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Abstract 

In this paper we address the problem of detecting and 
isolating faults from noisy input/output measurements 
of a MIMO uncertain-system. The main result of the 
paper shows that this problem can be solved by using 
CarathCodory-Fejtr's theorem to reduce it to an LMI 
feasibility problem. These results are illustrated with a 
simple example. 

1 Introduction 

The problem of Fault Detection and Isolation (FDI) in 
automated processes and control systems has been the 
subject of considerable attention during the past two 
decades. This research has resulted in a variety of meth- 
ods and a vast amount of papers in the literature (see 
for instance [4,6, 101 and references therein). Many of 
these methods are based on a model-based approach, 
also known as analytical or functional redundancy. In 
contrast to approaches based on physical or hardware 
redundancy, the former exploit the mathematical model 
of the system under consideration, leading to a two 
stage procedure: (i) residual generation and, (ii) deci- 
sion making. 

While appealing, since does not require additional hard- 
ware, a potential problem with the analytical approach 
is its fragility: a mismatch between the actual plant 
and the model used in the FDI algorithm can result 
in false alarms. To avoid this difficulty, the algorithm 
must be robust both against modelling errors and ex- 
ogenous disturbances. Robust FDI methods have been 
well researched (see for instance [lo] and references 
therein), but only relatively few papers address robust- 
ness issues in the context of model-based approaches 
[2, 7, 8, 9, 121). An potential disadvantage of these 
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methods is the difficulty in isolating the exact location 
of the fault and in detecting simultaneous faults. 

In this paper we address the problem of robust ana- 
lytical FDI for systems subject to parametric dynamic 
faults, in the presence of multiplicative dynamic uncer- 
tainty and exogenous disturbances. The main result of 
the paper shows that by using CarathCodory-FejCr's the- 
orem [3], the problem can be reduced to an LMI feasi- 
bility problem and efficiently solved. The proposed ap- 
proach can detect and isolate simultaneous faults and 
does not necessitate separate residual generation and 
decision steps. 

The paper is organized as follows. In section 2, we in- 
troduce some preliminary results. Section 3 contains a 
precise problem statement and the proposed solution. 
Finally, these results are illustrated in section 4 with a 
simple example. 

2 Preliminaries 

2.1 Notation 
In the sequel, 
summable vector sequences: 

denotes the Hilbert space of square 

For a vector sequence x = {z (01, IC (l), . . . , IC (1 - 1) E 
Rq} E e;, T, E R'qx' denotes its associated lower 
block Toeplitz matrix: 
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Similarly, given a causal, linear time-invariant m x n 
matrix function G (s), TG E Rmlxnl denotes the lower 
block Toeplitz matrix associated with its impulse re- 
sponse sequence (G (01, G (11,. - .),i.e. 

2.2 Background results 
In this section we recall, for ease of reference, some re- 
sults on the existence of a bounded C 2  operator mapping 
two given sequences. These results will be used in the 
sequel to recast the FDJ problem into an LMI feasibility 
form. 

Lemma 1 (CarathCodory-FejCr) [3, 11,  I ] .  Given 
two sequences U = {U (01, U (I),. ,U (1 - 1) E R"} 
andy = {y (01, y (l), . . . , y (1 - 1) E R"}, there exists 
a stable, causal, linear time-invariant operator with 
1 1  lloo I ysuchthat 

U =  y 

ifand only i f  TiTy I y2TATu. 

Figure 1: Setup for Robust Analytic FDI. 

Corollary 1 Consider the block diagram shown in Fig- 
ure I where the known transfer matrices G and W rep- 
resent the nominal plant and uncertainty weights re- 
spectively, represents LTI, causal, e2- bounded dy- 
namic uncertainty, and where d represents an unknown 
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but e2 bounded disturbance. Then given experimental 
input output measurements U and y, there exists: 

E = { :LTI, I I  1103 < Y} (1) 
d E D  = { d =  ( d o 1 d ~ , . ~ . , d ~ - 1 )  : 

1-1 

di E R" and C d i d i  5 a}  (2)  
i=O 

such that 
y =  (I+ - W ) G u + d  (3) 

ifand only ifthere exists d E 2) such that the following 
inequality is satisjed: 

The corollary above, combined with Schur comple- 
ments, is the key result in reducing a F D I  problem to 
an LMI feasibility form'. 

3 Robust Fault Detection and Isolation 

3.1 Problem Formulation 
In this paper we consider the problem of fault detec- 
tion and isolation for systems represented by the fol- 
lowing parametrized fault model which includes both 
multiplicative dynamic uncertainty and disturbances: 

r 

y =  (I+ W ) ( G o +  C f i G i ) ~ +  d (5) 

Here the transfer matrices Go and Gi , i = 1, . . . , T rep- 
resent the nominal plant and dynamic fault models, re- 
spectively, the scalars fi are fault indicators, and d rep- 
resents an unknown but e2 bounded disturbance. In the 
sequel we address the following two cases: 

i=l  

1. Hard faults: This case models the situation where 
only T discrete fault modes can appear in the sys- 
tem. The corresponding indicator fi can take 
only binary values, with fi = 1 indicating the 
presence of the ith failure mode. 

2.  Continuous fault case: In this case faults can ap- 
pear gradually, a situation modelled by allowing 
fi E D, 11 with fi = 1 corresponding to the ex- 
treme case of total failure. Here the goal is not 
only to determine whether the ith failure mode is 
present, but also to estimate its strength. 

'see also [ I l ,  I ]  for an application to the problem of model 
(in)validation. 
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In this context, the FDI problem can be stated as fol- 
lows: 

Corollary 2 Given the experimental input/output data 
{ U ~ ~ - ~ } , ( Z J ~ ~ - ~ } ,  ifthe set of LMIs (6) is infeasible 
with f i  = 0, a = 1. . . r - I, then a fault has occurred. 

Problem 1 Given the nominal model (Go, W ) ,  fail- 
ure dynamics Gi, uncertainty sets , V, and N ,  in- 
put/output experimental measurements determine: 

The corollary above gives a sufficient condition for de- 
tecting faults2. Next, we indicate how to use these re- 
sults also to isolate the location of the fault(s). 

I .  whether a fault has occurred, 

2. in that case isolate it, and, in the continuous fault 
case, determine its strength. 

In the sequel, for notational simplicity, we consider the 
SISO case. However, the derivations are completely 
general and can be extended to the MIMO case at the 
price of a more involved notation. 

3.2 Problem solution. 
The following theorem provides a necessary and suffi- 
cient condition for fault detection and isolation in plants 
having a parametrized fault model of the form (5). 

Theorem 1 Consider the system model (5). Then, 
given experimental input/output data {utm-‘}, {~t”-~}, there exist , d E D, and a combina- 
tion of faults that explains this experimental outcome i f  
and only the corresponding fi satisfy the the following 
set of LMls 

E 

where 

X = - iTy - T~I‘TGT, - TLTh iTy - T d )  
+ TAT;: (I - y 2 ~ b ~ w  )TGT, 

for some vector d E RNm, where 
I 

TG = TGo + Cf iTG% 
i=l 

Proof: Consider the signals z = (GO + E:==, f,Gi)u 
and Q = Wa shown in Figure 1. From Lemma 1 ,  
combined with the fact that y = z + q + d it follows that 

E if and only if the following inequality holds: 

1. Hard fault case: Recall that in this case f i  E 
{0,1}. Thus, once existence of a fault has been 
established, candidate sets of faults can be ob- 
tained by determining which of the 2r vertices of 
the hypercube l l f l l o o  = 1 lead to feasibility of the 
LMIs (6). Note that, due to the existence of un- 
certainty and noise, this approach can yield more 
than one candidate fault. In this case, one could 
try to find the most “likely” failure mode by find- 
ing, for each of these candidates, the one associ- 
ated with the lowest model uncertainty norm, y 
(or alternatively, lowest noise level a). Since the 
fi are fixed, optimizing over y2 or a2 subject to 
feasibility of (6) is a convex problem. 

2. Continuousfault case: The goal here is twofold: 
to identify the faults and determine their extent. 
A potential problem here is that the inequality (6) 
is bilinear in fi and d. Therefore, in the continu- 
ous time case, while noisy output measurements 
of an uncertain system allow for detecting that a 
fault is present, they may not allow for isolating 
it. To proceed further, we need to consider either 
the noiseless measurements case (d = 0) or the 
completely known dynamics case ( = 0). 

(a) noiseless measurements: In this case, 
straightforward Schur complement argu- 
ments applied to the first inequality in (6) 
show that the candidate faults are those that 
satisfy the following condition: 

(7) 

where 

x = T ~ T ,  - T~TG,T, - T;T&T, TLT, - y 2 ~ ~ ~ ~ ~ w ~ ,  < o 
*the condition is not necessary since some faults can be masked 

by the presence of noise and model uncertainty. In the determinis- 
tic. noiseless case. e x .  Y = CY = 0. the condition becomes indeed 

The proof fo’lOws by substituting ‘ = - - into 
the above inequality and using the fact that T, = TGT,, 
combined with a Schur complement argument. necessary and sufficient. 
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and 

(b) no uncertainty case: In this case, the second 
LMI in (6), combined with the fact that d = 
y - TGU leads to 

-a2 X’ [ x - I ] < O  

X = y - ‘11 (TG, + f i T ~ ,  1 

an LMI in the variables fi, a2. 

As before, there may be multiple combinations of 
fi that render the LMIs (7) or (8) feasible. In this 
case, one may attempt to select one by minimiz- 
ing either a2, a convex function of f such as I l f l l ,  
or y2. The first two approaches lead to a convex 
LMI problem, while the third one can be solved 
by performing a one-dimensional line search. 

4 Illustrative Example 

In this section we illustrate the potential of the proposed 
approach using a simplified model of the yaw damper 
system of a jet transport. The system under considera- 
tion is given by 

3 

y = (I + W )  (Go + f i G i ) ~  + d (9) 
a= 1 

where 
- 4 . 7 5 ~ ~  - 2.48s’ 1 . 2 3 ~ ~  + 0 . 3 0 ~ ~  

-1.19s - 0.56 +0.83~ + 0.42 
Go - 

1.15s’ - 2.00s 10.73s’ 
-13.73 +16.43s f 10.83 

1 6.08s‘ + 4 . 6 9 ~ ~  - 1 . 5 7 ~ ~  - 1 . 6 5 ~ ~  
+1.13s2 -0.59s’ 

1 . 8 0 ~ ~  + 9.63s’ - 0 . 5 7 ~ ~  - 1.43s’ 

Gz = 1 [ 6 . 3 5 ~ ~  + 0.36s - 1 . 2 1 ~ ~  - 0.26s 

G3 = -[  
and 

= D(s) 

1 
1 

D(s)  - 1 . 4 7 ~ ~  + 4.69s 0 . 3 8 ~ ~  - 3.27s 

1 3 . 0 3 ~ ~  + 0.086 - 1 . 3 7 ~ ~  - 0.06 
D ( s )  1 8 . 5 4 ~ ~  + 2.08 - 4 . 4 6 ~ ~  - 1.55 

Do (s) = 

D ( s )  = 

s4 + 1 . 9 2 ~ ~  + 1 . 6 1 ~ ~  + 0.83s + 0.16 
S’ + 2 . 5 5 ~ ~  + 3 . 7 6 ~ ~  + 4 . 1 6 ~ ~  + 3 . 1 8 ~ ~  

+ 1 . 7 1 ~ ~  + 0 . 5 8 ~ ~  + 0.0826s + 0.0006 
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Here the inputs to the system are rudder and aileron de- 
flections, measured in degrees, and the outputs are yaw 
rate and bank angle. 

Assume that the only a priori information available 
about the model uncertainty and noise is that 11 = 
0.02 and Q = 0.0001. Thus we can take TW = I .  
Further, assume that the actual plant model is given by 
Gactual = (I + - )G, with 

1 0.048s + 0.02 0.01s + 0.01 
0.082s + 0.01 0.081s + 0.02 

- _  

for which 11 -lloo = 0.013. 

Next we consider two different scenarios: 

1. Discrete Fault Case: Since in this case the 
parametrized model (9) has three independent 
fault dynamics, there are in total eight different 
combinations, ranging from no fault (correspond- 
ing to (f3f2fl) = (O,O,  0)) to a failure in each 
mode (e.g. ( f 3 f 2 f l )  = (1’1, 1)). 
Table 1 shows the results of 8 experiments, corre- 
sponding to each of these cases. In all cases, we 
generated 21 samples of the impulse response of 
(I + - ) G f 3 ,  corrupted by noise d; and checked 
the corresponding LMIs for feasibility, by min- 
imizing t subject to C (f, d) < t l ,  where C (.) 
denotes the left-hand side in (6). Each row in 
Table 1 corresponds to a single experiment, with 
the entries indicating the minimum value o f t  for 
the corresponding combination of fi. For in- 
stance, the second entry in the first row corre- 
sponds to the actual system without faults (fl = 
f 2  = f3 = 0), checked against the hypothe- 
sis f l  = 1, f2  = 0, f3 = 0. As shown there, 
the only feasible set of LMIs (negative entries) 
corresponds to entries in the diagonal, that is, 
in each case the algorithm successfully identified 
and isolated the faults. 

2. Continuous Fault Case: Assume now that the 
faults f l ,  f2,  and f3  are continuous variables in 
[0,1]. As discussed before, in order to isolate 
faults in this case, we need to consider noise- 
free measurements. As before, we considered 21 
data points of the impulse response of the sys- 
tem (I + - ) G f .  In this case, the estimate corre- 
sponding to the case where no faults are present 
(e.g. f = p 0 O D  is f =  p.0035 0.0025 0.00051, 
indicating that the experimental data indeed can 

3Here Gf denotes the transfer function corresponding to the fail- 
ure mode under consideration. 
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candidate test fault 

4 
E 
2 
d 

0 

1 - .- - 
cd 

U cd 
U 

Figure 2: Global minima of the LMI's for the discrete fault case: A positive entry indicates infeasibility of LMI (6)  for the 
corresponding values of f3f2f1. Thus presence of the associated fault can be ruled out. 

'-004- 

be explained by the combination (nominal model, 
uncertainty). 

* * * * * * * * . *  

t * ,  

. . . . . . . . .  I 

'"U ' " , " " k I1 

* 
0 2 4 6 8 10 12 14 16 I8 20 

11eratKns 

-5 

Figure 4: Continuous fault case when fl = a, f2 = a, and 
f3 = 0 (-: true, *:estimated) 

Figure 3: Continuous fault case when f1 = a, fi = 0, and 
f3 = 0 (-: true, *:estimated) 

5 Conclusion 

Figure 3 shows simulation results for the case 
f = 0 01 To simulate gradual onset of the 
fault, the actual value of f l  was incremented from 
0 to 1, in steps of 0.05. Similar results, shown 
in Figures 4 and 4, were obtained in the cases 
f = EL a 01 and f = EL a a1 In all cases, the 
values of fi estimated by the proposed method 
closely match the actual values of the parameters. 
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In this paper we considered the problem of robust 
fault detection and isolation for systems described by 
a parametrized fault model and subject to multiplica- 
tive dynamic uncertainty. Our main result shows that 
for these systems, fault detection can indeed be accom- 
plished from noisy measurements of the output to a 
known input, by exploiting CarathCodory-FejCr's the- 
orem to reduce the problem to an LMI feasibility form. 
Further, in the case of hard faults, this approach al- 
lows for identifying the failure mode. These results 
were illustrated with a practical example. Research is 
currently under way seeking to extend these results to 
time-varying systems and to more general uncertainty 
structures. 
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T i w  and estimated laults 01 I1 
I 

9 6 0 5 -  

i 

5 2 4 8 8 10 12 14 I8 18 20 
TNB and estimated faults 01 12 1 ~ ,  . *  

* 4 . *  
$ 0 5  
z 

0 2 4 6 8 10 12 14 18 18 20 
T N ~  and snimated laulls of 13 

0 2 4 6 8 10 12 14 18 18 20 
T N ~  and snimated laulls of 13 

y . 2  4 8 8 10 12 14 I6 18 20 
I 

Ileratmo 

Figure 5: Continuous fault case when fl = a, fi = a, and 
f3 = a (-: true, *:estimated) 
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