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Abstract

During the last few years there has been considerable interest
in the use of trainable controllers based upon the use of neuron-
like elements, with the expectation being that these controllers
can be trained, with relatively little effort, to achieve good
performance. However, good performance hinges on the ability
of the neural net to generate a "good" control law even when the
input does not belong to the training set, and it has been shown
that neural-nets do not necessarily generalize well. It has been
proposed that this problem can be solved by essentially quantizing
the state-space and then using a neural-net to implement a table
look-up procedure. However, there is little information on the
effect of this quantization upon the controllability properties of
the system. In this paper we address this problem by extending
the theory of control of constrained systems to the case where the
controls and measured states are restricted to finite or countably
infinite sets. These results provide the theoretical framework
for recently suggested neuronorphic controllers but they are also
valuable for analyzing the controllability properties of computer-
based control systems.

I. Introduction

During the last few years considerable attention has been
focused on the use of neural-net based controlers, the expectation
being that these controllers can be trained, with relatively little ef-
fort, to achieve good performance. In particular, these controllers
could be very useful for complex problems that do not admit a
closed-form solution. Such is the case of constrained systems.
In this case, of considerable practical importance for applications
ranging from aerospace to process control, the problem of steering
the system from a given initial condition to a desired target set
usually does not admiit a linear feedback control law as a solution.
Therefore, control engineers have to resort to a number of schemas
that include (in increasing order of sophistication) switching
between several linear controllers, non-linear controllers and on-
line optimization based techniques [1-3]. Clearly, a trainable,
Neural-Net based controller could provide a welcomed addition
to the handful of techniques available for dealing with constrained
systems, with the added bonus that such a controller could achieve
good performance even in the face of poor or minimal modeling.
As an example, we can mention the celebrated neuromorphic
controller used by Anderson [4] to control an inverted pendulum
when the control force is restricted to have bounded magnitude.

The basic idea justifying the use of Neural Nets as controllers
for dynamical systems is that the controller can be trained, for
instance by presenting several instances of input-output pairs,
to generate a desired output for a given input. The underly-
ing assumption is that the Neural Net has good generalization
properties, therefore being capable of generating an appropriate
output even when the input is not a member of the training set.
However, it has been shown [5] that Neural Nets do not necessarily
generalize well. Therefore, it follows that the asymptotic stability
properties of systems utilizing neuromorphic controllers are gen-
erally unknown and this is a major stumbling block preventing
their use.

This difficulty can be solved by realizing the fact that the
neural-net essentially implemnts a look-up table, and that gen-
eralization can be achieved by discretizing the input vectors and
mapping them to a fixed number of "cells" in such a way that
inputs that are "close" in some sense get mapped to the same cell
[6]. This idea is based on the idea of "boxes" [7] and has been
used several times in connection with neuromorphic controllers.
However, none of the work available up to date addresses the
effects of this "quantization" upon the controllability properties
of the system and the question of how to select a cell size that
would allow the system to reach a "desirable" target set.

Clearly, the problem of determining whether or not a given
cell "size" wiU allow the system to reach a given target set is sim-
ilar to the problem of investigating the controllability properties
of a constrained system when the available state measurements
are quantized, i.e. when the only information available at a given
instant is that the state of the system belongs to a given "cell".
However, although the theory of control of constrained systems
is well known and the origial results due to Lee and Marcus [8]
on the controllability of systems under control constraints have
been extended in a number of ways to account for different types
of constraints (see for example [9]), all these extensions always
assume that the set of possible control laws is a dense subset
of A" and that the initial- condition of the system is perfectly
known. Traditionally, quantization effects have been treated by
adding noise sources and non linear quantizers to the system [10].
This type of analysis provides upper bounds on the errors due
to quantization effects, but it is not suitable for extending the
theoretical results already known for non-quantized systemns to
the quantized case. In [1] we presented a theoretical framework
capable of handling the case where the control is restricted to a
finite or countably infinite set, for systems under both state and
control constraints. However, these theoretical results assume
that the initial condition of the system is known precisely and
therefore cannot handle the case of interest here, where the
available measurements are also restricted to a finite or countably
infinite set.
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In this paper we present basic results on the controllability
of constrained discrete time systems using quantized controls
and measurements, and we indicate how these results could be
applied to the problem of designing suboptimal neuromorphic
controllers for constrained systems. As we mentioned before,
the main motivation for this paper is to provide a theoretical
framework for some recently suggested neuromorphic controllers
[6]. However, the results presented here also address the need,
grown from the increased use of computer-based controllers in
recent years, for a general theory of constrained controllability
capable of accommodating the quantization effects that may
result from the use of a computer in the feedback loop.

The paper is organized as follows: In section II we introduce
the concepts of quantization and quantized controllability. In
section III we use these concepts to show that under very general
conditions there exist regions of state space containing initial
conditions which can be steered to a desired target set (which
without loss of generality can be assumed to be a neighborhood
of the origin). In section IV we use an example to illustrate the
application of these theoretical results to the problem of designing
suboptimal controllers based upon a partition of state-space.
Finally, in section V, we summarize our results and we indicate
directions for future research.

U1. Definitions

Before being able to present the basic results on the control-
lability of constrained systems with quantized states and controls
we need to introduce some concepts. We begin by formalizing the
concept of 'quantization".

%Def. 1: Consider a closed set cR)". A family S of closed
sets Si is called a closed cover of g if g U Si

% Def. 2: Consider a closed set g RItn. A quantization Q of
G is defined as the set:

Q = {z:_z E Si and {S,} is a closed cover of C}

. Def. 3: Given a quantization Q of a set g, the size of the
quantization with respect to some norm K defined in 5 is
defined as:

- = min{r: Si c B(L,, r)Vi}

where B(gz., r) indicates the K-norm ball centered at z. and
with radius r. A quantization Q with size s will be denoted
as Q..

Consider now the case where the sets of the family S that
defines a quantization Q have pairwise disjoint interiors (i.e.
int(Si)nint(S;) = 0,i 6 j). In this case, S induces an equivalence
relation in 5 as follows:

. Def. 4: Consider a closed cover S of C with pairwise disjoint
interiors, and two points xL1,2 E C. xl and XL2 are equivalent
modulo S if 3 i such that x, and x E int(Si). To complete
the partition of g into equivalence classes, we assign the points
that are in Si n Sj (i.e. in the common boundary) arbitrarily
to either one of the classes. Two points equivalent modulo S
wilU be denoted as , - x2.

DDef. 5: Consider a quantization X. = {J of a given set G.
It follows from Definitions 2 and 4 that for any point x E C
there exists an element Z E X, such that z _ z. We will define
the operator that assigns z - z as the quantization operator
and we will denote it as: X = XJ(a)

The following definitions deal with the controllability aspects
of the problem and, in particular, with the effects of quantizing
the state and control spaces. These definitions will become
particularly useful in the second portion of the paper, where
a particular algorithm based upon a partition of state-space is
analyzed. However, they are also useful outside this context, for
instance to analyze the effect of using a computer with a finite
word-length in the feedback loop.

Consider the linear, time invariant, discrete system modeled
by the difference equation:

(1)

with initial condition xL and the constraints:

,UEOgcR"c, XEecRn (2)

where fl and 5 are closed convex regions containing the origin in
their interior.

%Def. 6: The system (1) is Control Quantized Null Control-
lable in a region C c C if, for any open set 0 c C containing the
origin in its interior, there exists a number s, (C,O) E R+ such
that for all the quantizations fl, of 0 with s > sa, there exists
a sequence of admissible quantized controls u E Q, such that
the system can be steered from any initial condition r E C
to 0 without violating the state constraints.

Consider now the case where state-space is quantized. This
situation can be modeled by assuming that rather than having a
precisely known initial condition, the only knowledge available is
that the initial condition belongs to a given set Si from a closed
cover {Si}. This concept is formalized in the next definition.

Def. 7: The system (1) is State Quantized Null Controllable
in a region C c C if, for any open set 0 c C containing the
origin in its interior, there exists a number s3(C, 0) e R
such that for all the quantizations xJ of C with s > Sr and
for any initial condition ZL E C, there exist a finite number
n, a sequence of admissible controls uy E Q, k = 1,2.. .n, a
point z, E 0, and a sequence {g.j, Z& E C such that .k- ^,
k = 0,1 . . n, when the only information available about the
initial condition is that it L, _ z, where z, is a given point of
the quantization under consideration.

Finally, we consider the case where both state and control
space are quantized.

. Def. 8: The system (1) is Completely Quantized Null
Controllable if there exists a number s. such that (1) is state
quantized null controllable when the controls are restricted to
a quantization 0Q of 0 with size a > s..

* Remark: Note that the situation where both the states and
the controls are quantized is particularly important for the
case of neuromorphic controllers since, in addition to the state
space quantization induced by the "cell" structure, a finite set
of control actions is usually required by the controller learning
algorithm.
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Following previous work in this area [1-3], we proceed now
to introduce a restriction on the class of constraints allowed in
our problem. As it will become apparent latter, the introduction
of this restriction, termed the constraint qualification hypothesis,
while not affecting significantly the number of real world problems
that can be handled by our formalism, introduces more structure
into the problenm This additional structure wil become essential
in showing constrained controllability.

Constraint Qualification Hypothesis

In this paper, we will limit ourselves to constraints of the
form:

x E 0IxE R":(QX_)i cw, i= l ...p}

where G: Rn - IP? is a positive definite, sublinear func-
tion, i.e. it has the following properties:

G(x)i 0, i = l ...pVx
G(x) 0 4- x =Oz0 (3)

G(X + Y)i <5 G(z)i + G(y)i, i = ...p V x,y
G(Ax)=ACG(z), 0c<A<l

As examples of constraints that satisfy these conditions
we can mention polyhedral and hyperellipsoidal regions.

IIL Theoretical Results

In this section we present the basic theoretical results on the
null controllability of quantized discrete-time systems. We begin
by showing that, under the constraint qualification hypothesis,
G(.) induces a norm in 9. This norm will be used to find sufficient
conditions for quantized null controllability.

o Lemma 1: Let:

v(x) = max {G()i

= IlW-'G(x)IIemoAXik
(4)

where W = diag(wi, . ,w,). Then v(.) defines a norm in R4
and the set g can be characterized also as:

5 = S(G,W)A{x:fIzIII < 11 (5)

Proof: The proof follows by noting that the constraint quali-
fication hypothesis implies that 11.11C, satisfies the condition for
a norm.

In the next theorem we consider control quantized null controlla-
bility.

* Theorem 1: Let i = B(G,jg), where G verifies the constraint
qualification hypothesis (3). I:

min{IIA&+ Blk} < I v l1 11c = I (6)

then, the system (1) subject to the constraints (2) is control
quantized null controllable in g. The proof of the theorem is
a straightforward extension of corollary 7-1 in [2].

Condition (6) implies that for any initial condition in the
boundary of the admisible region, there exists at least one control
that brings the system to its interior. It follows that if the problem
of controlling the system (1) to the origin without exceeding the
constraints (2) is feasible (as it should be in a well posed problem),
then the only effect of condition (6) is to rule out- the possibility
of the system staying on the boundary for consecutive sampling
intervals.

In the next lemmas we introduce a quantity (A) that gives a
measure of the maximum amount that the norm of the present
state of the system (IWIk) can be decreased in one stage. This
quantity will be used in Lemma 3 to find an upper bound on the
size of the quantizations that guarantee controllabilty to a given
set 0.

* Lemma 2: Let 0 be an open set containing the origin it its
interior and consider the region g -0. Let:

A = min {A: 1Z) E @9}A:(E )e89 (7)
where 89 denotes the boundary of the set S. Then:
mnin{1Jc-minIIAx + BuJ > Amin{ -mniniIAy + Bul},V EG- i,n E~ 550-E

(8)

Proof: Given any Z E C -0 it can be expressed as A,y" with
Y.EO and 0 < A,< 1. Then:

11sI - IIiin IIA-T+ B$lc: = IIAy -nminIjAj .,y + Bu
> IIA0jy lls - min IIAAoLy + BAoLIj;
=Ao{IIyf11,; - minj!Ay + Byju)
> min A{IjyJjg - min IIAy+ B34l1)

;,ea-o
> min A{j)yjlg - min IlAy + BuI[;}

> Amn}{l -mninllAy+ Buikg}
(9)

since IIylIg = I for y e Xo.

* Remark: Note that in this lemma we consider a "worst-
case" type situation by essentially considering a ray from the
origin to the boundary of the constraint set, 8G, and then, in
the last inequality, decoupling the scale factor (A) from the
orientation. Note also that A is a strictly positive function of
the target set 0 which decreases as 0 gets "smaller".

. Lemma 3: Let 9= S(G,Lq), where G satisfies (3) and let 0
be an open set containing the origin in its interior. If

1-max {mWinlIAt+ BJlc}} 6<1 (10)

then, for any quantization X. = {z} of g with size s >
S+_i#A and for any point i, E -0 suchthat z =x(-T) E
5 - 0, there exdsts an admissible cohtrol u, 6 £3 such that
iIazbjo <c llzII where:

1) ,=x.(Aa..+ByB),
2) X. is the quantization operator introduced in Defini-

tion 5, and

3) DIADl denotes the induced operator norm (i.e. ItAIco =
ax IlAzb).

8



Proof: From the hypothesis and Lemma 2 it follows that:

max{llzoII - IIAz, + BulI} = Ilzllc - rriin{IIAz. + Biglg}

> A 1 -mx (min I1A±+ B3LIsB = A

(11
Define:

u4 = argmin {IIAz. + B3LIl:}
uen

xi =Ax, +Bu, (12

ZLI = Xe(Xi)-: I + &:1, I1l&Jk < S

Then:

llzolI; - lVllcg = IIzllc - IlAI. + Bu4 + 6:IlcI
= Izllk - lAz. + Buo- A6, +1&Il;
. I.11; - IIAz. + Bu.11; - IIASxlIIo - II&xlIIg
. z.11 - ItAz + Bu.11I; - jIAflgII6xlvg - ltxlllc
. I.1Ik -ItA + BuLc - (1 + )AIIc

Hence, if

then

- AS I +iIAII)

s > 1 + IIA Isc

* Theorem 3: Let g = B(G,w&), where G satisfies (3). Then,
(10) is a sufficient condition for the system (1) subject to the
constraints (2) to be completely-quantized null controllable
in v.

Proof: Since IIBIAk is a continuous function of u it follows
that there exists r such that IIBbSuk < A! for all Su E B(O, r) c
O where B(O, r) denotes a ball in some arbitrary norm defined
in Q. The proof follows now from the proof of Theorem 2 by

2) substituting A' for ASo.

Corollary: The size of the quantization introduced in The-
orems 2 and 3 is inversely proportional to A. Hence, as
the size of the target set gets smaller, the number of cells
increases, while their size decreases. However, note that the
target set 0 is achieved through a sequence of intermediate
sets Oi,i= 1,2...,n with 01 and0 =_0. SinceA in (7)
can be thought of as a lower bound of the ratio of the norms
of the next state of the system and the present state, it follows
that to guarantee complete quantized null controllability, it is
enough to choose:

(13)

(14)

l&:l[c-4IVO.I=p<Oo (15)

In the next theorem we use the results of Lemma 3 to show
that condition (10) is a sufficient condition for state-quantized
null controllability.

* Theorem 2: Let G = B(G,w), where G satisfies (3). Then,
(10) is a sufficient condition for the system (1) subject to the
constraints (2) to be state-quantized null controllable in G.

A = max Ai

EO.-o,i+l {(}x) Oi}
(18)

* Remark: From equation (18) it follows that if the sequence
of intermediate stages °t is chosen so that A = Ai Vi (i.e. the
sets Oi all have the same "shape") then the number of cells
in each set roughly decreases as An. Alternatively, using the
same number of cells at each stage results in a "retina" like
structure, having coarser resolution far from the target set and
increasingly finer resolution closer to the target. Note that
this increased resolution could be achieved essentially having
only one set of boxes, whose function adaptively changes with
the state of the system.

Proof: To show state-quantized null controllability, we have
to show that for any open set 0 c G containing the origin
in its interior, there exists a number s,, such that for all the
quantizations X. of 5 with size s > s,, and for any initial
condition t, E G, there exists a sequence of admissible control
laws U = {ju,u, ..),} where n is a finite number, such that:

(16)=OX(_)EG k=0,1...n
Z, e O

Define s.A( 1+IIM) and consider an arbitrary quantization Xr
with r > s._ Let r be an arbitrary initial condition in G - 0.
From the definition of quantization, it follows that there exists
z XE Xr such that X = . Obviously, if z, E 0 the theorem
is trivial, so lets consider the case where z0 0O. Then, from
Lemma 3 it follows that, as long as zk 00, there exists a
sequence U = {, u, ... . such that:

11 211; < lI.111 + i
Is311 < lIZ211 ++' (17)

1Itmlk <lIt.-11o1 + p
where p < 0 and ;. = Xr(z.) = X7(Ax.-1 + Bu,1). It follows
then that there exists n, such that z E O o.

Finally, in the next theorem we show that (10) is a necessary
condition for complete quantized null controllability.

In this section we presented the basic results on the control-
labifity of constrained discrete time systems when the available
state measurements and perhaps also the controls are restricted
to finite or countably infinite sets. In the next section we show
how to apply these results to an optimal control problem.

IV. Applications to Suboptimal Controllers Design

As a example of the potential applications of our theory to
the optimal control of constrained systems, we will use it to
address the problem of determining a "cell size" that guarantees
controllability to a given target set. Since in this case the
quantization of state-space is introduced as an artifact to simplify
the search for an optimal trajectory, we will assume that any
hardware imposed quantization effects are negligible.

Once a lower bound s. on the size of the quantizations that
guarantee controllability to the desired target set is determined,
a suboptimal controller can be implemented as a table look-
up schema by essentially finding and storing an optimal control
law associated with each cell. Moreover, since neural-nets are
known to implement table look-up schemas very efficiently [61,
it follows that this suboptimal control law could be implemented
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successfully with a neuroiwrphic controller, without any assump-
tions on the generalization properties of the neural-net and with
guaanteed asymptotic stability of the closed-loop system. This
idea is formalized in the following conceptual algorithm:

Algorithm L (Optimal control using a Look-up table)

Begin.

1) Determine a lower bound s. on the size of the quantizations
that guarantee controllability to the target set 0 using (14)
and (18). Alternatively, determine the number of boxes to be
used with changing resolution, as discussed in the corollary
to Theorem 3.

2) Choose a pairwise interior-disjoint closed cover S = {Si of 5
with size s > s,. Form a quantization x. = {z} by selecting
one representative element from each equivalence class.

3) For each element & E X. find the optimal (in some previously
defined sense) control law te and store it.

4) While z -= (ix.) 00 use as the next control law, the control
law associated with z

End.

Next, we show how to apply Algorithm L to a simple example.
Since in this paper we are concentrating on the theoretical con-
trollability issue, we will assume that a table look-up procedure
is available. The issues ooncerning the implementation of this
procedure by means of a Neural-Net, too extensive to consider
here, are left for a future article on the subject.

A Simple Example

Consider the spinning space station with a single axis of
symmetry problem [3, 1 1] The station is controlled by means of a
single jet placed on the body and allowed to rotate to any angle
in a plane normal to the symmetry axis. Select as state variables
the angular velocities around a pair of axes perpendicular to
the symmetry axis and assume that the goal is to bring the
states from an initial condition L, 11Z.112 = R to a final state
such that IlIf 112 < R1. This situation can model the case where
a sophisticated, non-conventional controller is used to bring a
system in minimum time to some region (for instance a region
where the constraints are not binding) where some relatively easy
to design controller can take over. In the chosen reference frame
the system can be represented by:

+k= Ak + BUk
with:

A= cosT sinT'\B ( sinT (1-cosT)
-sinT cosT]-T (cosT- 1) sinT )

Figure 1: Selecting the Size of the Cells

Hence, by selecting:

we have:

-BI= Ll2 (21)

(22)1[k+1112 1= 1£i2 - 2afl(II2 + t2

= (1121-Ia)2
From (22) it follows that:

a= IL&&Iic- [i4x+IIo
= & (1LXI2 - IIZ&+1112) = Ra

(23)

Since A is an orthogonal matrix, and since in this case 1111 is
simply the euclidian norm scaled by &, it follows that IIAIIk; = 1.
Hence, from (14} we have that:

1 < 1RJ
s 2RM (24)

Assume that we want to use a covering formed by square boxes
of side 1. Then, by choosing the center of each box as the
representative element we have that:

Si (1)cB(g,z,1)G= B(,z. S) # > l= S2 cRf =
aA

s s ~ ~ s 41?.
(25)

Moreover, since the norm of the present state of the system can
be decreased at each stage by ca (in the region 11412 > a) from
Theorem 3 and its corollary it foHows that I should be selected
(see figure 1) such that:

I c a

I < R. - AR, = R, (I - A)
(26)

Hence, the region 11412 C a (which is the region where the
constraints are not binding) can be reached, with a degree of
stability A, by using a quantization such that:

-={fER2: Rf12 Ql{=MER2 LA2I<V1) (19)
where T is the sampling interval. In this case A is an orthogonal
matrix and BBT = a2! where a2 = 2(1 - cosT), therefore we
have: _ _

.T +1112 = I"1 2TTU TB2 = i2 +2iTATBu +yTBTBu
- ii1kIii + 2XTBTy. + ar2llyj11

(20)

t = (1- A)VI
or

(27)

(28)A = 1

In our case a sampling time T = 2.5 seconds and a value of
& = 20 yield:

at = 1.898 A = 0.937 1 = 1.258

10
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design a "robust" controller capable of accommodating modeling
errors and disturbances.

There are several questions that remain open. Since one of the
main reasons for using neural-net based controllers is their ability
to yield good performance with imperfect models, the robustness
of these controllers to plant perturbations should be investigated.
At this point we are working in a neural-net implementation
of the ideas presented in this paper and we are investigating
their robustness properties. Future artices are planned to report
the results of this line of research. Finally, as we noted in the
paper, the results of Theorem 2 that guarantee quantized null
controllability can be overly restrictive in some cases, since they
result from a "worst-case" type analysis. A relaxed version of
these conditions will be highly desirable.

-20^ t t t.. 1

-20 -15 -10 -5 0 5 10 15 20 VI. References

Figure 2: Time Optimal (+) and Quantized (o) Trajectories
for the Simple Example

Figure 2 shows the results of applying the algorithm to the
system with initial condition = (20.0 0.0). Since in this partic-
ular case the time-optimal control law has an explicit expression.
we simulated the table look-up by computing at each instance
the optimal control law associated with the center of the box
that contains the present state of the system. Note the prox-

imity between the quantized and true time--optimal trajectories,
indicated respectively by "o" and "+". This proximity suggests
that the results of Theorem 2 are overly conservative. In fact,
experimenting with this problem we have obtained convergence

to the region 11t2 C a even when I = vd2a (the largest I such that
at least one square box will fit entirely within the target set).

V. Conclusions

During the last few years, there has been considerable interest
in the use of trainable controllers based upon the use of neuron

like elements. These controllers can be trained, for instance by
presenting several instances of "desirable" input-output pairs, to
achieve good performance, even in the face of poor or minimal
modeling. However, the use of neuromorphic controllers has been
hampered by the facts that good performance hinges on the ability
of the neural-net to generalize the input-output mapping to
inputs that are not part of the training set. Through examples [5],
it has been shown that neural-nets do not necessarily generalize
well. Therefore, it follows that the stability properties of the
closed-loop system are unknown. Moreover, it is conceivable
that poor generalization capabilities may result in limit cycles
or even in destabilizing control laws. In this paper we address
these problems by proposing a neural-net based controller that
results in a schema similar to tabular control and then carefully
investigating the properties of such a controller. Perhaps the nost
valuable contribution of this paper results from the qualitative
aspects of equation (14), that identify the factors that affect any

controller based upon the quantization of state-space (indepen-
dently of the specific implementation of the look-up schema).
Most notably, through the norm of the operator that appears in
(14), it is possible to formalize the idea of "poor" modeling and to
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