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Abstract

A successful controller design paradigm must take into ac-
count both model uncertainty and performance specifications.
Model uncertaiaty can be addressed using the o, robust control
framework. However, this framework cannot accommodate the
realistic case where in addition to robustness comsiderations, the
system is subject to time domain specifications although some
progress has been recently made in this direction {1-2]. We
recently proposed a design procedure to explicitly incorporate
time-domain specifications into the ¥, framework {3}. In this
paper we apply this design procedure to the simple flexible struc-
ture used as a benchmark in the 1990- 1992 ACC, with the goal
of minimizing the peak control effort due to disturbances while
satisfying settling time and robustness specifications. The results
show that there exist a severe trade—off between peak contrel
action, settling time and robustness to model uncertainty.

1. Description of the Problem

The issues involved in controlling systems subject to model
uncertainty and constraints can be illustrated by the simple ACC
Benchmark Problem proposed by Wie and Bernstein [4). The
system, shown in figure 1, consists of two unity masses coupled
by a spring with constant 0.5 < k < 2 but otherwise unknown.
A control force acts on body 1 and the position of body 2 is
measured, resulting in a non—colocated sensor actuator problem.
In this paper we present a design for the following simplified
version of problem # 4: design a stabilizing controller to meet the
following performance specifications: i) the closed-loop system
must be stable for all possible values of the uncertain parameter
k. ii) the peak of the control action following a unit impulse
disturbance w acting on m; should be minimized; and iii) for the
same disturbance the displacement y of m; has a settling time of
about 15 seconds.
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Figure 1: The ACC Robust Control Beachmark Problem.

2. The Mixed I, /%, Optimization Approach

Consider the system represented by the block diagram 2,
where the scalar signals v, v and u represent an exogenous distur-
bance, a known, fized signal, and the control action respectively;
¢ and ¢ represent the outputs subject to frequency and time
domain performance specifications respectively; and y represents
the measurements available to the controller. Note that v and (
include fictitious signals used to assess stability in the presence
of model uncertainty. Then, the mized l,/Hoo problem can be
stated as follows:

V ———d -———e §
® —— P f—— Y
. — —— Y

Figure 2: Block Diagram of the Generalized Plant.

Given a system (§) subject to frequency-domain perfor-

mance specifications of the form:
WTeobna. <7 (P)
find an internally stabilizing controller
¥(z) = K(z}(2) ©)

such that the maximum amplitude of the regulated output ¢
due to w is minimiged subject to the performance specifications
(P). In [3] we showed that this problem can be decoupled
into a constrained eonvex finite dimensional optimization and an
unconstrained Nehari extemsion problem. By using the Youla
parametrization [5] the set of all closed—loop transfer matri-
ces achievable by an internally stabilizing compensator can be
parametrized in terms of a free parameter Q € RH, a8

Teo(2) = tiz) + ta(2)e(z)
Tye(z) = t¥(2) + tf(2)a(2)

where t.-,t? € RMoo. Moreover, it is possible to select the
parametrization in such a way that ta(z) is inner. Hence,
the problem has been transformed into a a constrained convex
optimization problem in the free parameter ¢ € RM. To
solve this problem we will decouple it into a finite dimensional
convex optimization and an unconstrained Nehari approximation
problem. This is achieved by i) expanding the free parameter ¢
into a power series and ii) observing that only the first N (where
N depends on the problem but can be determined before hand)
terms of this expaumsion appear in the optimization of the time

. These results are summarized in the following theorem
(see [3] for a complete description):

e Theorem 1: ¢° = ¢f + z~Ngh solves the mixed loo/Hoo
control problem i g% = (¢ . ..gn_1 ) solves the following finite
dimensional convex optimization problem:

m

= agmin §t; + el @
ﬁ!e R
Qfh <7
and g% solves the unconstrained Nehari approximation problem
¢ = argmin [|R + grllx,, 3)
IRERNM,,
where: .
h:(!). o iy )'
g, 0 ... 0
th, 5 ... 0 (4)
r= : -
t;N—l L. t;¢

tie denoctoes the k** element of the impulse response of t;(z) (i.e.
ti(z) = }o:t,';z"‘) and where:
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and I? and LS are the solutions to the following Lyapunov
equations:
AnLiAg - 1% = ba¥y

4L An - IS = (AR dpenlAn” ©

3. Problem Transformation

In order to fit the problem into the mixed I, /o, framework
a number of transformations are required. First, in order to use
the ., framework, the uncertain spring constant k is modeled
as k= k, + A (with k, = 1.25 and JA}] < 0.75) aad, following a
standard procedure, A is “pulled out” of the system, as shown
in figare 3. Second, the system is discretized using sample and
hold elements at the inputs and outputs, with a sampling time of
0.1 seconds. The problem can be stated now as the problem
of minimizing the peak control effort w,; over the set of all
internally stabilizing controllers, subject to the settling time and
HT(,“u. siwmtnints.
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Figure 3:Block Diagram with the Uncertainty “Pulled Out” of the System.

Finally, note that the system has poles on the jw—axis {or
equivalently, the discretized system has poles on the unit circle),
which prevents direct application of the . methodology. This
ill-posedness is removed by using the change of variable 225,
where p > 1, which amounts to contracting the unit circle. This
is similar to the bilinear transformations used in {6-7]. Note that
the maximum modulus theorem guarantees that §T¢.(2 o >

1Teu(2 Moo

4. Results

By solving the optimization problem (2) (with N=150), we
found that for the discrete time system, the minimum value
of the peak control action, jju,ll;, subject to the constraints
Tyclioo < 4 is slightly less than 1. Hence, for the discretized
version of the BMP, the specifications are achievable, although
they may require a very large order controller (see [3] for details).
It should be noted that the settling time constraint is binding.
By relaxing this constraint, the specifications are achievable with
low order controllers. Figure 4 shows the impulse and frequency
responses achieved with the following second order controller:

_ {17404 07769 . _ {09975
“-(0.9950 0 )B‘-( 0 )
Ce=(=1.1347 1.0044) De = 4.1150

Although [iT¢,lleo = 1.43 a simple analysis shows that the closed-
loop system is stable for al 0.5 < k < 2.
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Figure 4: Impulse and Frequency Responses
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