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Abstract 

In this paper we consider the problem of minimum nomi- 
nal Hz-norm with H,-constraints for systems with mul- 
tiple operating points. The performance measure is de- 
fined as a weighted sum of the corresponding nominal H2- 

norms while robust stability of the individual closed-loop 
systems is defined in terms of a H,-bound for each plant 
condition. In this paper we define a new time-domain 
scalar cost function J, ( t , )  representing the H,-bounds 
in an overall cost function for the mixed H’/H,-design. 
J , ( t j )  is, for finite time t f ,  a penalty function and, for 
t j  + 00, a barrier function. Using J m ( t j ) ,  the mixed 
Hz/H,-design problem results in an unconstrained o p  
timization problem, that, for I! -, 00, recovers the origi- 
nal objective of minimizing the performance measure s u b  
ject to the Hm-bounds. The resulting optimization prob- 
lem is smooth and hence standard gradient-based soft- 
ware can be applied. The class of controllers considered 
includes proper and strictly proper LTI controllers with 
fixed structure and/or fixed order. 

1. Introduction 

In the past few years, the mixed Hz/H,-control problem 
has been the object of much interest, since it allows the 
incorporation of robust stability into the LQG framework. 

Robust Hz/H,-performance still remains, to a large 
extent, an unsolved problem. An approach based upon 
parameter optimization methods can be found in [14], 
where necessary conditions for this problem with fixed 
order controllers have been derived. 

Alternatively, a “Nominal Performance with Robust 
Stability (NPRS)” problem can be formulated, where the 
controller yields a desired performance level for the nom- 
inal system while guaranteeing stability for all possible 
plant perturbations. In [l] and [2] an upper bound for the 
corresponding 2-norm is minimized while a H,-bound is 
satisfied. The dual problem has been solved in [3], in 
[16] it has been shown that the conditions derived in [2] 
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and [3] are necessary and sufficient. These approaches 
are restricted to systems with “identical disturbance in- 
puts” or “identical criterion outputs” and result in a set 
of coupled Riccati equations, that is, in general, difficult 
to solve. For the same class of systems the NPRS prob- 
lem has been solved (see [4], [9] and [lo]) for the static 
and dynamic state-feedback case and the dynamic full- 
order output-feedback case. There the problem is cast 
into a convex constrained optimization over a bounded 
set of matrices using non-differentiable constrained opti- 
mization techniques . This approach provides an efficient 
way of solving the problem when the controller is not re- 
stricted in structure. 

Modern control applications in aeronautics and astro- 
nautics often rely on modeling techniques using finite- 
element analysis and thus involve high-order plant mod- 
els. Additional requirements such as fixed order and/or 
fixed structure have to be included for a practical imple- 
mentable controller. One approach in this direction can 
be found in [7] and [a]. In addition to a set of rather 
restrictive system assumptions (rank conditions as well 
as assumptions on system zeros) this approach requires a 
initial stabilizing controller guess that satisfies the Hm- 
bound. No such assumptions are made in this paper. 

In this paper we address the NPRS problem using a 
time-domain based penalty function approach. We for- 
mulate a time-domain cost function that explicitly incor- 
porates the H,-bound. This cost function is continuous 
and differentiable in all the involved parameters. Also, un- 
like the approaches in [l] or [4] we optimize over the actual 
Hz-norms rather than their upper bounds. As in previous 
approaches dealing with fixed order/fixed structure con- 
trollers, this optimization problem is non-convex. How- 
ever, we believe that the approach proposed here has a 
number of advantages over previously proposed methods. 
In particular, i)  it  does not require the use of homotopy 
based methods, ii) it incorporates multiple plant condi- 
tions and hence multiple operating-points of the plant as 
well as static and dynamic controllers (fixed order, fixed 
structure, strictly proper or proper), iii) the overall cost 
function is well defined even if the initial controller guess 
is not stabilizing, and finally, iv) the system assumptions 
are the least restrictive in comparison to the above a p  
proaches. 
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2. Preliminaries 

In general we consider np plant conditions of a system in 
the following form. 

x = A'%' + Bjw;  + &Wb, + Bju 

y' = c i f '  + D ; ] W ;  + o;,wb, 

2;: = + D : ~ w ; +  Dizwb, + D i 3 ~  

z b w P  : z:, = c;z' + D;]W; + DI2Wb, + D l 3 U  

(1) 
{ I' 

for I = 1,2,  ..., np, Each plant condition is assumed 
to be of nth order. ( A ' , B ; )  are controllable pairs and 
(A' ,  Cl), j = 1,2,  ... np represent observable pairs. wz 
are assumed to  be white noise signals with unit spec- 
tral density, thus representing the limiting case of dis- 
turbances with bounded spectrum (see e.g. [3]) .  w k  
represent "disturbances" due to system uncertainties for 
each plant condition. It is assumed that, for each oper- 
ating point, all uncertainties are lumped into one a ' ( ~ ) -  
block, namely tub,(.) = A'(s )zL(s )  with A'(s) stable and 
~ ~ A ' ( s ) ~ ~ ,  5 (we address the case of "unstructured 
uncertainties" here). Direct feedthrough terms from U 

to y' can be incorporated as long as the corresponding 
feedthrough matrices are the same for every plant con- 
dition and the final controller design is well posed. In 
general we assume the controller C ( s )  to be of the follow- 
ing form. 

subject to  + Di3 DCD;, = 0 for all i = 1 , 2 ,  ..?ap. This 
constraint is necessary for a finite 2-norm from w; to zh. 
For technical reasons we impose the additional constraints 
DcDiz = 0 for all i = 1,2, . .np  to simplify the gradient 
expressions. The order of the controller is prespecified and 
needs not be equal to the plant order. All matrices are 
assumed to  be of compatible dimensions. A parametric 
representation CO of a controller C ( s )  is given by 

Dc Cc 
= ( B, A ,  ) 

Given a controller CO, the closed-loop plant conditions 
can be represented as follows. 

i' = A'x'+ B;w;+ Bhwb, 
c;/,,,l(co) : 2; = c ; x g  + D;Zwb, 

C ~ X '  + D;lw; + D;gwb, = 

(3) 
I 

Let C;,,l(Co) denote the subsystem of ,E~,m,cl(Co) from 
w; to z; with w k  = 0, 

and C',,,l(Co) the subsystem from w k  to ZL with w; = 0 

( 5 )  
= A'xb ,+B;wb,  
= C;xb,+D;Zwb,,. 

With the constraint DcDj, = 0 it is easily verified that 
Di2 = Ddz for all i = 1,2,..np and hence the direct 
feedthrough matrices from w; to  z; are not dependent 
on CO. Let T,'(Co,s) and Tk(Co,s) represent the trans- 
fer functions corresponding to the closed-loop systems 
C;,, l(Co) and C',,,l(Co) respectively. Now let us define 
the problem addressed in this paper. 

Deflnition 1 Assume np plant conditions as in (1) with 
the corresponding observability and controllability condi- 
tions. Then the mixed Hz/H,-design strategy is defined 
as  follows. Find a stabilizing controller CO such that the 
performance criterion J2(C0, t f )  is minimized where 

JZ(C:) = min lim Jz(Co,tf) 
CO t , -00  

subject to the constraints 

IITk(C0, s)1Im < 7' (9) 

for all i = 1,2, ..np. y' are np parameters chosen by the 
designer, a' are n p  weighting factors and E represents the 
ezpectation operator. 

This is a constrained optimization problem where the 
H,-bound constraints can be expressed in terms of H,- 
Matrix Algebraic Riccati Equations ARE' (C , ,X ' )  = 0 
or H,-Matrix Algebraic Riccati Inequalities 
ARI ' (Co ,  X ' )  < 0. 

Lemma 1 Consider a linear stable time-invariant sys- 
tem C 

(10) 
k = A x + B w  
z = C x + D w  z : {  

with transfer function T ( s )  and y > U(D) .  Let R = 
(7'1 - D T D )  and S = (7'1 - D D T ) .  Then the following 
statements are equivalent (see e.g. [5]). 

llT(s)llm < 7. 
ARE: Assume ( A ,  B )  to be controllable and (C, A )  to 
be observable, then the matriz equation 

[AT + C T D R - ' B T ] Z  + Z[AT  + CTDR- 'BTIT  
S Z B R - ~ B ~ Z  + y2cTs-lc = o 

(11) 

has a unique real symmetric positive-definite solu- 
tion Z such that A + BR- ' [DTC + B T Z ]  is asymp- 
totically stable. 

ARI: There is a symmetric positive-definite matrix 
X such that ([A], [5]) 

[AT + C T D R - ' B T ] X  + X [ A T  + CTDR- 'BTIT 
+ X B R - ' B ~ X  + y2cTs-lc < 0. 

(12) 
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Rather than seeking explicit apriori solutions for the cor- 
responding ARE'S or ARI's to  parametrize a controller 
satisfying the H,-constraints we define a time-domain 
function Jk[ARI ' (Co ,  X I ) ,  t ]  representing the ith H,- 
constraint. In this formulation the controller CO and the 
np matrices X' become the optimization variables in a 
gradient-based minimization algorithm that attempts to 
achieve ARI'(Co,  X ' )  < 0 for all a = 1 ,2 ,  ..np. 

2. 
the H,-Constraints 

Definition 2 Consider np systems C',,,l(Co) as in equa- 
tion (5) and define the set X of symmetric positive- 
definite matrices 

Definition of a Penalty/Barrier Function for 

x = { x '  : X' = x ' ~ ,  X'  > 0, i = 1 ,2 ,  .., np}. 

We introduce the penalty function 
no 

with 

+ X'[AlT + CIT Di2 RI-' B;T]T 
+ X'B; R ' - ~  B ~ X '  

+ y'2C;TS-l c; (15) 

where R' = (yt21  - D;;Di2), 5" = (yt21  - D ;2 D'T 2 2 1 ,  

and the corresponding minimization problem: 

J,(C:, X ' )  = min lim J,(Co, X, t f ) .  (16) c,,x t j - o c  

The key properties associated with the penalty function 
(13) and the optimization problem (16) are expressed in 
the following theorem. 

Theorem 1 Consider np  closed-loop plant conditions 
C ~ , , ~ ( C ~ )  as in equation (5) for a given controller CO, 
the set of symmetric positive-definite matrices X as de- 
fined above and assume y' > U(Di2) for all i = 1 ,2 ,  . . ,np.  
Then the following is true for all i ,  i = 1 ,2 ,  .., np. 

Proof: Assume that CO satisfies IIT~(Co,s)llco < y' 
for all I = 1 , 2 , . . , n p ,  then there is a set X such that 

being Hermitian matrices, negative-definiteness is equiv- 
alent to  stability of ARI'(C0,  X ' )  and hence the matrix 
exponential - in the limit as t j  -+ 00 - will be zero. Con- 
versely, if minx limtf -- J,(C0, X ,  t f )  is zero, then there 
is a set X of symmetric positive-definite matrices X '  such 
that ARI' (do ,  X ' )  are negative-definite which in turn im- 
plies that all H,-constraints are satisfied. The second 

A R I ' ( C ~ , X ' )  < o for all i = 1 ,2 ,  ..,nP. A R I ' ( C ~ , X ' )  

statement follows immediately.0 

Now consider the case where the chosen controller re- 
sults in IIT~(C,,s)ll,  i 7' for some e. Then, for this 
i, ARZi(Co, X ' )  may be non-positive. Numerically this 
case is not relevant, however, we can treat this case by 
modifying J,(Co, X ,  t f )  in equation (13) to the following 
form. 

j k ( C O , X ' ,  t f , E )  

for a small positive 
j, (CO, X, I f ,  e) will be .. 

satisfied such that for each I = 1 ,2 ,  .., nP2 ARZ'(C0, X ' )  < 
-d. Then the cost minxlimt, -, J,(Co, X , t f , e )  is 
zero. We summarize these observations in the following 
Lemma. 

Lemma 2 Under the assumptions of Theorem 1 the fol- 
lowing statements are equivalent: 

ARI'(Co,  X ' )  < - € I  

l l ~ ~ ( ~ 0 , s ) I l m  I Y' - a(€) 
0 minxlimt, -oo j,(Co, X ,  t i ,  E )  = U 

for some small E 2 0 and 6(e) 2 0 .  

Jk(Co,  X ,  t f )  can be interpreted as the trace of the tran- 
sition matrix of a system d ( t )  = ARI' (C , ,X ' )e ( t )  so 
that the H,-constraints can be viewed as the problem 
of simultaneously stabilizing np plants. This justifies 
the usage of the term "time-domain'' penalty function. 
J,(Co, X, t f )  is continuous and differentiable with re- 
spect to  CO and all x'. Explicit gradient expressions can 
be found in the Appendix and in [12]. This property in- 
vites the use of gradient-based optimization algorithms. 

3. A Cost Function for the Mixed Hz/H,-Design 

Now we define the new unconstrained cost function for 
the mixed Hz/H,-design problem. 

Definition 3 Under the assumptions in Definition 1 we 
define the unconstrained mixed H2/H,-cost function as  
follows. 

J2,m(ColX,tf,~) = czJz(Co,lf)+j,(Co,X,tf,e) (17) 

where c2 is a scalingfactor. In the limit, as t j  + 00, the 
corresponding optimization problem 

solves the design strategy in Definition 1 if  the controller 
can satisfy all the H,-bounds. 

With the assumptions of controllability on ( A ' ,  BI )  and 
observability on (C; ,  A i ) ,  J~!,(C;,X*,E) is finite if 
and only if the controller is internally stabilizing and 
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all the H,-bounds are satisfied with a set k such 
that ARZi(Co,X’) < -&I for all plant conditions 
(i = 1 , 2 ,  ... n p ) .  If the H,-constraints are satisfied 
but j,(C,,X,tj,~) > 0 we can reduce E to ensure 
minx jw(Co, X, t f )  = 0 in the limit as t j  + 00. Hence, if 
all the H,-onstraints are satisfied, then we can find an 
e such that for t j  + 00 the objective Jz(C, ,  t j )  will dom- 
inate in the overall optimization. In this case the desired 
design objective as in Definition 1 will be recovered in the 
limit for t j  -* 00. If, on the other hand, the controller is 
destabilizing or some of the H,-constraints are violated, 
then the combined cost function will remain unbounded 
as t j  + 00. Gradient expressions for Jz(C0,2f) can be 
found in [6]. 

Jz/,(Co, X, t j ,  E )  is neither convex in CO nor in X .  
Convexity can be achieved in the cases of static and dy- 
namic state-feedback for the pure H,-problem only (see 
e.g. [4]). For the general case of controllers with fixed 
structure and/or order such convexity results are not yet 
known. 

4. The Algorithm 

Principally there are two possible ways to approach the 
optimization problem. The first approach involves the 
minimization of J2/,(Co,X,tj,~) as a whole using a 
penalty function approach. Depending on the eigenval- 
ues of the corresponding ARI’s and whether or not the 
initial controller guess is stabilizing (see [6] on gradients 
for J2(C0, i f ) ) ,  we select an initial t j , ~  for which we solve 
the minimization problem (18). Once a solution of (18) 
has converged for t i , , - ] ,  we increase the finite time to t j , , .  

This process terminates when the largest implementable 
t j , ,  has been reached or when the algorithm has converged 
to a steady-state value in terms of t j , , ;  that is, the con- 
troller parameters do not change significantly (as a func- 
tion of t f )  and all H,-constraints have been satisfied. 

On the other hand we can first find a stabilizing, Hz- 
optimal controller using the method in [6]. If this con- 
troller satisfies all H,-constraints, the program termi- 
nates at  this point. If there is a “conflict” between 
the Hz- and the H,-objectives, namely, if some of the 
H,-constraints are violated, the algorithm proceeds with 
the computation of a controller that satisfies all H,- 
constraints, disregarding the performance objective. This 
problem is solved by optimizing on .fm(Co, X, t j ,  E )  for in- 
creasing t j ,  using the previously determined Hz-optimal 
controller as a stabilizing initial guess. After this con- 
troller has been found, we solve the optimization prob- 
lem minc, minx JZ/,(C,, X, t j , , , ~ )  for a large t j , , .  For 
sufficiently large j ,(C,, X, E )  will act as a bar- 
rier function. That is, controllers CO that violate one or 
more of the H,-constraints will be rejected during the 
line search. However, when applying this type of “boots- 
trap” algorithm we have to make sure that the controller 
that we get out of the pure H,-optimization phase is ca- 
pable of recovering the optimal Hz-cost. This is necessary 
as the overall optimization problem is not convex and we 
may end up in a local minimum from which we cannot 

recover the optimal performance. The scalar c2 may be 
used to scale the overall cost function properly. 

This finite-time approach allows us to control numeri- 
cal overflow problems arising from an initially destabiliz- 
ing controller guess or a “bad“ guess for the initial set X 
(and hence large eigenvalues of the corresponding ARI’s) 
by choosing a small t j , , .  

The numerical implementation utilizes the optimiza- 
tion toolbox of MATLAB as well as the software package 
SANDY. For the example below we applied the barrier 
function approach. 

5 .  Example 

We illustrate our approach on two 4’h-order longitudi- 
nal dynamic models of a F15 aircraft. The first plant 
condition represents a subsonic flight condition while the 
second operating condition is supersonic. The state-space 
matrices according to (1) are given as follows. 

0.0082 -25.7084 0 -32.1709 
-0.0002 -1.2763 1.0000 
0.0007 1.0218 -2.4052 

0 1.0000 0 
0.0082 0.0462 

( 0 . y 2 3  ) 
A’ = 

- - 
-0.0007 -0.0018 ’ B: 

0 -0.2793 0 

0 0 

-0.5585 0 

-6.8094 

0.0707 0 0 
c; = ( 0 0 0.3162 :) ,  Di3 = ( 2! ), 
ci = ( 0 0.0147 : ) , Cj =I. 

0 0 0 0  
0.0147 0 

0 -0.1688 0 0 
-0.0117 -95.9107 0 -32.1129 

= -0.0001 -1.8794 1.0000 ( 0.00006 -3.6163 -3.4448 
0 1.0000 0 

0.0117 0.0661 
- - ( , .Or1 O.Yl3  ) 

-0.0006 0.0025 ’ B: 

0 -0.3993 0 

0 
0 
0 0 

2.0457 78.4635 

-0.7985 0 

f -25.4041 

1 -0.2204 
-53.4246 ’ 
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References c2 - c;, p3 = D’ (72  - (7’ 1 -  131 2 - 2 ,  c: = I .  
All other matrices are assumed to  be zero. 
Some preliminary analysis of the design conditions is given 
below: 

P1: Open-loop: stable, llTi (.)I12 = 0.1068, 
IIT&(s)11, = 23348.3; 
Minimally achievable Hz-norm: 0.0032, 
Minimally achievable H,-norm with this approach and 
a first order proper controller: FZ 0.056. 
P2: Open-loop: stable, llTi(s)112 = 0.031, 
IIT&(s)11, = 8013.3; 
Minimally achievable Hz-norm: 0.00223, 
Minimally achievable H,-norm with this approach and 
a first order proper controller: FZ 0.096. 

Simulation results are presented in the Figures 1 and 
2. Figure 1 represents the mixed design for the 1’’ plant 
condition only. The 2nd operating point is not taken 
into consideration for this design-curve. The trade-off 
between performance and robustness is typical, perfor- 
mance improvement implies invariably a deterioration in 
stability robustness and vice versa. For all design points 
the achieved l lTL(~)11~  is at the specified y-bound. The 
best compromise between performance and robustness 
is at the point IITL(s)IIW 0.1 with a corresponding 
llTi (.)I12 0.018. Dramatic reduction in either robust- 
ness or performance can be achieved at the other design 
points. 

Figure 2 shows the simulation results when both plant 
conditions are accounted for in the design optimization. 
The weighting factors ai were chosen to be CY’ = 1 and 
CY’ = 1. Hence both H2-norms are weighted equally. The 
same value rape= over which the H2-norms is plotted, was 
applied to both plant conditions. Hence this is only a two- 
dimensional example out of a generally four-dimensional 
surface. In a mixed design for multiple plants, yspec will 
provide an actual constraint for only some of the np oper- 
ating conditions leaving the other plants unconstrained in 
terms of the robustness constraints. In our example the 
resulting IIT,(s)lloo was always below the specified yspef 
while IIT&(s)lloo was on the specified robustness bound- 
ary for all design points. 

6. Conclusion 

In this paper we have presented a time-domain approach 
to the mixed Hz/H,-design problem that does not de- 
pend on homotopy methods for the controller design. We 
have defined a Penalty/Barrier function that represents 
the H,-objectives in an overall cost function. The over- 
all cost function is continuous and differentiable. Explicit 
gradient expressions have been derived for the objective 
function. The algorithmic treatment in a gradient-based 
finite-time setting allows us to  have initially destabilizing 
controllers as well as controllers with fixed structure and 
fixed order. 
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Appendix: Computation of the Gradient 

Assume a closed-loop system C&l(Co) y in (5) and let 
O e 2  1 I 

with R' = ( y 2 1  - D::Diz). Note, that A', B' and C' are 
functions of Co. For notational simplicity this dependency 
is omitted here. The direct feedthrough term D& from 
wk, to t k , ,  however, is not a function of CO due to the as- 
sumption DC&, = 0 for all I. Using a Cholesky factoriza- 
tion of X' = QtTQ', where Q' are upper triangular matri- 
ces, the corresponding ARI'(C,, x') = ARI'(Co, Q S T Q ' )  
for the i th  plant condition is of the form 

llT:lIz 0 . 1  - 

0.05 - 

0 

0.15 { 1 
0 

e 
I I I I I 1 

0.3 - 
where 

F(Co, Q') = {(A' + A ' Q ' T Q ' ) e A R I  ' ( C.,U') t j  

+ ,ARI ' (Co ,Q' ) t j  (A' + B ~ Q ' T Q ' ) T ) Q : T .  
0.2 - 

( 2 1 )  

In this derivation all higher-order terms in c are discarded. llG 112 
Hence, applying Kleinman's lemma (see [ll], [15]), the 
first derivative of J&(Co,Q',tj) with respect to Q' is 
given by 

0.1 - 

Gradients with respect to the controller matrix CO are 
derived using the same procedure as above. The over- 
all gradient follows from the summation of the indi- 
vidual gradients for each plant condition. The expres- 
sions are more complicated and are omitted here (see 
[12]). Note, however, that only matrix-exponentials and 
matrix-multiplications are needed to  compute the gra- 
dients. Expressions for the derivative of &(CO, t f )  with 
respect to CO can be found in [6] .  

IITZ'112 : 

llT2'112 : 0 i 
0.05 0.1 0.15 0 . 2  

Y s p e c  

Figure 2: Both plant conditions 
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