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Abstract 

In this paper we study the problem of minimizing 
the 'Hz  norm of a given transfer function subject to 
time-domain constraints on the time response of a 
different transfer function to a given test signal. The 
main result of the paper shows that this problem ad- 
mits a minimizing solution in RRz. Moreover, ra- 
tional solutions with performance arbitrarily close 
to optimal can be found by constructing families of 
approximating problems. Each one of these prob- 
lems entails solving a finite-dimensional quadratic 
programming problem whose dimension can be de- 
termined before hand. These results are illustrated 
and experimentally validated by designing a con- 
troller for an active vision application. 
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Figure 1: (Top) The experimental setup, (Bottom) Block 
diagram of a visual tracking system. 

1 Introduction 

In many cases the objective of a control system de- 
sign can be stated simply as synthesizing an in- 
ternally stabilizing controller that minimizes the 
response to some given, fixed exogenous inputs 
12, 11, 16, 17,6,3, I]. 

In general, a realistic control problem is likely to 
involve specifications on both the energy and peak 
values of the output. Consider for example the prob- 
lem of smooth tracking of a non-cooperative target, 
illustrated in the block diagram shown in Figure 1 
(b). Here the goal is to internally stabilize the plant 
and to track target motions, gtarget, using as mea- 
surements images possibly corrupted by noise. 

Figure 2 shows experimental results obtained with 
an optimal F l z  controller for a step displacement of 
the target of 25 pixels. Note that the tracking error 
settles to f4 pixels (within the experimental mea- 
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surement error) in approximately one second. How- 
ever, the control action has large oscillations, lead- 
ing to jerky motions that create significant stress on 
the pan and tilt unit. Our goal is to design a con- 
troller that substantially decreases the peak value of 
the control action and the oscillations in the error 
response, while achieving comparable tracking per- 
formance in terms of the RMS value of the error. 

LQR control subject to input constraints has been 
addressed in [4, 181 using ellipsoidal invariant sets. 
However, these methods are potentially conserva- 
tive, due to the choice of invariant sets and are re- 
stricted to the state feedback case. Alternatively, 
these problems can be addressed using receding 
horizon type methods ([13,14,7]). However, stabil- 
ity considerations require the on-line solution of a 
constrained optimization problem, which limits the 
applicability of the method in situations like the one 
above, with relatively fast sampling times (33 ms). 
'HZ control problems with time-domain constraints 
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Figure 2: (Top) Tracking error to a step input (experi- 
mental) (Bottom) Control action. 

can be addressed by recasting them into a mixed 
'H2/C1 optimization form and elegantly solved us- 
ing the methods proposed in [9]. However, this is a 
worst-case type approach that guarantees satisfac- 
tion of the time-domain constraints for all signals in 
the ["-unit ball. Thus, these controllers are poten- 
tially very conservative for applications such as the 
active vision problem discussed above, where the 
specifications are given in terms of the response to a 
few test signals, representing the typical patterns of 
motion of the target. 

In this paper, motivated by the results in [lo] we 
propose a solution to MIMO discrete time ',42 prob- 
lems subject to time domain constraints given in 
terms of the response to a set of fixed, given sig- 
nals. The main result shows that these problems can 
be solved, with arbitrary precision, using Quadratic 
Programming. 

Figure 3: The 3-12 with time domain constraints setup 

2 Preliminaries 

2.1 The 7- l~~  with time domain constraints prob- 
lem 
Consider the system shown in Figure 3, where the 
signals wt E R"wt and w2 E Rnw2 represent 
known test signals and exogenous disturbances, re- 
spectively, and where zt E R"- and z2 E Rnw2 

represent regulated outputs. Our goal is to find an 
internally stabilizing control law U = Ky, 'LL E 
R"- , y E R". that minimizes the 'H2 norm of the 
closed loop transfer function from w2 to z2, subject 
to time domain constraints on the response of some 
of the elements of zt to test signals wt E Wt , of the 
form: 

I.t,(k)l e & ( I C )  

where {&(IC)} is a given C" sequence. A typical 
choice for +*(.) is 

+(IC) = M , k = 0 , 1 ,  ...) IC1 
+(IC) = Ma(k-"), IC1 5 IC, 0 < a < 1 

(2-1) 
This sequence imposes constraints on the maximum 
overshoot (M) and forces exponential decay of the 
output after time IC1. 

In the sequel we will assume without loss of gen- 
erality (by using superposition if necessary) that 
the test signals in the set Wt are of the form 
4(IC) = [ 0  0 ... wj(IC) ... 0IT. More- 
over, by using weighting functions and absorbing 
these weights in the generalized plant (see [16] for 
details)) it can also be assumed that wj(lc) is an im- 
pulse. 

Let T(X) and S(X) denote the closed loop transfer 
matrices from w2 to z2 and from wt to zt respec- 
tively, obtained when connecting a stabilizing con- 
troller from y to U. Using the Youla Parameteri- 
zation, the set of all such transfer matrices can be 
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parameterized by: 3 Problem Solution 

where Q E 'H:Uxnu, Tl1 E e ; zZxnwz ,  T12 E 

ayt X n u ,  and SZ1 E e;"' X n w t .  Moreover, by suit- 
able selecting the parametrization, without loss of 
generality it can be assumed that the transfer matri- 
ces Tij and Saj are analytic inside the disk 1x1 5 
2 < p. In order to stress the dependence on Q, the 
notations T(  Q) and S( Q) are sometimes used in the 
sequel. 

The parameterization allows for precisely stating 
the 'H2 with time-domain constraints problem as: 

,7z2xnu 9 7721 E , 7 U x n w 2  9 SI1 E ,;"'txn"t , S I 2  E 

Problem 1 Given sequences {&j(k)} of the form 
@-I), jind the optimal value of the performance 
measure: 

subject to 

and the corresponding controller Qopt, where Z de- 
notes the set of input-output pairs subject to time 
domain constraints. 

In the sequel we solve Problem 1 by construct- 
ing sequences of super and sub-optimal controllers, 

{&"} and {@}, such that (IT(Qi)I12 - T p and 

llT(@)Il2 1 p respectively. Moreover, these con- 
trollers can be found by solving finite-dimensional 
quadratic programming problems. In order to estab- 
lish these facts, we need the following result, show- 
ing that the components of every feasible controller 
Q that are relevant to the time-domain constraints 
are bounded in the Cm sense. 

Lemma 1 Assume rhat Si2(X), Sj"'(X> have f u l l  
row and column rank on I X I = l .  Then all feasible 
controllers satisfy ~ I Q i j ~ ~ p  _< Mij, where Mij de- 
pends only on the problem data. 

Proof: Omitted for space reasons, follows from 
Wiener Gelfand's theorem. 

In this section we show that Problem 1 can be solved 
by solving two modified 'H2/e" problems, provid- 
ing suboptimal and a super-optimal solutions re- 
spectively. Both problems can be reduced to fi- 
nite dimensional quadratic programming, and in the 
limit their respective solutions strongly converge, in 
the H2 topology, to the solution of the original prob- 
lem. 

3.1 Problem 'Ikansformation 
It is a standard result (see for instance [15], pag. 
194) that the parameterization of all stabilizing con- 
trollers can be selected (by redefining Q if neces- 
sary), so that T12 and T21 are inner and co-inner re- 
spectively. Thus, there exist T121, T211 such that 

T21 [ T" T121 ] and [ T211 ] areunitary. Let 

Through straightforward but tedious operations 
it can be shown that with this choice of the 
parametrization, Rzj E R3-12*. Since the 3-12 norm 
is invariant under pre (post) multiplication by uni- 
tary matrices, we have that 

lPR" + Qllk, 
(3-2) 

where R1Isp and DR" denote the strictly proper 
part of R" and its feed through term respectively. 
Thus Problem 1 may be reformulated as follows. 

Problem2 Find the optimal value of the perfor- 
mance measure 

Problem 2 is a convex infinite-dimensional problem, 
for which no closed-form solution is known to exist. 
In this paper, a solution will be computed by taking 
the limit of the solution to some finite-dimensional 
minimization problems. In the sequel, we will as- 
sume without loss of generality (by redefining S" 
as S" - S12DR11S21 if necessary) that DR" = 0. 
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3.2 Computation of super-optimal solutions 
In this section, a sequence of finite dimensional con- 
vex optimization problems is introduced. The n-th 
problem has O(n)  variables, and its optimal cost p n  
satisfies p" 5 p. The sequence of problems approx- 
imates Problem 1 in the sense that p" --+ p and the 
partial solutions converge to the optimal solution (in 
the 'Fl2 norm) as n --+ 00. 

Using the projection operator P,, consider the opti- 
mization problem 

Problem3 Find the optimal value of the perfor- 
mance measure: 

- P" = infQEn2nu  nu IlQllk2 

subject to IIPn(S1l + S12QS21)rsII+,.,,oo 5 1. 
(3-4) 

Problem 3 can be thought of as a finitely-many 
constraints approximation to the original problem, 
where the constraints are enforced only over a finite 
horizon n. In the sequel we show that this problem 
is equivalent to a finite dimensional quadratic pro- 
gramming problem. 

. 

Lemma 2 
Problem 3 is equivalent to: 

n-1 

subject to: 

proof: Follows from the fact that for any feasible 
Q E f i 2 n u X n ~  we have that Q" = P,(Q) is also 
feasible and yields a lower cost. 

Theorem 1 Assume that there exists Q E 'Fl2"" 

such that ll(Sl1 + S12QS21)TSll+rs,00 < - 1. Then 

'H2"" 

- P" T P a d  IIQ" - Qopt117-12 + 0, where Qopt E 
is the solution to Problem I .  

proof: Omitted for space reasons, follows by estab- 
lishing that Q" is a Cauchy sequence and its limit 
Q* is feasible. 

3.3 Computation of sub-optimal solutions 
Theorem 1 shows that a solution to Problem 1 can 
be obtained by solving a sequence of quadratic pro- 
gramming problems. However, it does not furnish 
information on how to select n to achieve some de- 
sired error bound. To solve this difficulty, in this 

section we introduce a sequence of suboptimal so- 
lutions converging to the optimal from above. Solu- 
tions to Problem 1 with arbitrary accuracy can then 
be found by computing upper and lower bounds of 
p until the difference between these bounds is as 
small as desired. 

Consider the following finitely many variables ap- 
proximation to Problem 1 : 

Problem 4 

n-1 

s.t. 

Theorem 2 Assume that there exisk Q E 'Fl2lpnU x n y  

such that IIS(Q)ll+,m 5 1. Then jT 1 p and 
I IQ"  - QoptIlN2 --+ 0, where Qopt E . H 2 n u x n y  is 
the solution to Problem 1. 

In principle, Problem 4 is a semi-infinite dimen- 
sional quadratic programming problem, since it has 
an infinite number of constraints. However, as 
we show in the sequel, under mild conditions only 
finitely many of these constraints are active. 

Theorem 3 Let 2 denote the set of pairs ( T ,  s) such 
that S(Q)TS is subject to t ime-domin constraints. 
Denote by S:2 and S,"' the rth row and sth columns 
of S12 and S21, and assume that S:2 and S,"' have 
full  row and column rank on X = 1 respectively for 
all pairs ( r ,  s) E 2. Then Problem 4 is equivalent 
to: 

n.- 1 

subject to 

n.- 1 

Q n ( X )  = Q"(i)Xi 
i = O  

(3-8) 

where MQ, N I  (n) and N2(n) are constants that de- 
pend only on the problem data and the length of the 
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FIR Q. and 
that: 

are unimodular matrices such 

(3-9) 

m f  For notational simplicity, let Q, = 
(V,"Q"1/3L)v and SxJ = St2S;l. Since yR, yL 
and Q" are polynomial matrices, it follows that 
there exist some N2(n)  such that Q Z 3 ( k )  = 0, for 
all k 2 N2 and ( i , j )  E Z. From Lemma 1 we have 
that every feasible controller satisfies a bound of the 
form 

Thus defining MQ = max{M,,} renders the ad- 
ditional constraint (3-7) redundant at the optimum. 
Moreover, since the Youla parametrization is chosen 
so that s"J is analytic in 1x1 I < p, there exists 
N 3 ( n ,  N 2 )  (that can be precomputed a-priori) such 

&(IC) for all k 2 N3. The proof follows now by 
noting that for all k 2 NI = m a x ( N 2 ,  N3} we 
have that 

IQ%J(k)l i Mt3 

that IsT:(k)I + - P(k-N2+1))grs1lt1 * MQ 2 

Obtaining a model suitable for controller design 
requires identifying the overall transfer functions 
from the command input U to the pan and tilt unit 
to the corresponding displacements yp and yt of the 
target in the image, measured in pixels. To this 
effect the system was sequentially excited in each 
axis with a step input of amplitude 67 encoder units 
(roughly corresponding to an angular displacement 
of 1.5") and the position of a target (originally lo- 
cated at the center of the image) was measured. In 
addition, the experimental noise level was deter- 
mined by repeatedly measuring the location of the 
target in the absence of input (see [ 121 for details). 
Using this data, the control oriented identification 
algorithm developed in [5] was run, followed by a 
model reduction step, leading to the following trans- 
fer functions: 

0.0359z6+0.0419z5+0.1289z4-0.0468.~~ 
&pan(.> = 1.0000~6-0.3585z5+0.3282z4 - 0 . 1 7 7 7 ~ ~  

-0.0366z2+0.0002z+0.0389 
0.1762~~-0.0424~+0.0345 

(.) - 0.0597z2+0.1109z+0.0954 
1.0000z2+0.3585z+0.0595 - 

(4- 1) 

The overall transfer function from the command in- 
put (in encoder counts) to the pan and tils axes track- 

I(s" + s'2QS21)rs(k)l = + SrsQrs)(k)1 jng error in pixels is given b y  

I lPrs(k) 
(3-10) 

i.e., all the constraints are satisfied fork 2 N I .  

4 An Active Vision Application: 

In this section we illustrate the advantages of the 
proposed method by designing a controller for the 
active vision application described in section 1. The 
system under consideration, shown in Figure 1, con- 
sists of a BiSight stereo head, equipped with Hi- 
tachi KP-M1 Cameras and Fujinon HlOXllEMPX- 
31 motorized lenses, mounted on a Unisight padtilt 
platform. The head and lenses are controlled by a 
10 channel 6 - T controller and the image process- 
ing required to capture the images and locate the 
target is performed using a Datacube MaxSPARC 
S250 hosted by a Dual Processor Sun Ultra 2 work- 
station. 

where the factor 5 models the delay due to the time 
required by the image processing algorithms to find 
the target in each frame. 

In the sequel, for the sake of briefness, we concen- 
trate in the controller design for the pan axis, since 
the design for the tilt one follows exactly along the 
same lines. In order to recast the problem into the 
form (2-4) (which involves the impulse rather than 
the step response of the generalized plant) the plant 
was augmented with integrators at the disturbance 
and, following the internal model principle, control 
inputs. 

The goal is to design a controller that achieves a 
RMS value of the tracking error comparable to that 
achieved by the optimal 3-12 controller, while at the 
same time avoiding the large control action and os- 
cillatory responses noted in the introduction. To this 
effect, we first carried-out a design where the con- 
trol action in response to a step displacement of the 
target of 25 pixels was bounded by llullem 5 50 
(roughly of the control action used by the optimal 
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'H2 controller). Note that in this case Theorem 3 is 
not directly applicable since S12 has a zero at z = 1 
due to the integrator at the control input. However, 
as we show next the upper bound of the cost can still 
be computed using finiteqimensional optimization. 

Consider the Youla parametrization obtained by se- 
lecting K = &( J ,  Q) with 

J =  (*) (4-2) 

where 
Aj = 

0.475 -0.415 0.080 -0.730 -0.584 -0.188 
0.676 -0.112 0.552 0.280 0.130 -0.089 

-0.001 0.717 0.394 -0.414 -0.253 -0.293 
-0.003 0.00 0.355 -0.488 -0.204 -0.159 
-0.008 0.001 0.077 0.155 -0.879 -0.731 
-0.003 0.001 0.026 -0.146 0.654 -0.367 
-0.001 0.00 0.011 -0.059 -0.141 0.542 

0 0 0 
-0.411 -3.499 
-0.166 -0.274 
-0.194 -0.846 
-0.430 -1.467 
-1.042 -4.924 
-0.417 -1.685 
-0.667 -0.649 
0.385 -0.079 

Bj = 

Dj = 

-0.056 5.110 
0.015 0.442 
0.031 1.248 
0.020 2.226 
0.056 7.305 
0.096 2.474 
0.288 1.000 
0.275 0.000 
i 3 4 6  6.:iJl 

1 .ooo 

, cj = 

0 0 

(4-3) 

r -0.008 0 
0.001 0 
0.071 0 

-0.395 0 
-0.944 0 
-0.538 0 
-0.934 0 
-0.838 0 
-4.538 -0.743 

(4-4) 
It can be easily verified that this choice renders ?12 
and T21 inner and co-inner respectively. Moreover, 
the controller corresponding to the following Q: 

QFJR = 0.7022 + 0.2593~-1 + O.O194z-*+ 
0 . 0 0 7 6 ~ - ~  + O.O492z-* + 0 . 0 7 2 9 ~ - ~  
+ 0 . 0 5 2 2 ~ - ~  + 0 . 0 1 7 2 ~ - ~  

(4-5) 
is feasible and yields llTewl12 = 2.13. Since 

IlQlle- 5 11Q112, it follows that the optimal solu- 
tion to Problem 4 satisfies (qk l  5 2.13 = MQ. Fi- 
nally, direct computations show that for the choice 
of Youla parametrization given above we have that: 
IS1(k)( + II(I - Pk)S211eiMQ 5 2 for all k 2 12. 
Thus, it follows that N = 12 is a suitable hori- 
zon for the upper-bound computation. The corre- 
sponding controller was found by solving Problem 4 
using the projection-based method implemented in 
Matlab's quadprog command for medium-sized 

problems [8]. The corresponding tracking error set- 
tles very quickly, with little overshoot, but the con- 
trol action oscillates, settling down after 13 samples. 
To remove this oscillation, we carried out a second 
design, imposing the constraints: (i) Ju(k)l 5 50, 
and (ii) lu(k)I 5 1, IC 2 9. The resulting 28th or- 
der controller was reduced to loth order by using 
Hankel norm model reduction (the optimal 7 - l ~  con- 
troller for this problem has order 9). This controller 
achieves an error response virtually identical to that 
of design 1, while, as shown in Figure 4 avoiding 
oscillations in the control action. 

Finally, for benchmarking purposes we also de- 
signed a PID controller, empirically tuned to min- 
imize the peak of the control action while maintain- 
ing a comparable settling time. In this case exten- 
sive trial and error iterations were needed to bring 
the control action down to 60 encoder units and no 
combination of the parameters was found that fur- 
ther reduced this action, subject to the settling time 
constraint. 

Figure 4: Response of the constrained controller (design 
2): (top) Tracking error (bottom) Control ac- 
tion. 
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opt. F t 2  
Design 1 
Design 2 2.13 

Table 1: 7 - l ~  cost for different controllers 

5 Conclusions 

In this paper we consider the problem of optimiz- 
ing the ‘7 - l~~ norm of a given system subject to addi- 
tional specifications given in terms of the response 
to a given test signal. The main result shows that 
this problem admits a solution in R7-l~. Moreover, 
suboptimal solutions can be obtained by solving se- 
quences of finite-dimensional quadratic program- 
ming problems until the gap between upper and 
lower bounds of the solution is smaller than a pre- 
specified tolerance. Additional results show that 
the sequence of controllers thus obtained converges 
strongly to the optimal solution. These results were 
illustrated with a practical example arising in the 
context of active vision. Similar results are avail- 
able for the case of continuous-time systems and 
can be obtained by contacting the author. 

- 
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