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A successul controller design paradigm must take into ac-
count both modd uncertainty and perfrmance specifications.
Model uncertainty can be addresed using the 74c, robust control
framework. However, this fiamework cannot accommodate the
realistk case where in addition to robustes considerations, the
system is subject to time domain specifications although some
progress has been recently made in this direction [1-2]. We
recently propoed a design procedure to explicitly incorporate
time-domain specifications into the X., frmework [3]. h this
paper we apply this desig procedure to the simple flexible struc-
ture used as a benchmark in the 1990- 1992 ACC, with the goal
of minimizing the peak control effort due to disturbances while
satisfying settling time and robustness specifications. The results
show that there exist a severe trade-off between peak control
action, settling time and robustness to model uncertainty.

1. Description of the Problem

The issues involved in controlling systems subject to model
uncertainty and constraints can be illustrated by the simple ACC
Benchmark Problem proposed by Wie and Bernstein [4]. The
system, shown in figure 1, consists of two unity masses coupled
by a spring with constant 0.5 < k c 2 but otherwise unknown.
A control fom acts on body 1 and the position of body 2 is
measured, resulting in a non-colocated sensor actuator problem.
In this paper we present a design for the following simplified
version of problem # 4: desip a stabilizing controller to meet the
following performance specifications: i) the closed-loop system
must be stable for all possible values of the uncertain parameter
k. ii) the peak of the control action following a unit impulse
disturbance w acting on ma should be minimized; and iii) for the
same disturbance the displacement y of m2 has a settling time of
about 15 seconds.

Fise 2: Block Diam of the Genealied Plat.

Given a system (S) subject to frequency-domain perfor-
mance spHcifications of the form:

(P)UTCJlte c 7

find an intenally stabilizing controler

s(z) = K(z)y(z)
such that thie mxum amplitude of the reulated output %
due to w is miimze subject to the performance specifications
(P). In (3] we showed that this problem can be decoupled
into a constrained- onvex finite dimensional Optimization and an
une strained Neai xtei problem By using the Youla
prametrizaion 151 the set of all losed-oop transfer matri-
ces achievable by an iternaly stabi compensator can be
parametrized in terms of a free parameter Q E 2X1 a:

Tc,Jz) = ti(z) + ta(z)q(z)
T,0(Z) = O+(z) + t'*Z(z)qz (1)

where t,tt e 27.o. Moreover, it is possible to select the
parmetriation in suck a way that ts(z) is inner. Hence,
the problm has hbe ansformed into a a constrained convex
optunizatio problmin the free parameter q E 2%XG. To
solve this problem we wi decople it into a finite die Iol
oonvex optimiation and an unconstrained Nehari approxmation
problem. TWs is acheved by i) expanding the free parameter q
into a power seies and li) observing that only the first N (where
N depends on the problem but can be determined before hand)
terms of this e s appear in the optimiatio of the time
reso . These resuls are summarized in the following theorem
(see (3 for a complete description):

* Theorem 1: r qF + Z Nq4 so the ed 1474,,
control problm =¼f-. -q,r' ssaves the flowing finite
dimesa ane otmizaion problem:

(C)

$ _a= +rxP.
rp&qca

Figur 1: The ACC -Robmt Control Benchmak Problm

and ¶R soves the anaotrained Nehari approximation problem

2. The Mixed LG/NC. Optimization Approach

Consider the system represented by the block diagram 2,
where the scalr sipals v, w and represent an exogenous distur-
bance, a known, fixed signal, and the control action respectively;
and represent the outputs subject to frequency and time

domain performance specifications respectively; and y represents
the measurements available to the controller. Note that v and (

include fictitious signals used to assess stability in the presence

of model uncertainty. Then, the mized 4,/N. problem can be
stated as follows:

eR= argmilR+qj?t,
vs6fl%..

where:

(3)

(4)

tsi denote the kth element of the impulse response of ti(z) (i.e.

ti(z) = tkz-k) and where:
0
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(2)

Lio-I (ti, ... t,N-, )l
C. 0 ... 0t;o tr 021 20 "I

r =

tr2N- I - C2.



(5)

4. Results

QW=ff (o x) Li

Lc=(Lc L)
Lc = rc

Lc2 = - ((A'f X1 (Al) 4 o

wdIW=(L A)

A= (A-NXX A.s-)X-sls
kN h h_ Af..= k... i

AN AN-)

k&,g..+Vn(A^t1'd* 1<iS<N-I
=j *o + 4,j
(A1-t)

and L° ad Lc are the solutiow to the folowing Lyapunv
atonst-

AL:A'-L: =1,1s
A''Ait-_ = (Arxdxjt(Ax'

By Diving the optimization problem (2) (with N=150), we
found that for the discrete time system, the minimum value
of the peak control action, lluIie1,, subject to the constraints
ITcIIoo 4 is slightly less than 1. Hence, for the discretized

version of the BMP, the specifications are achieaWe, although
they may require a very large order controller (see [3] for details).
It should be noted that the settling time constraint is binding.
By relaxing this constraint, the specification are acievable with
low order controle. Figre 4 shows the impulse and frequency
rewpons acheved wi'th the folowing second order contler:

Ac= 1 .o70-°0o)69)Be - (Oms)
Cc=(-1.1347 L104) De=l4.l1

Althou Tc.. = 143 a simple analysis shows that the closd-
loop system is stle for al 0.5 < k < 2.

41
41

I
(6)

3. Problem Transformation

In order to fit the problem into the mixed 4./I. frmework
a number of traudomatics ae required. First, in orde to ue

the Xt. framwork, the uncrtain spring costat k is moded
as k = A. + A (with . = 1.25 and DAN 5 0.76) and, floing a

standard procedure, A is "puled out' of the sytem, as shown

in figure 3. Second, the system is discetized sng sample and
hold elements at the isput. and outputs, with a m ng time of
0.1I secods The problem can be sta now as the problem
of inimi the peak control effort so over the set of

internaly salizing contrlers, subject to the setting time and

a jconstrains.

Figure 3:Bkoc Diagram with the Uncertainty "Puled Out" of the System.

Finally, note tha the system has poles on the jf-axis (or
equivalently, the discretized system has pols on the unit circle),
which prevents direct application of the 74., methodology. This
ill-posedness is removed by using the change of variable AO_
where p> 1, whih amounts to contracting the unit cirde. This
is smilar to the binear trandormations used in [6-7]. Note that
the maximum modulus theorem guarantees that UTc.()Il,,,o
1Xh1T-ZA.
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Figure 4: Impulse and Frequency Respses
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