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Abstract

Most realistic control problems involve both rmixed time/frequency
domain performance requirements and model uncertainty. However,
the majority of controller design procedures currently available focus
only on one aspect of the problem. In this paper we propose a
design procedure for minimizing the mum amplitude of a regulated
error to a specified input while, at the same time, addressing mnodel
uncertainty through bounds on the HO,, norm of a relevant transfer
function. This problem is of interest in optimal trading applications
where the objective is to achieve minimum tracking error while, at the
same time, maintaining an adequate robustness level. We show that for
the SISO case the problem can be decoupled into a finite dimensional
constrained optimization and an unconstrained Nehari approximation
problem.

1. Introduction

A substantial number of control problems can be summarized
as the problem of designing a controUer capable of achieving
acceptable performance under system uncertainty and design
constraints. This statement looks deceptively simple, but even
in the case where the system under consideration is linear, the
problem is far from solved. During the last decade a large
research effort led to procedures for desiging robust controllers,
capable of achieving desirable properties under various classes of
plant uncertainties while, at the same time, satisfying frequency-
domain constraints. However, these design procedures cannot
accommodate directly time domain performance specifications.

Recently, some progress has been made in this direction [1-
4]. By using a parametrization of all stabilizing linear controllers
in terms of a stable transfer matrix Q, the problem of finding
the "best" linear contro}ler can be formulated as the constrained
optimization problem of minimizing a weighted o-norm over the
set of suitable Q. In this formulation, additional specifications
can be imposed by further constraining the problem. The
resulting optimization problem has been solved using convex
programming [1] and constrained nondifferentiable optimization
[2]. However, although these methods are effective when the
specifications are easily expressed in terms of the frequency re-
sponse, presently they can handle time-domain specifications in a
conservative fashion, through the use of several approximations.
A different approach has been pursued in [3-4], where time-
domain constraints over a finite horizon are incorporated into
an H,,, optimal control problem which is then transformed into
a finite dimensional optimization problem. However, at this
stage constraints over an infinite horizon can be handled only
indirectly. Finally, in [5] and [6] the problems of finding an
internally stabilizing compensator that minimizes the maximum
error to 4,, bounded disturbances and to a fixed, given signal was
solved. However, these de§igns cannot accommodate frequency-
domain specifications.

In this paper we address the problem of finding an internally
stabilizing compensator that minimizes the maximum amplitude
of the error to a fixed given input subject to constraints upon
the H,,, norm of a relevant transfer function. This problem.
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which can be though as the dual of the problem proposed in [:3-
4j, is of particular interest for optimal tracking problems whern
the objective is to achieve minimum error magnitude, while at
the same time maintaining an adequate robustness level against
model uncertainty. We believe that the results presented here
wil provide a useful new approach for addressing more realistic
control design problems including a combination of time-domain
and frequency-domain specifications.

2. Problem Formulation

2.1 Notation

By 4,, we denote the Lebesgue space of complex valued transfer
matrices which axe essentially bounded on the unit circle with
norm IIT(z)IIH,AMZ(T(eJw@).)Hoo (Hoo,-) denotes the set of
stable (antistable) complex matrices g(z) E 4k,, i.e analytic in
z > 1 (z < 1). Rfloo (%X,x,) denotes the subset of H,,,
Hoo-) formed by real rational transfer matrices. 1,,, denotes
the space of bounded real sequences {ek} equipped with the

anorm Ilelll.= suplekl. To avoid confusion, we will denote the
k

H. norm of a transfer function as 11.1,u. and the l,,, nor-
m of a sequence as I.jjl. . Throughout the paper we will
use packed notation to represent state-space realizations, i.e.

G(z) = C(zI - A) 'B + D- (A 0

Finally, for a transfer matrix G(z), 64=G'(1).

2.2 Statement of the Problem

Consider the system represented by the block diagram 1,
where S represents the system to be controlled; the scalar
signals w, r and u represent an exogenous disturbance, a known,
fired signal, and the control action respectively; and where
C,e and y represent the outputs subject to frequency domain
performance constraints, the tracking error to the signal r and
the measurements respectively. Note that w and ( include
fictitious signals used to assess stability in the presence of model
uncertainty. Then, the basic problem that we address in this
paper is the following:

w

y

Fig. 1; The Generalized Plant

* Mixed 1h,/#H,, Control Problem: Given the nominal sys-
tem (S), with frequency-domain performance specifications
of the form:

IIW(z)Tcw(Z)ll < 7 (P)
where W(z) is a suitable weighting function (used for in-
stance to give different weights to different frequencies), firid
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an internally stabilizing controller u(z) = K(z)y(z) such that
the maximum amplitude of the regulated output e due to r
is minimized subject to the performance specifications (P)

3. Problem Solution

In this section we show that the mixed 1Io./H. optimization
problem can be decoupled into a constrained convex finite di-
mensional optimization and an unconstrained Nehari extension
problem.

3.1 Problem Transformation

Assume that the system S has the following state-space
realization (where w.l.o.g we assume that all weighting factors
have been absorbed into the plant):

A Blf Bit B2
Cl D,f Dft Df2 (5)

ct Dtf Dtt, t2
C2 D2f D2t D22

where Df2 has full column rank, D2J has full row ranc, and where
the pairs (A,B2) and (C2,A) are stabilizable and detectable
respectively. It is weUl known (see for instance [8]) that the set of
all internally stabilizing controllers can be parametrized in terms
of a free parameter Q 2RI,, as K = YT(J,Q) where J has the
following state-sace realization:

(A+02F+LC2+LD22F -L B,+LD2
F 0 I

-(C2 + Dn2F) I -D22
(1)

where F and L ate selected such that A + B2F and A+ LCi are
stable. Furthermore, the dosed-loop transfer functions T,, and
T can be written as:

TC, = Y,(Tf,Q) = T1; + T12QT21
T-r = Jr,(TQ) = Thl + T'2QT2 (2)

where Ti,77 E 'tRN and where Tf and Tt have the following
state-space realizations:

where ti, t, q are stable transfer functions and where t2 is inner.
Since l1.1lH. is invariant under multiplication by an inner function
we have:

IITCI1H,. = Iltl + t2qllj4 = HR + qllH (5)

where R(z)=tI(z)t2C(z) has all its poles outside the unit disk. A
state-space realization of R in terms of the state-space realiza-
tion of (S) is given in the Appendix.

3.2 1. Optimization Analysis

In this section we show that the minimization of IletIll,.
subject to the constraints (P) requires considering only a finite
number N of elements of the sequence lek}.

* Theorem 1: Dahleh and Pearson, [6]

Let tr(z) have n distinct zeros ak outside the open unit disk.
Then:

= mmin lielli..Ktatb

= max IZaiRe{tt(ad)l + Zai+Jmtlm (ai))

subject to:

0 n9 n

Li| aiRe{aTj}+ ai+sIm{aT' i
j=-O i-1 i

Furthermore, let:

wA n

2E ie{a&a7) + 1 cz+,,Im(a7'}

Then, the optimal error ek satisfies the folowing condition:

(6)

(7)

(8)

IekI{Z7 if r&#0 ;je,ij = {< u-, if rk= 0-

Remark 1: Note that the optimal solution may have infinitely
many terms such that le,l =,u'.

s Theorem 2: Assume that r E 11 and that the mixed optimiza-
tion problem is feasible. Let q*,e* denote the solution. Then,
there exist a finite number N such that:

Ac = IIe Ilj = sup IelC,I-11t, + rfiiw
O<k<N-1

iekI <pAl k.>N
(9)

AF -B2F
Tt- 0 AL

Ct + Dt2F -Dt2F
O 1C2

where:

I
(3)

Bl,t B

Bit+LD, 0

D£g D211)2t °

Ar =A+B2F, AL =A+LC-

Moreover (see the Appendix), it is possible to select F and L
in such a way that Tn2(z) and T21(z) are inner and co-inner
respectively (i.e. T12f12 = I, T21T2-= I). Note that for the
SISO case, equation (2) reduces to:

TCX,(z) = tl(Z)+ t2(z)q(z)
T.r(z) = tr(Z) + tr(z)q(z)

IIA ( to0. * * tliN_l )

t2 0 .. 0 (o \tr; t20 ° qZ-,
t;1 2;0 ... a

11 = 2.2.~~~=~
'r/

(10)

and where t, denotes the kth element of the impulse response of
t(z) (i.e. t(z) =

0"

tjz-k)
0

Proof: Let p denote the spectral radius of e(z). Since T,r iS
stable and r E 11, then p < 1 and:

(11)(4)
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wliere C is a cirle with radiusr > p. Let 1 > 6 > p. From (11)
it follows that:

1'Ckl C Kbk (12)
where:

Ke > sup Ie'(Z)I|IIeIIH.,s
X=5319

A suitable K. can be found from (4) as follows. Since 1114., is
submultiplicative we have:

c (lltl||1H,, + ljId,|IjqjIff,5);jrIIIw,5
From the performance constraint (P) we have:

Iltl + t2q*|IMH - IIR + q'IIH. S y

Hence:
llq*lg. 5y7+ IIRIIHu..7g

this expansion appear in the 1=? optimization. We will use tLis
observation to decompose the problem into a finite-dimensional
convex optimization problem folowed by the solution, based
upon the use of state-space methods [11], of an unconstrained
Nehari approximaton problem.

* Lemma 1: Consider the folowing Sylvester equation

A'RYA,-Y =c,e

where AR is a non-singular anti-stable matrix and where:

O ... D eN=O
1 ... O O O

A= . .. I ,/ 1x

(13)

(14)

Since q' is analytical outside the disk of radius p, it follows that
for any e > 0, 6, p < 6 < I can be chosen such that:

(19)

(20)

Then, the solution Y to (19) can be explicitly calculated as:

Y =-((AlR)N-1ICR (AlR)(N-2)c'R ... c' ) (21)

jkilH..,6 < (1 + f)Y A

Finally, substituting (15) in (13) yields:

K, = (IIt ljsj.,6 + l1t2IH.O,,y,S)jhrjIf4., < X

(15)

(16)

Let A. and p0c denote the solution to the unconstrained (found
using Theorem 1) and constrained problems respectively. It
follows that if N is selected such that:

K.6N < pu (17)

then, for I > N:

AC ruin {MaXICle i}.st> Kat.i, ei (iS)K . - ,JT(.J<-y k } _l (8

Hence, the optimal value pc is determined only by the first N
terms of the equence {eka} o.

Remark 2: Note that although in principle the Theorem re-
quires r E 11, it can be applied even if r is a step function, since
in this case the pole at z = 1 can be absorbed into the plant,
forcing a controller with integral action.

3.3 The HZO Performance Constraint

From section 3.2, it follows that the mixed l/IHoo control
problem has the form of the following constrained optimization
problem:

minE
Q

subject to:
hell,. S

W(TcW(z)) < 7 Vz E r

where r denotes the unit cirde in the z-plane. Note that this
can be cast into the form of a semi-nfiite optimization problem,
since, from Theorem 2 it folows that for each z E r there are at
most N constraints. In [1-2] a similar problem was solved using
a double approximation: first Q was approximated by a finite
response filter and then a finite set of frequency points was used,
hence replacing the semi-infinite constraints by a (large) finite
number of single frequency constraints. In [9] we proposed to
solve a similar problem approximating Q by an FIR and then
using outer approximation methods [10] to solve the resulting
semi-infinite optimization problem. In this paper we will use
a different approach to find an exact solution to the problem.
Let qi denote the terms of the impulse response of q(z). The
key uoservation to the method is that only the first N terms of

Proof: The proof follows by successive right multiplications of
(19) by the columns of the identity.

N-1
Theorem 3: Let qF = E giqz be given. Then, the condition

i=o
that there exist qR E Rioo such that IR + qlIH.. 5 7, where
q = qF + Z NqR is equivalent to a convex constraint of the form
IIQI12 <7 where Q is a symmetric matrix that is a linear function
of the coefficents of qp.

Proof: Let qp E-1 qi-i and define zN - p. Then:

IITCwTc H. = OR + qF + Z qRII. (22)

Let G_R + qF. It follows that, given qp, there exist qR E tRfoo
such that hITCwIhH.. 5 7 iff the corresponding uncontrained 1
block Nehari approximation problem has a solution, i.e. if:

min + ZzqitllH= min hhzINT-+ qRIhH.
q,c(pth<RH.

- Fr,(Z-~'9[) <7-
(23)

whe re indicats the maximum Hankel singular value and
where we used the facts that z11 is an inner function and that
the best stable approximation to a given function coincides with
the best antistable approximation to its conjugate. In order to
compute rg we need a space-state realization for the stable part
of zMG7. Let G 4IA rrH and denote the space-state realization
of R given in the Appendix by:

R {AR bitR
CR dRt

Standard space-state manipulations [11] yield:

14(AlR) dR-bR(Al )i-c'R e% ei\

wheree=(1.l O), e = (O ... 1 ). Hence:

(A')-' -(A' )-1c'ReT | °
GI = O A, el

bRAR)-1 IR'-tfAR- R
(24)
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rFinially, the similarity transformation T = (' iy') where Y
is the unique solution to the Sylvester equation:

AtYAqY-Y= je

yields:

/ (A')-' 0 Ye,
GI = -_ U AA1 el (25)

VIR(AtR)' ACN-bR(AR)(CR6N + Y) o

Since AR is antistable, A-' is stable. Hence P+[G,] = Gi.
Similarly:

N-i A eG2AN- qf_= E q^NZi = - l) (26)
i=1 eq .

where q =(qN-1 ... go). Hence:

Note that the controlabflity grammian of G is independent A
qF- Similarly, for the observability grammian we have:

(A 0

A (LO LO) ((Al )-
_ (LO L°8 )

( (AR)'bjVt(A5)-I (Alt)-%rH
HIVR(A')-I H,H )

(33)
Solving for each of the blocks of the grammian yields:

LO, =LO
L12 = A?Y (34)

where:

hzv hA-, ... hA2
(AAr AN AN.i) (35)

A=Q(A-4 b A-(N1)bR.. A-'ii)
and where LO is the solution to the following Lyapunov equation:

(A'R)-I 0 Ye1
O A, el

bIR(A')-I H

A,RLA'I- Lo= brb'R
(27)

(36)
(i.e. the controllability grammian for R) which is independent
from qF. Finally, note that

Lo
L N

=X)I'(O LoA I
) (OX' (37)

wrhere:

H=c, + £ReN - b' (A')1 ((ceRe' + Y)- (h, ... hN) (28)

Finally, note that Y can be computed explicitly by using Lemma
1. Substituting (21) in (27) and (28) yields:

(Al O -(WA) 1C#
A5e

9=P+[G,+G2]= A, _ 1
Vt(A' )-I H (29)

h, =gy i+ b (A')N-l-iCIR 1 <Si < N-1
hN qqo + dR

In order to compute the approximation error we need to compute
the observability and controllability grammians of Although
in principle this requires the solution of 2 Lyapunov equations,
with coefficients that are functions of qp, we will show that the
particular structure of the problem allows for computing these
solutions explicitly. For the controllability grammian we have:

(A )-
A) (Ltc Lc (Al) )- '_ (Lc Lc )

_ (A' )N-1c:R(AR)-J1 -(A'R)N-1CIe)
elC,R(AR)Nl ClC

(30)
Solving for each of the blocks of the grammian yields:

Lc Lc11 a

Lc = -((Al )N-IC 2C(At)N 2R..'. CR) = Y
LC2 = IN

(31)

where Lc is the solution of the following Lyapunov equation:

A'RLCAR - LC = (A' )NdCc(AR)N (32)

and where the expression for Lc was obtained from the cor-

responding equation by successive right multiplications by e,.

Let

Then:

w4iwi-(5
' O)ww(A l I

LO = (O ° ) lwI#W( I 1

(38)

(39)

(40)

Hence, from (32) and (40) we have that:

LiLoLi = Q'Q

A_f I °

From Nehari Theorem ([12]) it folows that:

imTc.IIH pt LiLL 7 So- lIQ112 < y (41)

where p indicates the spectral radius. Since Q is a linear function
of the coefficients of qp it follows that the constraint (41) is
convex in the variables qi o.

Remark 3: Note that (o, 1) is positive definite, since from

(36) it can be easily shown that:

Lo AA' AR-NL°A-N >

The folowing result is now obvious:

* Theorem 4: q0 = qF + z-Nq solves the mixed k,,/Hc.
control problem ifFr = ( . )' solves the folowing finite
dimensional convex optimization problem:

arg=nan J1,+ryj,0
.1E RN

IIQI12 57Y

and qR solves the unconstrained Nehari approxmation problem

qR = argmin IIR + qRIIH

where R is defined in (5).

Based upon the results of Theorem 4, the mixed optimization
problem can be solved using the following iterative algorithmr.
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3.4 Synthesis Algorithm
Begin
1) Find it, ft and R using the formulas given in the Appendix.
2) Comopute PuuigTheorem 1 and N from (17) using an initial

guess for 6. Alternatively, use an initial guess N,. Solve (31) for
L4 and (36) for L°. Compute Wi from (38)

3) Solve the following convex optimization problem:

min ILt + rtqll
qE RN

11Q112 . 7

4) Solve the unconstrained Nehari approximation problem:

Minig+ qRjIH..
5) CIompute IIqIIH.,6 and check (15).

If (15) holds then the optimal solution has been found
Else
Increase N and go to step 3

End.

* Theorem 5: Consider a monotonically increasing sequence
={N1,N2 ...N ...and let pi = ilelli be the peak value of

e when using the controller obtained using Ni in the algorithm.
Then the sequence pi has a limit p.

Proof: The proof follows by noting that {pi} is nondecreasing
(since we add more constraints), bounded above (by the value of
the unconstrained H., controller. Hence ji has a limit.

Remark 4: Theorem 5 shows that by taking N large enough
we can get arbitrarily close to the optimal solution. However,
Theorem 1 shows that for the unconstrained case the solution
to the 1c,. problem may have infinitely many elements of {ek)
achieving the peak value. Hence, it follows that if the H,,
constraint is not tight, the proposed algorithm may require
several iterations involving large optimization problems. These
problems are addressed in the next section.

3.5 A Non-Iterative Suboptimal Algorithm

In this section we present a non-iterative algorithm that
yields a suboptimal solution to the problem. This suboptimal
solution allows more control on the location of the closed-loop
poles and therefore on the settling time. Consider the following
modified problem, where we require all the poles of the closed-
loop system to be inside a given disk t:

min Ilellji
subject to:

vl.H. 5 7
p(T) < 6

where 6 < I is given and p(T) denotes the spectral radius of the
closed-loop system. From the Maximum Modulus Theorem it
follows that an upper bound of the solution can be minimized by
solving the following auxiliary minimization problem:

min IlellI.

subject to:
IITCw.II.,s 7

p(T) c 6
+ The idea of constraining the pole locations was suggested by Dr.

A. Sideris and Mr. H. Rotstein

since IITCwIIH. c JTCIIT,slH Note that the fartorizat
introduced in section 3.1 can be used to solve the auxliary
mininization problem by using the change of variable z = b1.
Furthermore, from (18) it follows that the auxiliary minimization
problem requires considering only N elements of the sequence
{ek}, where N is selected such that:
KeA < p,

KC= (2vDru. + 1e(i)IIf(7 + OIIR)IIH.))IIr(k)IIH.
(42)

4. A Sple Example

Consider the problem of minimizing the step response error
for the non-minimum phase system shown in figure 2 subject
to the robustness constraint IITCI^.1. < y. Note that in this
case T2,, = T, the complementary sensitivity function and T,r =
1 - T = S. Assume that settling time considerations require
p < 0.8 Then, the change of variable z = 0.81 yields:

1-2.5
- 1.25

The inner factorization of the Appendix yields:

t
-0.3060i + 0.7650 (0.42 - 1)(0.82 - 1)
( - 0.8)(2- 0.4) (z -0.4)(2- 0.8)

R=t1t2-= -0.9562
2-1.25

S = ( i -g)( 4) (i + 0.356 - (0.322 - 0.8)q)
e(2) = S(2)2) = i(i +0.356)

(i -0.8)( - 0.4)

(43)

(44)

2(O.322- 0.8) qAH(2) + U(2)q
(2-0.4)( - 0.8)

In this case the unconstrained minimum achievable value of
IITIIH = rH(R) = 1.7 Since U(z) has a single non-minimum
phase zero at I = 2.5, direct application of Theorem 1 yields:

;, = maxH (2.5) = 2a

subjet to:
00

E a(2.5)-k <s6c 1
k=o06-

hence J,=1.2. Assume that 7 = 2. Then we have:

|IS(Zk)IIH. = 111-TlIH.
< l+IITIIH < 1+7

Ile(k)IuH.. < IISIIH..IlrhlH. = 12
From (17) it follows that N should be selected such that:

12(_yL) <N .

(11252
hence it suffices to consider only N = 10 terms of {ek}.

(45)

w

r+ e ~U z-2 z

Figure 2. Block Diagram for the Example

Figure 3 shows the step response of the system using the tmI/H.o
controller versus the step response of the system using the

optimal H.,.. controller. Note that the 1mo/H,. controller reduces
the maximum error from 1.68 to 1.28, at the price of longer

settling time. Research is currently underway to extend the

present formalism to accommodate shaping of the step response.
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Fig. 3. H.0 vs. 1/H,,IH, step response
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Appendix: Factorization Formulas for the
5. Conclusions One-Block Case

In this paper we address the problem of finding an internally
stabilizing compensator that minizes the maximum amplitude
of the error to a fixed given input subject to constraints upon
the Ho,, norm of a relevant transfer function. This problem
can be thought as the problem of designing a controller capable
of guaranteeing an adequate robustness level agains dynamic
uncertainty while using the extra available degrees of freedom
to optimize a time-domain performance. Although here we
considered only the simpler case of a one-block problem, we
anticipate that the results wiUl extend naturally to the general
4-block case.

Perhaps the most severe limitation of the proposed method is
that may result in very large order controllers (twice the number
of time elements of {ekl considered), necessitating some type of
model reduction. Research is currently under way addressing this
issue and pursuing the extension of the formalism to allow more
control on the shape of the error response.
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A'XA - (C, + B;XA)'(J + B2XB23-'(Cl + B'XA) + ClC, = X
AYA'-(B, + AYC2)(I+ C2YC2)-1(BI + C2YAl)+ B,B' = Y

(A2)
yields T,2 and T2, such that T,27j2 RB and T,,T21 = RL
where RB = (I + BJXB2) and RL = (I + C2YC2). Setting T12-
Tn2R7, T21 = R7 Ti and redefining Q as RBQR4 yields the desired
result. Finally, it can be shown though some lengthy computations
that:

T
(Ap')- | (A',)-'C'. -XL

_T2zlT-R = x

(A-1f3B2)J | B

((A'A,)' (i4)

-DIIBL(A&s- -C,y DlRLIRiz
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