +s(2 < Z1 4tl2 + (p0)2 + c2 < (Aq +E)2

t=0 i=0

By combining the results of Lemmas 1, 2 and 3, the following result
is now apparent:

* Lemma 4: Consider an increasing sequence 6i-. 1. Let and 1A4
denote the solution to problems (it/t,,) and (712//H6) respectively.
Then the sequence #" has an accumulation point A,, such that p0 <

A

where LO and Lc are the soluticns to the folowing Lyapunov
equations:

AnL'A- LO = bRbR
A'RLCAR- LC = (A')N4cnR(AR)N

Proof: See [15].

Combining Lemma 3 and Theorem 1 yields the main result of this
section:

* Theorem 2: A suboptimal solution to (72/146), with cost pa S
N-1

<4c ps + E is given by Q" = QF + z-QR where Q" = E giz-,

= (q,, -. qN-I )' solves the following finite dimensional convex
optimization problem:

27= argmin 1i+ rgjl
q E RN
lIQII2 < 7

and QR solves the unconstrained Nehwi approximation problem

QR(Z) = argnin IIR(i) + Q" + iXNQR(i)lIOO

where R is defined in (5), tl,r are defined in (10), N is slected
according to Lemma 2, and z = 61
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3.3 Synthesis Algorithm

Combining Theorem 2 and Lemma 4, it follows that a suboptimal
solution to (OW2/,.), with cost arbitrarily close to the optimum, can
be found using the following iterative algorithm.
0) Data: An increasing sequence bi -o 1, e > 0, v > 0.

1) Solve the unconstrained i2 problem (using the standard it theory)
Compute IITc...wII,.. If IITC..wjl, < -t stop, else set i = 1.

2) For each i, find a suboptimal solution to problem (i2/i4,) proceeding
as follows:
2.1) Let z = 6iz and consider the system S(i)
2.2) Perform the factorization (2) to obtain Ti(z), v7(z).
2.3) Compute N from Lemma 2.

2.4) Find Q(i) using Theorem 2.

3) Let Q = ), K = Fi(J, Q). Compute IITC...(z)IIa.. If
IITc...(z)Ik, >7-y-stop, elseset i= i+ and go to2.

Remark 4: At each stage the algorithm produces a feasible solution
to (i2/Hi,), with cost pa which is an upper bound of the optimal cost

4. A Simple Example

Consider the simple system shown in figure 2, consisting of two
unity masses coupled by a spring with constant 0.5 < k < 2 but
otherwise unknown. A control force acts on body 1 and the position
of body 2 is measured, resulting in a non-colocated sensor actuator
problem that embodies many of the pathologies and challenges present
in realistic problems, such as control of complex aircraft and large space
structures. This system has been used as a benchmark during the last
few years at the American Control Conference [16-17] to highlight the
issues and trade-offs involved in robust control design.

Assume that it is desired to design an internally stabilizing con-
troller subject to the following performance specifications: i) the
closed-loop system must be stable for all possible values of the un-
certain parameter k E [0.5,2]. ii) the energy of the control action
u in response to a white noise disturbance acting on m2 should be
minimized.

Figure 2: The ACC Robust Control Benchmark Problem.

In order to fit the problem into our framework, the system was
discretized using sample and hold elements at the inputs and outputs,
with a sampling time of 0.1 seconds. Finally, to remove the ill-
conditioning caused by the poles on the unit circle, a bilinear trans-
formation was used, constraining the poles of the closed-oop system
to lie inside the IzI < 0.9,5 disk (i.e. 6 = 0.95) and the proposed design
procedure was used with JITC4i16 < 1.6 and N = 100, resulting in a
controller with 205 states.

Figure 3 shows the control action in response to an impulse
disturbance acting on m2 for the optimal 'H. central controller, the
optimal it2 and the mixed it2/ft.,, controllers, with the corresponding
bode plots of TC, shown in figure 4. These results are summarized in
Table 1.

Ot_-" 4> t:- ~~~~~~~~~~~~~~~~~~~~~~~~~~~........

r~~~~0 s i

rune

Figure 3: T2,, Impulse Response for the itHw, i2 and it,H/iH. Cont.

101

I101=

102
3 -lo-o-2'to

- -)I D3 10-2 10-1 10 101

200

-00-100

- j-102 to-' 1 101

-q )

Figure 4: T7, Frequency Response for the it,.,, i2 and it2/it,., Cont.

In order to fit the problem into the iO,,. framework, the uncertain
spring constant k is modeled as k = ko, + A (with k, = 1.25 and JAl c
0.75) and, following a standard procedure [181, A is "pulled out" of the
system. The problem can be stated now as the problem of minimizing
IT.12 over the set of all internally stabilizing controlers, subject to
the constraint IITCvlloo < j. The system, with the uncertainty "pulled
out", can be represented by the following state space realization:

(0 010\()0 0 0
A= 0 0 1 B= 0 1 0

tk, -to, 00 1 0 /
1 -1P 0 0 -0 1

C= 0 0 0 0 D= 0 0 0
0 1 0 0 0,0 0

1vC-x- 1T-112 |
'H2 ~ 2.60.4 1.5760

IiOO 0.9977 1085.2
it2 it,. 1.292 22.6493

Table 1. IlTCvII1o and IITU,gII2 for the example

Note that the actual value IlTc,IIoo obtained with the mixed
tH2/t.x controller is 1.29. This is due to the fact that IITCv1ls is an
upper bound of IITcvIo,

Table 2 shows a compaison between the optimal mixed X2/=,.
controler and several reduced order controllers. It is interesting to
notice that the controller can be reduced to 0lth order with virtually
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no performance loss. Further reduction to a 3rd order controller only
entails about 10% increase in the 213 cost. These results seem to
support the conjecture of [11] that the mixed 212/2o1 control problem
results in contTollers having higher dimension than the plant.

212/2100 1.292 '226493
10 ord. 1.281 122.8842
3 ord. 1.292 24.8594

Table 2. IIT(0110 and IITw1I2 for reduced order controllers

5. Conclusions
In this paper we provide a sub-optimal solution to discrete-time

mixed (212/21X,) problems. Unlike previous approaches, our method
yields a global minimum of the actual 72 cost rather than of an upper
bound and it is not limited to cases where either the disturbances or
the regulated outputs coincide. Although here we considered only the
simpler case of a one-block X., problems, we anticipate that the results
will extend naturally to the 4-block case.

Perhaps the most severe limitation of the proposed method is that
may result in very large order controllers (roughly 2N), necessitating
some type of model reduction. Hence, at this time, the proposed ap-
proach provides an analysis tool to establish the limits of performance
of the plant, rather than a practical design tool. The example of
section 4 suggests that substantial order reduction can be accomplished
without performance degradation. Research is currently under way
addressing this issue.
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Appendix: Some Numerical Considerations

In this appendix we give an alternative for computing Q. Since this
alternative expresion does not involve increasming powers of AR it is preferable
in cases where N is large or AR has large eigenvalues. From [15] it can be
shown that:

Lj= tY) = I)Y (WjR 0D

L_(I A)(AINRAk0 (I)A 7)
= A-N A) Lo° 0) (A-NIV

0)

(Cl)

where:
Y = - ((A'N-w4 (A')(N-2)CYR .c) (C2)

and W.R=LI - YY' satisfies:

Al*WORAR - WOR = c'cR

(.e. W,R is the observability grammian o AR). Since the spectral radius of
oL,L, is invariant under a similarity transformation, it follows that Q can be

replaced by:

Q(L= Loi 0 AiN Ai-NY (Wt O)
I A' A'Y +21' IR

(C3)

where the only terms that contain powers Ai', i = 1 .. N are in X' + A'Y.
Defining kfI+ b (Al) -Y +bR(AsR) 'cRe' = (h1 ... h*r), yields:

(C4)
h,v = qa+ t

Hence, we have that

h1 hY =-l ..N

AN AJV-1
X'H + A'Y = .. .

+

... &I

... 2

hNr hN-1
hNI

... ... cRA2R bR
c,RA,2bR .. cRA-(N-I)bR

cRA-'b,R cRA bx
cRA 1 ba /

(CS)
which does not contain inereasing powers of AR.
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