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Abstract 

Recent hardware developments have rendered controlled 
active vision a viable option for a broad range of prob- 
lems, spanning applications as diverse as Intelligent Ve- 
hicle Highway Systems, MEMS microassembly and as- 
sisting individuals with disabilities. However, realizing 
this potential requires having a framkwork for synthe- 
sizing robust active vision systems, capable of moving 
beyond carefully controlled environments. In this paper 
we show how recently developed robust identification 
and control synthesis techniques can be brought to bear 
on the problem. These results are experimentally vali- 
dated using a Bisight robotic head. 

1 Introduction 

Visual servoing systems appeared as far back as late 
1970's [8]. An excellent survey of the state-of-the art 
as of 1996 can be found in [9]. Earlier systems dealt with 
stability issues, at the expense of performance, by ex- 
perimentally detuning the controller. Latter approaches 
combine PID controllers with some prediction to explic- 
itly address the time delay required to find the target 
in the image[4, 21. However, these predictors can tol- 
erate only small amounts of model uncertainty. More- 
over, the combination PID controller/predictor must be 
tuned using a potentially lengthy trial and error process. 
Performance can be improved by using a two-degrees of 
freedom controller [3], but this approach does not im- 
prove robustness. 

Alternatively, the use of LQG controllers has been pro- 
posed [ll, 7, 61. Although LQG controllers have the 
potential to minimize the effect of noise [6], it has been 
experimentally corroborated [ll] (using a slightly defo- 
cused camera) that the resulting systems are potentially 
fragile. This difficulty can be overcome, to a certain 
extent, by using a self-tuning controller [lo]. However, 
this approach does not provide a-priori stability guaran- 
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tees, nor does it allow for trading-off robustness against 
performance. 

The issue of rendering the closed-loop system insensi- 
tive to calibration errors has been recently addressed 
in [5] using time-varying proportional feedback. While 
this approach has been successfully used for robot mo- 
tion control [5], the gain matrices must be empirically 
tuned to achieve good performance. In addition, im- 
plementing the control action requires computing the 
image Jacobian. 

It has been long recognized that dynamic control effects 
coupled with the presence of uncertainty are the factors 
limiting performance in visual closed-loop systems. In- 
deed, the motivation behind the approaches mentioned 
above is to obtain a compromise between these factors 
leading to acceptable performance. However, only very 
recently there have been attempts to explicitly address 
some of these tradeoffs in a systematic way [14]. 

In this paper we show how recently developed robust 
identification and control synthesis techniques can be 
used to synthesize robust active vision systems capa- 
ble of delivering good performance for a range of con- 
ditions. These techniques eliminate the need for tuning 
controller parameters a posteriori, by trial and error, 
and for calibrating the system. 

2 Preliminaries 

2.1 Notation 
C, denotes the Lebesgue space of complex valued ma- 
trix functions essentially bounded on the unit circle, 
with the norm: llG(z)11, A esssupl,l,lF(G(z)) where 

denotes the largest singular value. 31, denotes 
the subspace of functions in t, with a bounded an- 
alytic continuation inside the unit disk, with the norm 
11G(z)11, esssupl,l<l F ( G ( z ) ) .  Finally,X,,,, denotes 
the Banach space of transfer matrices in 31, which have 
analytic continuation inside the disk of radius p > 1, 
with the norm IlG(z)ll,,,, G supl,l<,,F(G(z)). 
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2.2 Statement of the Problem 
The control-related issues involved in active vision can 
be illustrated by considering the problem of smooth 
tracking of a non-cooperative target, illustrated in the 
block diagram shown in Figure 1. Here the goal is to 
internally stabiliee the plant and to track the reference 
signal yTef , using as measurements images possibly cor- 
rupted by noise. 

Figure 1: Block diagram of a visual tracking system. 

It can be shown [ll] that a simplified model of the plant 
is given by the following state-space model: 

where the state 3 G (z, Y ) ~  E Ra is the osition of the 

unknown (but bounded) target velocity, 14 G (e,, E 
Ra is the control input (pan and tilt motion of the cam- 
era), y is the measured position of the feature corrupted 
by thZ noise - q, and where the matrices are given by: 

feature in the image plane, (w,,vy) g E Ra is the 

where f is the focal distance of the camera, Z, its dis- 
tance to the object, and 7 the sampling interval. LTI 
controllers can be synthesized by linearizing equation 
(1) around the present position [ll, 3, 7, 101. However, 
experimental results show that the performance of the 
resulting system can be far worse than expected based 
on simulations using the model (1). This is largely due 
to the fact that this simple model does take into account 
neither the time-delay required by the image process- 
ing algorithms to locate the object in each frame, nor 
potentially destabilizing modelling errors such as varia- 
tions in the optical parameters and in the depth Z,, and 
unmodelled head dynamics [ 151. 

3 Plant Modelling 

3.1 Control Oriented Identification 
As pointed out above, the simple model (1) is often inad- 
equate to synthesize controllers that achieve acceptable 
performance. A more detailed model could be obtained 
by incorporating additional factors such as a model of 

the dynamics of the robotic head. However, the result- 
ing model still depends on several parameters, including 
the optical parameters of the cameras and the mass of 
the pan/tilt unit. Thus, even if a more detailed model 
were to be used, an identification step is still required 
to obtain the values of these parameters. 

We avoid these difficulties by using recently developed 
non-parametric robust identification techniques. A 
good tutorial to the field and relevant references can 
be found in [13], Chapter 10. 

The identification technique starts from experimental 
data and some mild a priori assumptions on the plant 
to generate a nominal model as well as bounds on the 
worst case identification error suitable to be used by ro- 
bust control synthesis methods. The experimental data 
used in this paper consists of the first Nt samples, cor- 
rupted by additive noise, of the time response of the 
system y(k) = h(k) + qt(k), k = 0,. . . ,N t  - 1 corre- 
sponding to a known input u(k). The a priori assump 
tions are: 1) The system to be identified belongs to 
the class 31,(p, K) ef (H E IIHll,,p 5 K}; and 2) 
SUPk (qt(k)l 5 E t .  With these assumptions it can be 
shown [12] that the problem of identifying a model that 
interpolates the data points within the experimental er- 
rors reduces to a LMI feasibility problem. 

3.2 Identification results 
To identify the transfer function from the command 
input U to the pan/tilt unit to the displacement y of 
the target in the image (in pixels) the system was ex- 
cited with a step input of amplitude 110 encoder units 
(roughly an angular displacement of 2.5') and the posi- 
tion of a target (originally located at  the center of the 
image) was measured. By repeatedly measuring the lo- 
cation of the centroid of the target in the absence of 
input, the experimental noise measurement was deter- 
mined to be e: = 4pixels'. Finally, by measuring the 
time-constants of the pan and tilt unit, p was estimated 
to be around 2. The identification algorithm proposed 
in [12] using Nt = 26 samples, followed by a model re- 
duction step, yielded the following discrete model: 

Figure 2 compares the step response of this model 
against the experimental data points (normalized by the 
input). Here '0' denotes an experimental data point 
used in the identification, while '41' denotes additional 
experimental data, plotted for validation purposes. It 

'This experimental error is mainly due to fluctuating condi- 
tions such as ambient light. 
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Figure 2: G,, step response versus experimental data 

is worth noticing the existence of a time delay Td of 
approximately 67msecs. 

4 Controller Design 

Once a nominal model has been identified, standard con- 
trol techniques can be used to synthesize suitable con- 
trollers. Note however that when using these techniques, 
the time delay Td must be taken into account in order 
to guarantee stability [15]. 

Figure (3)a compares simulation and experimental re- 
sults obtained combining the model G,,, with a PID 
controller, tuned to achieve a compromise between set- 
tling time and overshoot. These results match (within 
the experimental error), provided that a time-delay of 
two sampling periods is added to the model. How- 
ever, the controller is tuned to the nominal model G,,, 
leading to potentially fresile closed loop systems. This 
effect is illustrated in Figure (3b), showing the result 
of an experiment where the focal length f of the sys- 
tem is increased and then reduced to its previous value. 
As shown there, while the system exhibits good perfor- 
mance for the nominal value of f , it becomes unstable 
as f is changed. 

The loss of stability can be easily explained from the 
simple model (1) by noting that (for small values of the 
target displacement) f enters the model as a gain that 
multiplies the control action. This is corroborated by 
the plots in Figure 4(a) showing a magnitude plot of 
the identified models for different values of fa. 

‘Stability can be guaranteed by designing a PID controller for 
the maximum value of f .  However, this leads to very slow closed- 
loop systems for the medium and minimum values of f due to the 
small value of the gain that is reauired. 

Figure 3: Tracking error for a PID controller: (a) nominal 
(b) f. 

In this paper we will model the variation in the plant 
dynamics due to changes in f as multiplicative dynamic 
uncertainty, i.e: 

Gf(Z) = Gnm(z)(1+ A(.)JKU(.)) (4) 

where G,, denotes the nominal transfer function (3), 
Wu(z) is a fixed weighting function and A(z) E 
represents dynamic model uncertainty. Wu(z) should be 
selected so that the family (4) covers all possible plants. 
Equivalently, the magnitude bode plot of Wu(z) should 
cover the plots of -1 for all possible plants. 
The uncertainties corresponding to the minimum and 
maximum values of the zoom f are shown in Figure 
4(b), where we also show the plot corresponding to un- 
certainty in the time-delay of up to one sampling period 
Td = 0.033 seconds (the total time delay fluctuates be- 
tween two and three sampling periods depending on the 

- time required to process the image). Based on these 
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Figure 4: (a) Open loop magnitude plots for different f's 
(b) Uncertainty weight selection 

plots we selected W,,(z) = w. 
Robust performance (i.e. guaranteed performance for 
all plants in the family Gf) can be addressed by using 
the main loop theorem to recast the problem into an 
equivalent robust stability problem with an additional 
fictitious perturbation block A,, as shown in Figure 5. 
Here the weighting function W, is used to shape the 
frequency response of the transfer function Tev,,, and 
thus impose performance specifications on the tracking 
error e ( t ) .  
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Figure 5: Setup for robust performance synthesis. 

The selection of W, entails a trade-off among different 
performance specifications, including good regulation, 
peak control action and settling time. In this case a 
good compromise is given by W,(Z) = "Sr$P;,"" This 
function has a low pass characteristic, penalizing large 
tracking errors and leading to a closed loop function 
with a bandwidth on the order of lOHz (equivalently, 
settling times on the order of 0.5 sec.) Finally, in order 
to guarantee perfect tracking of step displacements, the 
controller was augmented with an integrator. 
Using p-synthesis with first order scales we obtained the 
following controller guaranteeing robust performance: 

1.282'' 3.482' 3.622' 2.872' 2.722' 

~ 2 . 0 9 2 ' + 1  .242'+0.6232' +0.161~'-4.4~10-'  z 
+1 .33r~+0.78tr+0.69r3+0.292a +0.082-0.002 

K F ( z )  = r10+z91  Ze+?32Z8 + z 4 7 2 ' + ~ ~ 9 Z 6  

and the overall controller (including the integrator) is 
given by K ( z )  = K,,(z) x 5. 

5 Experimental Validation 

The step responses of the closed loop system obtained 
with the controller K ( z )  (simulation and experimen- 
tal) for two different values of f are shown in Figure 
6. Performance in the nominal case is similar (in terms 
of overshoot and settling time) to that achieved with the 
PID controller3. On the other hand, changes in f result 
in somewhat degraded performance, but the system re- 
mains stable, as opposed to the PID case. 
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Figure 6: Tracking error for a robust controller: (a) nom- 
inal (b)off-nominal 

Finally, Figure 7 shows the result when an uncoopera- 
tive target (a radio controlled truck) was tracked, while 
the focal length f was increased and then returned to its 
original value. As shown there, the closed loop system 
remains stable and achieves tracking with zero steady 
state error. 

3Similar results were also obtained with an optimal LQG con- 
troller. These results are omitted for apace reasons. 
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Figure 7: (a) Target images for two Werent values o f f  
(b) Tracking error using the p controller. 

6 Conclusions 

Recent hardware developments have opened up the pos- 
sibility of applying active vision techniques to a broad 
range of real-world problems, such as Intelligent Vehicle 
Highway Systems, robotic-assisted surgery, 3D recon- 
struction, inspection, vision assisted grasping, MEMS 
microassembly and automated spacecraft docking. A 
salient feature common to all these applications is that 
using a feedback structure incorporating the visual in- 
formation in the loop (as opposed to open loop con- 
trol) offers the possibility of achieving acceptable per- 
formance even in the presence of process modelling er- 
rors and measurement noise, stemming for instance from 
poorly calibrated cameras, blurring or only partially de- 
termined feature correspondences between images. 

However, as noted in [l], synthesizing practical ac- 
tive vision systems capable of moving beyond carefully 
controlled environments requires controllers that can 
accommodate (perhaps substantial) uncertainty, stem- 
ming for instance from uncertain time delays, unmod- 
elled dynamics and changing optical parameters. 

In this paper we addressed these problems by using re- 
cently developed non-parametric robust identification 
techniques to model the system as a family of plants, 
combined with p-synthesis techniques to obtain a con- 
troller that guarantees acceptable performance for all 
members of this family. A salient feature of the method 
is that it requires very few assumptions on the system 
(for instance the order of the model does not need to be 
fixed a-priori), and that the controller synthesis process 
does not entail a posteriori experimental tuning. 

The methodology was experimentally illustrated using 
a setup with a BiSight pan/tilt stereo head with motor- 
ized lenses. It was shown that the responses of the closed 
loop system obtained with the resulting controller using 
experimental data and simulations are in close agree- 
ment. Furthermore while the responses of the PID and 
p controllers are similar for the nominal plant, the lat- 
ter controller also achieves acceptable performance for 
off nominal values of the parameters, while the former 
fails to stabilize the plant. 
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