
Bounded Complexity `∞ Filters for Switched Systems

Mario Sznaier Burak Yilmaz Franco Blanchini

Abstract— This paper considers the worst–case estimation
problem in the presence of unknown but bounded noise
for piecewise linear switched systems. Contrary to stochastic
approaches, the goal here is to confine the estimation error
within a bounded set. Previous work dealing with the problem
has shown that the complexity of estimators based upon the idea
of constructing the state consistency set (e.g. the set of all states
consistent with the a-priori information and experimental data)
cannot be bounded a-priori, and can, in principle, continuously
increase with time. To avoid this difficulty in this paper we
propose a class of bounded complexity filters, based upon the
idea of confining r–length error sequences (rather than states)
to hyperrectangles. The main result of the paper shows that this
approach leads to computationally tractable filters, that only
require the on-line solution of a bounded complexity convex
optimization problem. Moreover, as we show in the paper, these
filters are (worst-case) optimal when operating in a simplified,
restricted information scenario.

I. INTRODUCTION

Classical stochastic estimation methods are not well suited
for situations where it is of interest to obtain hard bounds on
estimation errors or where the only information available on
exogenous disturbances is a bound on a suitable norm (or, al-
ternatively, a set-membership characterization). These cases
can be handled by resorting to a deterministic, unknown-but-
bounded approach where the goal is to design an estimator
that minimizes, in a suitable sense, the worst case estimation
error due to exogenous inputs only known to belong to a
given set. Initial work in this area dates back to the early 70’s
[3], [11], where it was shown that in the case of `2 bounded
exogenous disturbances, the set of states consistent with the
experimental observations is an ellipsoid whose center and
covariance matrix can be recursively obtained via a Kalman–
filter like estimator. Unfortunately, this is no longer the
case for point-wise in time (e.g. `∞ like) constraints on the
disturbance. In this case, even constraining the disturbances
to belong to an ellipsoid at each point in time does not
lead to easily characterizable consistency sets for the states,
although these sets can be conservatively overbounded by an
ellipsoid. A related line of work seeks to design Luenberger
type observers for switched systems, based on the use of a
single [2], [5] or multiple [10] Lyapunov functions. While the
resulting observers are attractive because of their simplicity,
applicability is limited to cases where Lyapunov functions
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that satisfy the required conditions (usually a set of Lyapunov
type equations) exist.

Worst case estimation in the presence of `∞ bounded
disturbances was studied in [6], [8], [16] (see also the survey
[7]). The main result of these papers shows that pointwise op-
timal estimators can be obtained as the product of a subset of
past measurements and a (time varying) gain. Both the gain
and the set of relevant measurements result from solving a
linear programming optimization problem. However, this op-
timization problem involves all past measurements. Thus, the
complexity of these estimators grows with time. In the case
of stable systems, given ε > 0, ε–suboptimal approximations
can be found by simply dropping all measurements older than
an a-priori pre–computable horizon N(ε). Still, guaranteeing
a small approximation error requires large values of N (see
[16] for details.) Moreover, the filter is non–recursive, in the
sense that current estimates are obtained by solving an LP
problem that involves all available information, rather than
by propagating past estimates.

The use of nonlinear recursive filters was proposed in
[15], where the idea is to bound the set of possible states
consistent with the output observations by a set whose
center is propagated recursively and whose shape can be
found by solving (at each instant) an optimization problem.
Nevertheless, the complexity of the resulting observer is
potentially high and its sub-optimality properties hard to
ascertain.

An alternative approach involves set–valued observers
[13], [14], where pointwise optimal estimators are obtained
by recursively applying the Fourier–Motzkin algorithm to
construct a polyhedral set guaranteed to contain the states
of the plant. An `∞ point–wise optimal estimator is then
obtained from these sets, by simply using as estimate of
the unknown output z the center zc of the set of all output
values compatible with the present set estimate of the state.
However, propagation of these estimates is not recursive,
e.g. zc(k + 1) cannot be directly constructed from the past
estimates zc(k − i). Moreover, in principle the complexity
of the estimator (measured in terms of the number of
hyperplanes defining the set observer) is not bounded a-priori
and increases with time.

Motivated by the high complexity entailed in the ap-
proaches above, the goal of this paper is to synthesize
bounded complexity filters for systems subject to `∞

bounded disturbances, with guaranteed worst case estimation
error. Intuitively, the main idea is to purposely drop infor-
mation: rather than storing all past values of the output (as
is required for optimal set–valued filters), the proposed filter
only remembers the past r measurements and the fact that,

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0081-1/11/$26.00 ©2011 AACC 2006



for the past r time instants, the estimation error is contained
in a suitable hyperrectangle. The main result of the paper
shows that this idea (a generalization to switched systems
of the idea of equalized filtering presented in [4]), allows
to obtain (worst-case) optimal filters by simply solving on–
line a linear programming problem with O(r) number of
constraints, where r is the memory of the filter.

II. PRELIMINARIES

A. Notation

The notation used in the paper is summarized below
Z+ set of positive integers
‖y‖∞ ∞ norm of the vector y ∈ Rn: ‖y‖∞

.=
maxi |y|i.

‖M‖1 ∞ → ∞ induced norm of matrix M ∈
Rn×m: ‖M‖1

.= maxi
∑
j |Mij |

`∞n extended Banach space of vector valued
real sequences {y}∞0 ∈ Rn equipped with
the norm ‖y‖`∞

.= supi ‖yi‖∞.
B`∞ unit ball in `∞.
B`∞(µ) scaled unit ball in `∞n . Given µ

.=[
µ1 . . . µn

]
B`∞(µ) .= {e ∈ `∞n : ei/µi ∈ B`∞}

B. Background on Information Based Complexity

In this section we recall some key results from Information
Based Complexity (IBC) required to establish (worst-case)
optimality of the proposed filters. For simplicity, we consider
the case of bounded operators in `∞. A general treatment can
be found for instance in the book [17].

Let K denote a set in `∞ and consider two linear op-
erators1 Sy, Sz : `∞ → `∞. In this context, the estimation
problem can be stated as, given an element fo ∈ K, find an
estimate ẑ of z .= Szfo using noisy experimental information
y = Syfo + η, where the noise η is only known to belong
to some bounded set N ⊂ `∞. Note that in general Sy is
not invertible, and thus it is not possible to recover fo, even
in the absence of noise. This is related to the concept of
consistency set, defined as:

T (y) .= {f ∈ K : y = Syf + η for some η ∈ N} (1)

that is, the set of all possible elements in K that could have
generated the observed data.

Given an estimation algorithm ẑ = A(y) (not necessarily
linear), it is of interest to compute its worst case approxima-
tion error. For a given measurement y, the local error ε(y,A)
of a given algorithm A is defined as the worst case distance
between the true quantity z and its estimate A(y). Since all
the elements f that could have generated y belong to T (y),
it follows that:

ε(A, y) .= sup
f∈T (y)

‖Szf −A(y)‖∞ (2)

1In the IBC literature, Sy and Sz are usually referred to as the information
and solution operators, respectively.

Similarly, the global error ε(A) of an algorithm A is defined
as the worst possible case over all possible measurement
sequences, that is:

ε(A) .= sup
y
ε(A, y) (3)

Definition 1: An algorithm Ao(.) is said to be globally
optimal if ε(Ao) = infA ε(A).
The minimum global error ε(Ao) is called the radius of
information, r(I). It provides a lower bound on achievable
performance, since no estimation algorithm can have smaller
global worst case error. Further, it is a standard fact in IBC
that for linear, not necessarily time invariant systems, r(I)
can be explicitly computed. This result is quoted below for
ease of reference.

Theorem 2.1: [9] Assume that the sets K and N are
convex and balanced, and that the operators Sz and Sy are
linear. Then

r(I) = sup
f∈T (0)

‖Szf‖∞
Note that this result shows that, for the purpose of es-

timation, the worst–case trajectory is the one that yields
identically zero measurements, e.g. y = 0.

C. Problem Setup

In this paper we consider state–space switched linear
plants of the form:

xk+1 = A(σk)xk +B(σk)vk, ‖v‖`∞ ≤ ηv (4)
zk = H(σk)xk (5)
yk = C(σk)xk +D(σk)wk, ‖w‖`∞ ≤ ηw (6)

where σk ∈ Σ ⊂ Z+ denotes the mode (or discrete state)
variable, z ∈ Rs, y ∈ Rq , v ∈ Rp and w ∈ Rq represent
the output to be estimated, the measurements available to
the filter, and process and measurement noise, respectively.
We will further assume that the a-priori information includes
bounds ηv and ηw on the `∞ norm of the noise sequences. In
the interest of clarity, we will assume for the time being that
z is a scalar, but this assumption will be relaxed later. For
notational simplicity, denote by Σrt

.= {σt, σt−1, . . . , σt−r}
and Yrt

.= {yt, yt−1, . . . , yt−r}. With this notation, the goal
of this paper can be simply stated as designing a causal,
finite complexity filter ẑt = F(Yrt ,Σrt ) that minimizes the
worst case estimation error ‖zt − ẑt‖`∞ .

III. MAIN RESULT

In this section we present the main result of the paper: a
convex optimization based bounded complexity filter.

A. Reduced complexity scenario and worst case bounds

The intuition underlying this paper is to avoid the high (po-
tentially infinite) complexity entailed in set valued observers
by purposely dropping information. Specifically, rather than
keeping the full information about the past, the proposed
filter only “remembers” the immediate past r measurements
yk−j , and estimates ẑk−j , j = 1, . . . , r, where r is a design
parameter, and, that for the past r time instants, the quantity
to be estimated was confined to a hyperrectangle of size
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Fig. 1. The equalized filtering idea: full dots are the true trajectory the
empty dots are the estimated trajectory

µ, which will be explicitly computed later in the paper,
centered around ẑk−j (see Figure 1). As we show in the
sequel, this reduced complexity scenario leads to compu-
tationally tractable, bounded complexity filters. Moreover,
exploiting the concepts from Information Based Complexity
briefly described in section II-B allows for establishing that
these filters are globally (worst–case) optimal. The first step
towards establishing this result is to compute the radius of
information for filters operating in the simplified information
scenario considered here. Formally, this scenario amounts
to replacing, at time t, the set of all past measurement older
than t − r by the set Zrt−1

.= {ẑt−1, . . . , ẑt−r} of “noisy”
measurements of z given by

ẑk = zk + ek, k = t− 1, . . . , t− r, |ek| ≤ µ (7)

where ẑk denote the past estimates of z. Thus, in this context,
the filtering problem under consideration can be simply
restated as:

Problem 3.1: Given the r + 1 measurement Yrt , past r
filter estimates ẑk and a bound µ on the past estimation
errors, find ẑt(Yrt ,Zrt−1,Σ

r
t ) to minimize ‖zt − ẑt‖∞.

Note that the problem above minimizes the estimation
error only at time t. Clearly, applying this algorithm in a
receding horizon fashion leads to an `∞ optimal filter.

Lemma 3.1: For the system (4)–(6) with measurements
(Yrt , Zrt−1), a given mode variable trajectory Σrt , and a
given bound µ on the past estimation errors, the radius
of information r(I,Σrt , µ) is given by the solution to the
following optimization problem:

r(I,Σrt , µ) = max
x,v,w

|zt| (8)

subject to (4) (5) and
|zk| ≤ µ, k = t− 1, . . . , t− r,
‖C(σk)xk‖∞ ≤ ‖D(σk)‖1ηw, k = t, . . . , t− r

Proof: Begin by noting that the consistency set T (0)
for the system defined by (4)–(6), and (7) is given by:

T (0) = {zt : ẑk = 0, k = t− 1, ., t− r and yk = 0,
k = t, .., t− r for some sequences {xk}, {vk},
{ek}, {wk}subject to (4)− (6) and (7), with
‖vk‖∞ ≤ ηv, ‖ek‖∞ ≤ µ, ‖wk‖∞ ≤ ηw}

Since the sets ‖v‖∞ ≤ ηv , ‖e‖∞ ≤ µ and ‖w‖∞ ≤ ηw are
convex, balanced, direct application of Theorem 2.1 yields:

r(I,Σrt , µ) = supzt∈T (0) |zt| (9)

which is precisely (8) where the last inequality follows from
the fact that {wk} can be arbitrarily chosen.

Lemma 3.2: If the inequality

r(I,Σrt , µo) ≤ µo (10)

holds for some µo, then it holds for all µ > µo.
Proof: Given µ1 > µo, let (xo, zo, yo, vo, wo) and

(x1, z1, y1, v1, w1) denote the optimizing sequences associ-
ated with r(I,Σrt , µo) and r(I,Σrt , µ1), respectively. Define
ρ = µ1

µo
. Since by assumption ρ > 1, the sequences x1

ρ ,
z1

ρ , y1

ρ
v1

ρ and w1

ρ are a feasible solution for (8) with
µ = µo. Thus, it follows that µ1 = ρµo ≥ ρr(I,Σrt , µo) ≥
r(I,Σrt , µ1)

The next result shows that if the system is observable,
then, for each switching trajectory Σr, there exist µ∗r < ∞
such that (10) holds.

Lemma 3.3: Assume that the system (4)-(6) is observable
in the sense that, for each switching trajectory Σr with r ≥ n,
the following holds:

rank(Γr) = n, Γ .=


C(σr−n+1)

C(σr−n+2)Φ(r − n+ 2, r − n+ 1)
...

C(σr)Φ(r, r − n+ 1)


where Φ(., .) denotes the transition matrix of (4)-(6) corre-
sponding to Σr. Then, there exists a finite µ∗r such that (10)
holds.

Proof: Let

µ∗
.= max
x,v,w

zt subject to (4), (5), (6) and

yk = 0, k = t− 1, . . . , t− r
(11)

Since Γ has full column rank, and v and w are bounded,
then the set of all initial conditions compatible with yk = 0
is a compact set. Hence µ∗ is finite. Next, note that the
optimization problems (11) and (8) have the same objective
function, but the constraints in the former are a subset of the
constraints in the latter. Thus µ∗ ≥ r(I,Σr, µ∗).

The results above justify defining, for each possible
switching trajectory of length r, Σr, a local worst-case
performance index as the solution to the implicit equation

µ(Σr) = r(I,Σr, µ) (12)

Note that, for a fixed Σr, computing µ entails a combination
of the convex optimization (8) (in fact a linear programming
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problem) and a scalar line search. Further, from Lemmas 3.2
and 3.3 it follows that if the system is observable, then µ(Σr)
is finite. Finally, define

µopt = max
Σr

µ(Σr) (13)

Lemma 3.4: µopt is a lower bound on the worst case esti-
mation error achievable by any filter acting on the restricted
measurements set (Yrt ,Zrt−1).

Proof: From Theorem 2.1 and Lemma 3.1 it follows
that for any fixed switching trajectory the worst case estima-
tion error achieved by any filter satisfies

sup
Yr

t ,Zr
t−1

|zt − ẑt| ≥ r(I,Σr, µ)

The proof follows by simply maximizing both sides of this
equation over all possible r-length switching trajectories.

B. Bounded complexity filters

Next, we present the proposed filter, based upon the online
solution of two optimization problems. Given Σrt , Yrt , Zrt−1,
the past r values of the mode variable σ, measurements,
and filter estimates, respectively, define z+

t and z−t as the
solutions to the following optimization problems:

z+
t = maxz,v,w,x,ezt (14)

subject to

xk+1 = A(σk)xk +B(σk)vk
ek = ẑk −H(σk)xk, k = t− 1, .., t− r
yk = C(σk)xk +D(σk)wk, k = t, .., t− r
‖vk‖∞ ≤ ηv, ‖w‖∞ ≤ ηw, ‖ek‖∞ ≤ µopt

(15)

and
z−t = minz,v,w,xt−r

z subject to (15) (16)

where µopt, defined in (13), is found off-line prior to running
the filter.

Theorem 3.1: Assume that |zk − ẑk| ≤ µopt, k = t −
1, . . . , t− r. Then the central estimator defined by

ẑt
.=
z+
t + z−t

2
(17)

is a globally optimal estimator of zt.
Proof: Denote by {x+

k , z
+
k , v

+
k , w

+
t } and

{x−k , z
−
k , v

−
k , w

−
t } the optimizing sequences in (14)

and (16), respectively. Define δxk
.= x+

k−x
−
k

2 , δvk
.= v+k −v

−
k

2 ,

δek
.= e+k−e

−
k

2 and δzk
.= z+k −z

−
k

2 . It can be easily shown
that these quantities satisfy equations of the form:

δxk+1 = A(σk)δk +B(σk)δvk; ‖δvk‖∞ ≤ ηv
δzk = H(σk)δxk = δxk; ‖δek‖∞ ≤ µopt

0 = C(σk)δxk +D(σk)δwk, ‖δwt‖∞ ≤ ηw
(18)

Hence, from (9) it follows that

max
z+
t − z−t

2
= r(I,Σrt , µopt) = µopt (19)

Combining this inequality with (17) yields:

zt − ẑt ≤ z+
t − ẑt = z+t −z

−
t

2 ≤ µopt
zt − ẑt ≥ z−t − ẑt = z−t −z

+
t

2 ≥ −µopt
⇐⇒ |zt − ẑt| ≤ µopt

(20)

The proof follows now from Lemma 3.4 establishing that
µopt is a lower bound on the worst case estimation error.

Corollary 3.1: If |zk− ẑk| ≤ µopt for k = t, . . . , t−r+1,
then |zk − ẑk| ≤ µopt for all k ≥ t

Proof: Follows directly from (20) by an induction
argument

The result above shows that once filter is operating in
steady state, in the sense that the estimation error has been
confined to a µopt sized hyperrectangle for the past r time
instants, this situation will persist into the future. Thus, the
questions arise of how to initialize the filter and what happens
when the past estimation error exceeds µopt. These issues are
addressed next.

C. Filter Initialization

Fig. 2. The filter initialization

In this section we consider the problem of filter initial-
ization. The main result shows that, given an initial set
of r measurements, y .=

[
yo, y1, . . . , yr−1

]
and switching

trajectory Σr, there exists a finite µ and a set of r filter
estimates ẑk, t = 0, . . . , r − 1 such that the estimation
error satisfies ek ∈ B`∞(µ) for all k. The main idea is to
compute the central estimator for the first r time steps, using
all available measurements2 That is,

1) at time 0 ≤ t ≤ r − 1, compute:

z+
t

.= max
x,v,w

zt subject to (4)− (6),

j = 0, 1, . . . , r − 1

z−t
.= min
x,v,w

zt subject to (4)− (6),

j = 0, 1, . . . , r − 1

(21)

2The estimate zc can be thought off as a smoothing problem equivalent
of the central estimator introduced in [12].
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2) Define:
ẑinitk

.= z+k +z−k
2 ,

µk
.= 1

2 |z
+
k − z

−
k |

(22)

3) Let µinit = max
0≤t≤r−1

{µt} and use the estimates ẑt, t =

r = 1, . . . , 0 as center of the hyperrectangles (see Fig.
2)

Lemma 3.5: The filter (17), using as initial estimates
ẑinitk , k = 0, . . . , r − 1 and error bound µinit has the
following properties:

1) If µinit ≤ µopt, then the estimation error satisfies
|ek| ≤ µopt for all k.

2) If µinit > µopt, then the estimation error satisfies
|ek| ≤ µinit for all k and, given any ε > 0, there
exist a finite T (ε) such that |ek| ≤ µopt + ε for all
k ≥ T .

Proof: The proof of Property 1 follows directly from
Corollary 3.1. To prove the first part of property 2, consider
a fixed switching sequence Σr and its associated worst case
error µ(Σr) defined in (12). Denote by (x+, z+, v+, w+)
and (x−, z−, v−, w−) the optimizing sequences in (21) and
define δx∗ = 1

2 (x+−x−), δz∗ = 1
2 (z+−z−), δv∗ = 1

2 (v+−
v−), and δw∗ = 1

2 (w+−w−). Let ρ .= µinit

µ(Σr) . Note that since
µ(Σr) ≤ µopt < µinit, then ρ > 1. Hence the sequences
x†

.= δx∗

ρ , z† .= δz∗

ρ , v† .= δv∗

ρ and w† .= δw∗

ρ are a feasible
solution for (8). Thus, it follows that µ(Σr) ≥ |z†r | = | δzr

ρ |,
or, equivalently,

µinit = ρµ(Σr) ≥ |δzr| (23)

By induction, this last inequality implies that |zt − ẑt| ≤
|z+
t −z−t | ≤ µinit for all t ≥ r. To prove that strict inequality

holds in (23), begin by writing z†r in terms of x†o and v†k:

z†r = Tzx(r, 0)x†o +
∑
j

Tz,v(r, j)v
†
j (24)

where Tz,x(., .) and Tz,v(., .) are the (time varying) operators
mapping the initial condition xo and disturbance sequence
{vk} to z. If the system is controllable, then there exists at
least one j such that Tz,v(r, j) 6= 0. Since ρ > 1, ‖v†‖∞ <
ηv , ‖z†‖`∞ < µ(Σr) and ‖w†‖∞ < ηw. Hence, there exists
some 0 < ε such that the sequence

ṽk
.=
{

v†k k 6= j

v†k + ε ∗ sign(Tz,v(r, j)) k = j

is an admissible sequence. Since the cost associated with this
sequence is µ̃ = |z†r |+ ε|Tz,v(r, j)| ≤ µ(Σr), it follows that

|zr − ẑr| ≤ ρ|z†r | ≤ ρµ(Σr)− ε1 = µinit − ε1 (25)

where ε1
.= ρε|Tz,v(r, j)|. An induction argument shows that

as long as |zt − ẑt| > µopt ≥ µ(Σr), then the sequence
|zt−ẑt| is strictly decreasing. Since this sequence is bounded
below, it has a limit µ̃. Assume that µ̃ > µopt. Then,
proceeding as above, it can be shown that the subsequence
|zt+nr − ẑt+nr| ≤ µinit − nε1(µ̃), for some ε1(µ̃) > 0.
However, this contradicts the assumption that |zt − ẑt| ≥ µ̃
for all t

D. The multi–output case
In the previous sections we considered the case where

z, the quantity to be estimated, is a scalar. However, the
results of the previous sections directly apply to the case
where z ∈ Rnz by simply adding more constraints to the
optimization problems (8), (14) and (16).

IV. ILLUSTRATIVE EXAMPLES

In this section we illustrate our results with some simple
examples
Example 1. In this example we consider a system that
switches between two unstable plants with state space re-
alizations:

A1 =

(
0 1

1.1 0.1

)
, B1 =

(
0
1

)
, CT

1 =

(
1
0

)
HT

1 =

(
1

1.5

)
and

A2 =

(
0 1

0.2 1.1

)
, B2 =

(
0.5
−1

)
, CT

2 =

(
0
1

)
HT

2 =

(
1
0

)
with ‖v‖`∞ ≤ 1 and ‖w‖`∞ ≤ 1

Fig. 3. Estimation Error for Example 1 and initial error µinit > µopt

Computing the value of µ(Σr) for all possible switching
trajectories of length r = 2 yields µopt = max{µ(Σr)} =
6.15. Figure 3 shows a sample trajectory for the estimation
error of an equalized filter with memory r = 2. For this
particular trajectory, the initialization procedure outlined in
section III-C yields µinit = 112.25 > µopt. As shown in
the figure, the estimation error quickly converges to within
a band of size µopt and remains there.
Example 2. This example considers the case of a system
that switches between two stable plants such that the overall
system is not switched stable. The state space realizations of
the plants are given by:

A1 =
(

0.5 0
2 0.5

)
and A2 =

(
0.5 2
0 0.5

)
with B1 = B2 =

(
1 1

)T
, C1 = C2 =

(
1 1

)
,‖v‖`∞ ≤ 1

and ‖w‖`∞ ≤ 1. Using the filter proposed in this paper leads
to a value of µopt = 3.56. A sample trajectory for the case
where the initial error falls below µopt is shown in Figure 4.
As expected, the error remains below µopt for all times.
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Fig. 4. Estimation Error for Example 2, with µinit < µopt

V. CONCLUSION AND DISCUSSION

Filtering in the presence of unknown but bounded noise
aims at confining the estimation error within a bounded
set. Previous work dealing with the problem, based on
constructing first the consistency set for the states of the
plant (e.g. the set of states compatible with both a-priori
assumptions and experimental measurements), led to filters
whose complexity can be arbitrarily large, and potentially
grows online. Overbounding these sets (using for instance
ellipsoids or the approach in [11], [15]), leads to conserva-
tive filters with hard to ascertain optimality properties. The
receding horizon approach to filtering (see for instance [1])
requires the solution of non–trivial optimization problems
online.

To avoid these difficulties, in this paper we propose a
different approach, based on a generalization to switched
systems of the idea of equalized filtering presented in [4].
The main idea is to, rather than attempting to find bounded
complexity sets that contain the consistency set, work di-
rectly with r-length estimation error sequences, confining
them to the tightest possible hyperrectangle. As shown in
the paper, this can be achieved by solving on–line a linear
programming problem with O(r) number of constraints,
where r is the memory of the filter.

These results were illustrated with two examples involving
systems that are not switched–stable. In both cases the
estimation error quickly converges to the region ‖e‖∞ ≤
µopt.
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