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Abstract

Most realistic control problems involve both mixed time/frequency
domain ‘performance requirements and model uncertainty. However,
the majority of controller design procedures currently available focus
only on one aspect of the problem. In this paper we propose a
design procedure for minimizing the maximum amplitude of a regulated
error to a specified input while, at the same time, addressing model
uncertainty through bounds on the H,, norm of a relevant transfer
function. This problem is of interest in optimal tracking applications
where the objective is to achieve minimum tracking error while, at the
same time, maintaining an adequate robustness level. We show that for
the SISO case the problem can be decoupled into a finite dimensional
constrained optimization and an unconstrained Nehari approximation
problem.

1. Introduction

A substantial number of control problems can be saummarized
as the problem of designing a controller capable of achieving
acceptable performance under system uncertainty and design
constraints. This statement looks deceptively simple, but even
in the case where the system under consideration is linear, the
problem is far from solved. During the last decade a large
research effort led to procedures for designing robust controllers,
capable of achieving desirable properties under various classes of
plant uncertainties while, at the same time, satisfying frequency-
domain constraints. However, these design procedures cannot
accommodate directly time domain performance specifications.

Recently, some progress has been made in this direction [1-
4]. By using a parametrization of all stabilizing linear controllers
in terms of a stable transfer matrix Q, the problem of finding
the “best” linear controller can be formulated as the constrained
optimization problem of minimizing a weighted co-norm over the
set of suitable Q. In this formulation, additional specifications
can be imposed by further constraining the problem. The
resulting optimization problem has been solved using convex
programming [1] and constrained nondifferentiable optimization
[2]. However, although these methods are effective when the
specifications are easily expressed in terms of the frequency re-
sponse, presently they can handle time—domain specifications in a
conservative fashion, through the use of several approximations.
A different approach has been pursued in [3-4], where time-
domain constraints over a finite horizon are incorporated into
an H, optimal contro] problem which is then transformed into
a finite dimensional optimization problem. However, at this
stage constraints over an infinite horizon can be handled only
indirectly. Finally, in [5) and [6] the problems of finding an
internally stabilizing compensator that minimizes the maximum
error to {, bounded disturbances and to a fixed, given signal was
solved. However, these degigns cannot accommodate frequency-
domain specifications.

In this paper we address the problem of finding an internally
stabilizing compensator that minimizes the maximum amplitude
of the error to a fixed given input subject to constraints upon
the H,, norm of a relevant transfer function. This problem.
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which can be though as the dual of the problem proposed in {3-
4j, is of particular interest for optimal tracking problems where
the objective is to achieve minimum error magnitude, while at
the same time maintaining an adequate robustness level against
model uncertainty. We believe that the results presented here
will provide a useful new approach for addressing more realistic
control design problems including a combination of time-domain
and frequency—domain specifications.

2. Problem Formulation

2.1 Notation

By L, we denote the Lebesgue space of complex valued transfer
matrices which are essentially bounded on the unit circle with
norm [[T(2)| i 20max(T(e7%).)Hoo (Hoo™) denotes the set of
stable (antistable) complex matrices g(2) € Lo, i.e analytic in
22 1(z <1). RHoo (RHZ) denotes the subset of Ho, (
Hy,~) formed by real rational transfer matrices. I, denotes
the space of bounded real sequences {e;} equipped with the

norm ||e||1~ésup lex]. To avoid confusion, we will denote the
k

Ho norm of a transfer function as |||y, and the I, nor-
m of a sequence as ||.ll;,. Throughout the paper we will
use packed notation to represent state—space realizations, i.e.

G(z) = C(zI ~ A)'B + D2 (2 g)

Finally, for a transfer matrix G(z), G2G'(2).

2.2 Statement of the Problem

Consider the system represented by the block diagram 1,
where § represents the system to be controlled; the scalar
signals w,r and u represent an exogenous disturbance, a known,
fized signal, and the control action respectively; and where
{,e and y represent the outputs subject to frequency domain
performance constraints, the tracking error to the signal r and
the measurements respectively. Note that w and ¢ include
fictitious signals used to assess stability in the presence of model
uncertainty. Then, the basic problem that we address in this
paper is the following:

w z
—_— —
e S ——— ¢
y ——— —_—
y

Fig. 1, The Generalized Plant

* Mixed l/H,, Control Problem: Given the nominal sys-
tem (§), with frequency—domain performance specifications

of the form:
W (2)Tew(2)l <4 (P)

where W(z) is a suitable weighting function (used for in-
stance to give different weights to different frequencies), find



an internally stabilizing controller u(z) = K(z)y(z) such that
the maximum amplitude of the regulated output e due to r
is minimized subject to the performance specifications (P)

3. Problem Solution

In this section we show that the mixed I/ Hoo optimization
problem can be decoupled into a constrained convex finite di-
mensional optimization and an unconstrained Nehari extension
problem.

3.1 Problem Transformation

Assume that the system S has the following state-space
realization (where w.l.o.g we assume that all weighting factors
have been absorbed into the plant):

A ' By Bu B;
Cy Dyy Dy Dpy

Cy Dy Dy Dg
C, Dyy Dat Dy

(5)

where Dy, has full column rank, Dy bas full row rank, and where
the pairs (A,B;) and (Ci,A) are stabilizable and detectable
respectively. It is well known (see for instance [8]) that the set of
all internally stabilizing controllers can be parametrized in terms
of a free parameter Q € RN as K = F,(J,Q) where J has the

following state—space realization:
A+ByF+LCi+LDuF | -1 B+ LDy
F 0 1 (1)
—(C: + DHF) I ~Da3

where F' and L are selected such that A+ B, F and A + LC; are
stable. Furthermore, the closed-loop transfer functions T¢w and
Te- can be written as:

Tew = Fi(Ty,Q) = T + T12QTy

Ter = F(T1, Q) = T}, + TH,QT4, @

where T3, T} € RHo and where T; and T; have the following
state—space realizations:

Ap —-B3F By By
T ( 0 A: , Bll + iDz/ 0
, =
Cy+ DysF —DpyF Dy; Dy,
' é l Day
3)
(  Ar -BiF By B
T 1] Az Byy+LDyy 0
‘| G +DuF —DuF Dy Dy
0 Cs Dy O

Arp=A+BF, A=A+ LC;

Moreover (see the Appendix), it is possible to select F and L
in such a way that Ti13(z) and T3;(z) are inner and co—inner
respectively (i.e. T2 Th2 = I, T51Tay” = I). Note that for the
SISO case, equation (2) reduces to:

Teo(2) = 1(2) + t2(2)q(2)

Tor(z) = 11(2) + 5()a(2) @
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where t;,7, ¢ are stable transfer functions and where #; is inn.er.
Since |||z, is invariant under multiplication by an inner function
we have:

ITeullr. = Ity + taglln, = IR +qllne (8)

where R(z)ét;(z)tg'(z) has all its poles outside the unit disk'. A
state—space realization of R in terms of the state-space realiza-
tion of (§) is given in the Appendix.

3.2 I, Optimization Analysis

In this section we show that the minimization of fexfli
subject to the constraints (P) requires considering only a finite
number N of elements of the sequence {e}.

¢ Theorem 1: Dahleh and Pearson, (6]

Let t5(z) have n distinct zeros a; outside the open unit disk.
Then:

.
= ,rgy,f;,,llellu.°

n n (6)
= max | 3" aiRe{ti(ai)} + z:a.-ﬂfm{t:(a‘-)}]
7 li=1 i=1
subject to:
i |ia.~Re{a,~‘j} + Zn:ap,,.Im{a‘-’j}I <1 (7)
j=0 i=1 i=1

Furthermore, let:

P23 aiRe(oi?) + Y oisnlmiar?) ®
i=1

i=1
Then, the optimal error e; satisfies the following condition:

_ ""1 KT&#O;
el {SM',

if Tk = 0.

Remark 1: Note that the optimal solution may have infinitely
many terms such that |e;| = u*.

o Theorem 2: Assume that r € /; and that the mixed optimiza-

tion problem is feasible. Let ¢*,e* denote the solution. Then,
there exist a finite number N such that:

PY-Y -
be=lle"lli, = sup |ef|=ltr + 7¢ Moo
0<k<N-1

(9
lex] < pe k>N
where:
42 (he tin-1)
%o o ... 0
th, %o o 0] Ll @ (10)
Tr= . .. 9= .
BNy - 4, IN-1

and where #; denotes the k** element of the impulse response of
o0
H(z) (ie. t(2) = %t,,z"‘)

Proof: Let p denote the spectral radius of e*(z). Since T.r is
stable and r € Iy, then p < 1 and:

e'(z)z""dz (am

“= 73



where C is a circle with radins r > p. Let 1 > & > p. From (11)
it follows that:
fexl £ K.6* (12)

where: A
K.> sup le*(2)|=llelln.. 5
=8/t

A suitable K, can be found from (4) as follows. Since ||.||x. s is
submultiplicative we have:

el g 8 S WTerllHo Sl 6 (13)
< (Ml 6 + N5 A2, sll0" N er 6Pl B2 6

From the performance constraint (P) we have:
1+ taq™lltre = IR+ ¢l <7

Hence: A
le*llr. €7+ |1 RlH.=7q (14)

Since g* is analytical outside the disk of radius p, it follows that
for any € > 0, 8, p < 6§ < 1 can be chosen such that:

gl 6 < (1+ 72 e (15)
Finally, substituting (15) in (13) yields:
K. = (tflla..5 + 15 llA. 57 Irlia,. 5 < o0 (16)

Let u, and u. denote the solution to the unconstrained (found
using Theorem 1) and constrained problems respectively. It
follows that if N is selected such that:

KN <y, (17)

then, for{ > N:

pe mkaxle,,l} 2ua> Ko 20e)  (18)

= min {
K stab,IT¢u ISy

Hence, the optimal value y. is determined only by the first &
terms of the sequence {e;} o.

Remark 2: Note that although in principle the Theorem re-
quires r € [, it can be applied even if 1 is a step function, since
in this case the pole at z = 1 can be absorbed into the plant,
forcing a controller with integral action.

3.3 The H,, Performance Constraint

From section 3.2, it follows that the mixed lo/Hoo control
problem has the form of the following constrained optimization
problem:

min €
Q

subject to:
llelh,, <€

T(Tw(z)) <vV2ET

where 7 denotes the unit circle in the z-plane. Note that this
can be cast into the form of a semi-infinite optimization problem,
since, from Theorem 2 it follows that for each z € 7 there are at
most N constraints. In [1-2] a similar problem was solved using
a double approximation: first Q was approximated by a finite
response filter and then a Jinite set of frequency points was used,
hence replacing the semi-infinite constraints by a (lazge) finite
number of single frequency constraints. In [9] we proposed to
solve a similar problem approximating Q by an FIR and then
using outer approximation methods [10] to solve the resulting
semi—infinite optimization problem. In this paper we will use
a different approach to find an ezact solution to the problem.
Let g; denote the terms of the impulse response of g(z). The
key observation to the method is that only the first N terms of
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this expansion appear in the !, optimization. We will use this
observation to decompose the problem into a finite~dimensional
convex optimization problem followed by the solution, based
upon the use of state-space methods [11], of an unconstrained
Nehari approximation problem.

e Lemma 1: Consider the following Sylvester equation
ARY A, -Y =chey (19)

where AR is a non-singular anti-stable matrix and where:

9 ... 00 0
1 ... 00 0

A4g=1. .. . |heN=1 (20)
0 ... 10 1

Then, the solution Y to (19) can be explicitly calculated as:
Y=-((4p)" ey (AR)N-Vep ... k) (21)

Proof: The proof follows by successive right multiplications of
(19) by the columns of the identity.

N-1 .
e Theorem 3: Let gp = 3 ¢iz~* be given. Then, the condition

S
that there exist gg € RM such that |R + gllw_ < 7, where
¢ = qr + 2~Ngg is equivalent to a convez constraint of the form
l1Qll2 < ¥ where Q is a symmetric matrix that is a linear function
of the coefficients of ¢f.

Proof: Let qpé TNl giz— and define z“Nqagq —gp. Then:

$=0

ITculler, = IR + ¢F + 2~V arlln,, (22)

Let GER + gr. It follows that, given g, there exist gr € RMoo
such that |[T¢ullm,, < 7 iff the corresponding unconstrained 1
block Nehari approximation problem has a solution, i.e. if:

min |G+2z Ngallg, = min_[z7VC + ¢rlln.
IRERK, qrERHZ (23)

=Tua(zG) <y

where I'yy indicates the maximum Hankel singular value and
where we used the facts that z¥ is an inner function and that
the best stable approximation to a given function coincides with
the best antistable approximation to its conjugate. In order to
compute I'yy we need a space—state realization for the stable part
of NG Let G & 72—~ and denote the space—state realization
of R given in the Appendix by:

A b
R=( R n)
crR dr

Standard space—state manipulations [11] yield:

O Y Vi S W P I
Va(AR)™ | di—br(AR)1ck | o
where €] = (1 0), ey =(0 1). Hence:
(AR)™" ~(AR)cpely l 0
G = 0 Aq a1 (@9
Va(AR)™" dpe'n— bp(AR)lchely | o



Finally, the similarity transformation T = (I“;' I}; ) where Y

is the unique solution to the Sylvester equation:
RYAg-Y = chel
yields:
(AR 0 l Ye,
L a | @5

G =
ValAR)™! dhek ~Ba(AR)Hcheh +Y) | o

Since Ap is antistable, Az! is stable. Hence Pi[Gi) = Gi.
Similarly:

G A N, -~ = — A! €1 2%

2=z Ngp = ,.Z}“"-*‘ ol b (26)

where ¢ ={gn_1 ... go). Hence:

(AR 0 I Yei
GAP, G+ Gi)= 0 @ (27)
B4R H | o

where:
H8¢, + dpely — Vr(AR) " Hcrew +Y)2 (A ... hy) (28)

Finally, note that Y can be computed explicitly by using Lemma
1. Substituting (21) in (27) and (28) yields:

(At 0 I —(Ap) e
G=P,[G, +Gj]= A il
BAR™ H [ g (29)
hi=gn-i +bp(AR)" 1"y 1<iSN -1
hy =gqo+dgr

In order to compute the approximation error we need to compute
the observability and controllability grammians of ¢. Although
in principle this requires the solution of 2 Lyapunov equations,
with coeflicients that are functions of g, we will show that the
particular structure of the problem allows for computing these
solutions explicitly. For the controllability grammian we have:

(“8” 2)(E &) (4 2)-(% &)

= ( (AR)" - cher(ARYY-! —(ARMY "c"ae’x)

—ercr(AR)N? ere]
(30)
Solving for each of the blocks of the grammian yields:
LG =1L
LG = - ((AN-1ey (ARN-2ch... cg)=Y  (31)
LG =1In

where LS is the solution of the following Lyapunov equation:
RLS AR - LS = (AR)Ncren(4R)Y (32)

and where the expression for L{, was obtained from the cor-
responding equation by successive right multiplications by e;.

Note that the controllability grammian of G is independent of
gr. Similarly, for the observability grammian we have:

(9 2) (& &) (9" 4)-(& ‘&)

- ((An)“bn*fu(Aia)‘l (An)"w)
= H'W( )™ H'H

(33)
Solving for each of the blocks of the grammian yields:
L} =L}
LYy = An' (34)
Lg: = HH’
where:
hy hyoy ... .. K
hN hN-l e h3
n .
Ay hy-y (3'5)
hn

A= (7% AZ™Vbg...A7%R)
and where L9 is the solution to the following Lyapunov equation:
ARL}AR - L] = bpb (36)

(i.e. the controllability grammian for R) which is independent
from gr. Finally, note that

el ) =(EHNER) o

Let wiwid (i‘; -‘I‘) (38)
Then: L= ((I) 1(}) wiwi (g 7‘:,) (39)

Hence, from (32) and (40) we have that:

Lt =0

otwi (] 8)1d “o

From Nehari Theorem ([12]) it follows that:

Mool <7 > ot (LéLaLﬁ) <7 @<y (41)

where p indicates the spectral radius. Since Q is a linear function
of the coefficients of gp it follows that the comstraint (41) is
convex in the variables g; o.

0
Remark 3: Note that i? ';
(36) it can be easily shown that:

L0-AA = Ag~NL%AZN >0

is positive definite, since from

The following result is now obvious:

o Theorem 4: ¢° = ¢% + z~N¢} solves the mixed loo/Hoo
control problem iff ¢° = (g,...qx_1 Y solves the following finite
dimensional convex optimization problem:

ﬂa = argmin {ft; + 7¢le
€ RN
fRllz <~
and gg solves the unconstrained Nehari approximation problem
gk = argmin (R + grlln,,
IRERN o
where R is defined in (5).

Based upon the results of Theorem 4, the mixed optimization
problem can be solved using the following iterative algorith.



3.4 Synthesis Algorithm

Begin
1) Find &;,¢] and R using the formulas given in the Appendix.
2) Compute using Theorem 1 and N from (17) using an initial
guess for 5‘“ Alternatively, use an initial guess N,. Sofve (31) for
L. and (36) for L%. Compute W from (38)
3) Solve the following convex optimization problem:

min  |lit; + rglle
g€ RN
il < v

4) Solve the unconstrained Nehari approximation problem:

min
fRERM oo "g + QR“H,.,

5) Compute {|q||#..,s and check (15).
If (15) holds then the optimal solution has been found
Else

Increase N and go to step 3
End.

e Theorem 5: Consider a monotonically increasing sequence
N = {N,N;...N;...} and let y; = |je]|,,, be the peak value of
e when using the controller obtained using N; in the algorithm.
Then the sequence u; has a limit .

Proof: The proof follows by noting that {z;} is nondecreasing
(since we add more constraints), bounded above (by the value of
the unconstrained H,, controller. Hence y; has a limit.

Remark 4: Theorem 5 shows that by taking N large enough
we can get arbitrarily close to the optimal solution. However,
Theorem 1 shows that for the unconstrained case the solution
to the I problem may have infinitely many elements of {e;}
achieving the peak value. Hence, it follows that if the H,
constraint is not tight, the proposed algorithm may require
several iterations involving large optimization problems. These
problems are addressed in the next section.

3.5 A Non-Iterative Suboptimal Algorithm

In this section we present a non-iterative algorithm that
yields a suboptimal solution to the problem. This suboptimal
solution allows more control on the location of the closed-loop
poles and therefore on the settling time. Consider the following
modified problem, where we require all the poles of the closed-
loop system to be inside a given disk t:

min efls,,

sub ject to:
WTeulltrg, <7
pT)<é
where § < 1 is given and p{T') denotes the spectral radius of the
closed-loop system. From the Maximum Modulus Theorem it
follows that an upper bound of the solution can be minimized by
solving the following auxiliary minimization problem:

min [l

subject to:
IT¢wllf s £
AT)<é

+

The idea of constraining the pole locations was suggested by Dr.
A. Sideris and Mr. H. Rotstein
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since ||[Teulin. € T¢wllHo,s- Note that the factorizat
introduced in section 3.1 can be used to solve the auxiliary
minimization problem by using the change of variable z = §3.
Furthermore, from (18) it follows that the auxiliary minimization
problem requires considering only N elements of the sequence
{ex}, where N is selected such that:

KeGN < By

Ko = (I + 15 (74 1R e ) ) Il
(42)

4. A Simple Example

Consider the problem of minimizing the step response error
for the non—minimum phase system shown in figure 2 sub ject
to the robustness constraint ||T¢ully,, < 7. Note that in this
case T¢,, = T, the complementary sensitivity function and T, =
1-T = S. Assume that settling time considerations require
p < 0.8 Then, the change of variable z = 0.8% yields:

z-25

P(¥)= -5 (43)
The inner factorization of the Appendix yields:
;= =0.3060+0.7650 (0.4 —1)(0.85 1)
1T G-08)(Z-04)' T (3-04)(z-08)
. _ —0.9562
R=tt= 775
- (-12%) . ;
S = o IHD (3+0.356 - (032 ~ 0.8)q) (44)
o o vy o HEH0356)
2 =53 = om0
3(0.322 — 0.8) RH()+ U(2)

(G-04)(2-038)
In this case the unconstrained minimum achievable value of
T4, = Ta(R) = 1.7 Since U(2) bas a single non~minimum
phase zero at 2 = 2.5, direct application of Theorem 1 yields:

B = m}xH(Z.S) =2a

subjet to:
f (25) %= <1
Q| 4. = =<
& 0.6

hence py=1.2. Assume that v = 2. Then we have:
8(Mare =11 - Tllg
1+ . <147
lle(2)lin. < ISln.lirle. =12
From (17) it follows that N should be selected such that:

1\~
12 (T’zE) <pe=12
hence it suffices to consider only N = 10 terms of {e;}.

(45)

w
r+‘£+e u Z-
1

%

(@]
%
y

Figure 2. Block Diagram for the Example

Figure 3 shows the step response of the system using the /oo / Hoo
controller versus the step response of the system using the
optimal He, controller. Note that the /o / Hoo controller reduces
the maximum error from 1.68 to 1.28, at the price of longer
settling time. Research is currently underway to extend the
present formalism to accommodate shaping of the step response.



I
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Controlier

Step Response

0Sf-

Fig. 3. Hy vs. lo/Ho step response

5. Conclusions

In this paper we address the problem of finding an internally
stabilizing compensator that minimizes the maximum amplitude
of the error to a fixed given input subject to constraints upon
the Hy, norm of a relevant transfer function. This problem
can be thought as the problem of designing a controller capable
of guaranteeing an adequate robustness level agains dynamic
uncertainty while using the extra available degrees of freedom
to optimize a time—domain performance. Although here we
considered only the simpler case of a one-block problem, we
anticipate that the results will extend naturally to the general
4-block case.

Perhaps the most severe limitation of the proposed method is
that may result in very large order controllers (twice the number
of time elements of {e,} considered), necessitating some type of
model reduction. Research is currently under way addressing this
issue and pursuing the extension of the formalism to allow more
control on the shape of the error response.
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Appendix: Factorization Formulas for the
One-Block Case

In this Ap‘pendu we present the State-Space formulas for the Inner
and Co-Inner factorizations used in section 3.1. These formulas are the
discrete-time counterpart of the continuous time formulas presented in
[8] and {11]. Assume that (P) has the following State-Space realization:

P

where D;; has full column rank with (D, DLl) unitary, Dj; has
full row rank with ( D,, D, ) unitary, and where the pairs (A, B;)
and (Cj, A) are stabilizable and detectable respectively. Furthermore,
assume that the following conditions hold:

A-jwl Bz ) pog full column rank for all w
C1 Du

A-juwl By
( c Dn) has full row rank for all w.

Note that for the one block case the hypothesis implies Dy3 = Dyy = I,
which can be assumed without loss of generality (by redefining the
inputs if necessary). Selecting F and L as:

F=—(ByXBy +I)"}(C1 + B1XA)

L=—(B)+ AYCH)(I + C.YCy)? 4D

where X,Y > 0 are the solution to the following Riccati equations:

A'XA~(C+ByXAY(I+ B4XBy)~ (C1 + BLbXA)+CiCL = X
AYA — (B + AYCYI + CYCy) "1 (B, + ;Y A) + BB, = Y
(A2)
yields Ty, and T3; such that 7Ty, = Rp and T53,73" = R
where RB u + B'XB;) and Ry = (I + CY (). Setting Ty =
TioRZ , Tar = RF T and redefining Q as RYQR} yields the desired
ruo;sult Finally, lt can be shown though some lengthy computations
at:

W et | ey -x1
T2 ThnTer™=R = " 3 x
—(AF'ByY | Rz O
(4g)"! | (i) 49
DuR}
Dy By(AL) -y Y L
1BL( 6‘) i Ri




