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Abstract 

A successful controller design paradigm must take into 
account both model uncertainty and design specifica- 
tions. Model uncertainty can be addressed using 'H, or 
11 robust control theory, depending upon its characteri- 
sation. However, these frameworks cannot accommodate 
the realistic case where the design specifications include 
both time and frequency-domain constraints. In this p& 
per we propose an approach that takes explicitly into 
account both mixed time/frequency-domain constraints 
and model uncertainty. This is achieved by minimizing 
an upper bound of a set-induced operator norm, sub- 
ject to additional frequency-domain specifications such 
as bounds on the ' H 2  and %,-norm of relevant transfer 
functions. The main result of the paper shows that, by 
using the parametrisation proposed in [E], the problem 
can be cast into a finite-dimensional, differentiable con- 
vex optimisation problem, that can be solved by using 
gradient-based methods. This theory is illustrated with 
an application to the lateral dynamics of a B767 aircraft. 

1. Introduction 

A large number of control problems require design- 
ing a controller capable of achieving acceptable perfor- 
mance under system uncertainty and design specifica- 
tions, usually including both, time and frequency-domain 
constraints. However, despite its practical importance, 
this problem remains to a large extent still open, even 
in the simpler case where the system under considera- 
tion is linear. During the last decade a large research ef- 
fort has led to procedures for designing robust controllers 
capable of achieving desirable properties under various 
classes of model uncertainty. In particular, a powerful 
framework has been developed, addressing the issues of 
robust stability and robust performance in the presence of 
norm-bound perturbations by minimizing an %,-bound 
[23]. The N,&iamework, combined with p-analysis [SI 
(in order to exploit the structure of the uncertainty) has 
been successfully applied to a number of hard practical 
control problems (see for instance [15]). However, in 

spite of this success, it is clear that plain %,-control 
can only address a subset of the common performance 
requirements since, being a frequency-domain method, 
it cannot address time-domain specifications. Some a p  
proaches that incorporate time-domain constraints into 
the %,-formalism have been recently developed [14][11] 
[17]. However, these approaches require solving large, 
nonaerent iable  optimiiation problems and typically re- 
sult in a very large controller order, necessitating some 
type of model reduction [17]. 

A different approach to robust control has been pur- 
sued in [21][4], where robustness and disturbance rejection 
are approached using the L-optimal control theory intro- 
duced by Vidyasagar [21] and developed by Pearson and 
coworkers [4]. These methods are attractive since they 
allow for an explicit solution to the robust performance 
problem. However, they cannot accommodate some com- 
mon classes of frequency-domain specifications (such as 
'Hz or ?&,-bounds). 

Finally, a third approach to controlling time-domain 
constrained systems exploits the concept of positively in- 
variant sets [2] [18] [16] [20]. Although this approach leads 
to simple design algorithms and has recently been ex- 
tended to encompass some robustness considerations, it 
cannot handle frequency-domain specifications. 

In this paper we propose an approach to de- 
sign static state-feedback controllers satisfying mixed 
time/frequency-domain specifications. Satisfaction of 
time-domain constraints is achieved by minimizing an 
upper bound of a set-induced operator norm, while ro- 
bust stability is guaranteed by imposing a bound on the 
'H,-norm on a relevant closed-loop transfer function. 
The main result of the paper shows that, by using the 
parametrization proposed in [E], the problem can be csst 
into a finite-dimensional, differentiable convex optimisa- 
tion problem, that can be solved by using gradient-based 
methods. Moreover, additional specifications such as H2- 
bounds are easily incorporated into the formalism. 
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2. Preliminaries 

Consider the following linear, shift-invariant, diecrett 
time system 

{ 
z ( k  + 1) = Az(k)  + Biw(k) + Bzu(k) 
L ( k )  = Clz(k)+ Diu(k) (1) Y(k) = z(k) 

= K d k )  

where ( A ,  B2) is controllable, D1 has full column rank, 
z E R" represents the states, U E R"' represents the 
control action, (- E Rq represents variables subject to 
performance specifications and w E R' represents an 
exogenous disturbance. Given a stattfeedback matrix 
K E RnX", the dosed-loop system can be cxpresacd  at^ 

follows: 

z c ~ ( k  + 1) = Actzct(k)  + &WO) 
Cm(k) = Cctlzct(k)  (2) 

= (C' + D'K)Zd(k) 

where Act = A + &K. Let T,(z) denote the dosed-loop 
truufer function from w(z) to C..(z). In face of equation 
(2) we can state the deaign objectives of the constrained 
robwt-control problem as follows: 

P1. Given the system C and two convex, compact, 
balanced sets [9] containing the origin in their interior, 
G c R" and W c R", find a stabilising state-feedback 
gain matrix X such that: 

llT-(z)II- 5 7 (3) 
z(k) E (i, Vk (4) 
u(k) E w, Vk (5) 

Next, we recall a result concerning constrained control 
problems [lS]: 

Delhition 1 ([a]) 
The Mankow8ky finctional p of a balanced convex set 0 
containing the origin an its interior is defined by 

A well known result in functional analysis (see for instance 
[9]) establishes that p ddinca a seminorm in R". Further- 
more, when 0 is compact, this seminorm becomes a norm. 
Thia result is exploited in the following lemma. 

Lemma 1 ([lS]) 
Consider the system: 

z ( t  + 1) = Az(k)  (7) 

and let Il.lla denote the operator norm induced an R"'" 
by g (i.e. llAllg= sup 11Az11g). Then, given 0 and an 

initial condition zo E 8, the trajectory z(k) E 4 for all k 

A 

11=110 =I 

if7 IlAllo <_ 1. 

Moreover, it is shown in [le] [19] that " i s l i n g  llAllg 
maximises robustnesll against parametric model uncer- 
tainty and " i n e s  the d k t s  of the diaturbmce W. 

From Lemma 1 it follows that the robust constrained con- 
trol problem can be cast into the following constrained 
opthisation format: 

subject to: 

where IlKllg,w% sup IlKzllw. However, this con- 

strained optimisation problem is not convex (since it can 
be easily shown that the constraint IITm(~)l[m is not con- 
vex in K). Thus, the existence of a global maximum is 
not guaranteed. In order to solve this difficulty, we recall 
the following results. Consider the following convex sets': 

1141a I' 

0 
T := ( ( X , W )  E 0 x R"""} 

:= {X E RnX" : X = XT > 0) 

n := { ( T , X )  E R x 8 : T > 0, -pI 1 - X 5 0) 

\E := ((7, XI W )  E Q x Rmx"} 

then, the following results hold: 

Lemma 2 ([SI) 
Consider the stable system &. Assume that (Act, B1) U 

controllable and (Cetl, Act) i s  obsemble .  Then the fol- 
lowing stutements are equivalent: 

IIT-(z)llw < Y 

ARI: There exists a symmetric positive definite ma- 
t& Y such that 

R ( X )  := ACiYA$ - Y + BIB: 
< o,( io)  

M ( X )  := T 2 1  - Cc,lYC:' (11) 

Moreover, Y can be chosen to be the same as the one 
in item 3 below. 

There exists a symmetric positive definite mat& Y 
such that 

Moreover, Y can be chosen to be the same as the one 
in item 8 above. 

aConvexity of f l  is shown in the Appendix 
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Lemma 3 (181) 
Consider ,the same system as in Lemma 9 and let K = 
WX-' with K E Rmxn and X E R"'", then the matrix 
mapping Q ( X ,  W )  : T + R"'" 

(13) 

A + B2 WX-' 
(CI 

i s  convex on T. Furthermore, there exists a static state- 
feedbock K = WX-' such that IITm(z)lloo < 7 if and 
only if there is a ( X , W )  E T such hut  Q ( X ,  W )  < 0. 
Here convexity is defined in terms of the usual ordering of 
symmetric matrices, i.e.: 

for two pairs ofmat+ices(Wi, Xi) E T and (W2,Xz)  E T, 
and o E [o, 11. 

Note that Q(Xl W) repreaents the left side argument 
of inequality (10) with a state-feedback K = WX-' in 
place and Y = X E 0. It should be noted that a pair 
( X , W )  E T that satisfies Q ( X , W )  < 0 implies that 
llT,(z)ll.. < y. However, a controller K = WX-' that 
satisfies the 'Hm-bound IITm(t)lloD < 7 does not neces- 
sarily imply Q ( X ,  W) < 0. Hence Q(X, W) < 0 is only 
a sufficient condition for llTm(z)ll.=,, < 7, not a neces- 
sary one. Note that Lemma 3 only refers to the existence 
of a static statefeedback matrix (that satisfies the Zm- 
bound) in terms of Q ( X ,  W), the parametrization of this 
controller, however, is not unique. 

3. Convex Upper Bounds for llA + BK((4 and 
IlKIIP*W 

In this section we use the results of section 2 to formu- 
late the robust constrained control problem in a convex 
optimisation setting. We begin by providing a convex 
upper bound for llKllp, the Frobenius norm of the state- 
feedback gain. 

Theorem 1 
Consider the h e b e n i w  norm of the atate-feedback gain 
matriz llirllp = 1lWX-l lip, then 

JB(T,X,W) = !Tr(r'X-')+ iTr (WTW)  2 

(15) a. t .  sax 2 I 

representr a differentiable uppet bound for IlWX-lIIp 
such that 

IlWX-'llP 5 JB(T, x ,  w ) .  (16) 
Furthermore, Jm(r, XI W )  i s  convex on 9. 

Proof: The following chain of inequalities proofs that 
J B ( T , X , W )  indeed is an upper bound for IIWX-'(lp. 

1 
7 2  

s. t. - - I - X < O  

5 Jr~X,,,(X-')Tt(WTW) (19) 

5 zrpXmam(X-') 1 + ZTv(WTW)(20) 1 

assuming 5 I - X 5 0 holds. Equation (18) follows from 
(17) by the scaling of llKll~ with T'X >_ I. (19) fol- 
lows from (18) by the application of Lemma 4 in the 
Appendix. (20) follows from (19) by application of the 
arithmetic-geometric mean inequality with a = $ and 
the facts that X,,,(r2X-1) 2 0 and Tr(WTW) 2 0 
(see the Appendix). The last inequality finally follows 
from X,,,(Z) 5 T v ( 2 )  for any 2 E 0. Convexity of 
Tv(WTW) is shown in [6] (p. 556, problem 33) and the 
remaining convexity proofk are provided in the Appendix 
(see Theorems 4 and 5). As the sum of convex mappings 
is convex, overall convexity follows. It can be easily ver- 
ified that JB(T, X I  W) is continuous and differentiable in 
all the variables involved. 

With this result an upper bound for llAclllp caxi be 
derived using the triangular inequality as follows 

where IlAllp is a constant and (IB2Kllp can be ex- 
pressed in terms of J B ( ~ , X , B ~ W )  which in turn re- 
sults in a convex upper bound for llAcillp. Convexity 
of JB(T,X,&W) is easily shown using Theorem 1 and 
the fact that Tt(WTBrBaW) is convex in W (see e.g. 
[7]). By using this upper bound on llAciII~ and the re- 
sults of Lemmas 2 and 3 and Theorem 1 we are now in 
the position to restate problem P1 as a convex optimisa- 
tion problem. Since all finite-dimensional matrix norms 
are equivalent [6], it follows that there exist constants c1 
and cp, depending only on the geometry of the sets 0 and 
W ,  such that Il.llo I cl11.llF and Il.llo,w 5 C211.11F. Hence, 
a suboptimal solution to problem P1 can be obtained by 
solving the following auxiliary minimization problem. 

P2: Robust constrained control with an Ti,-bound: 

where 7,, is the maximum control effort allowed. In gen- 
eral, 88 Tr(B2KKTBr) s Xm,.(B2B~)T2(KKT), the 
minimiration problem (23) will also reduce the control ef- 
fort in terms of JB(T, X I  W). 

2586 

n 



4. A Gradient-Baed Formulation 

Ellipsoid or Cutting-Plane methods are applicable to 
this type of problem (for a review of the advantages and 
disadvantages of these methods see [3] and references 
therein). However, in many cases, descent-methods are 
preferred, since they have faster convergence rates. In 
this section we give a convex characterization' of the con- 
straints in terms of differentiable functions, and we use 
it to cast the original problem into an unconstrained o p  
timisation form, amenable to solution by descent-type 
algorithms. 

Theorem 2 
Let ( X ,  W )  E T, then the scalar measure for the 7-1,- 
bound i s  defined as: 

J r ( X ,  W,  t j )  = Tr{eQ(x'w) t j  1 (24) 

where the scaling factor t j  is introduced for algorithmic 
reasons (see section 5). J r ( X ,  W , t j )  has the following 
properties: 
1. J i ( X ,  W , t j )  i s  non-negative, and for a given t j , i t  i s  

8. 
continuous, differentiable and convex on I?. 

(25) 

Proof: Convexity follows from (14), Weyl's Theorem 
and Lemma 6 (see Appendix). The latter property of 
J r ( X ,  W , t j )  follows &om the fact that Q ( X ,  W )  < 0 is 
equivalent to stability of Q ( X ,  W )  as Q ( X ,  W )  is hermi- 
tian. As T r ( e * ( X ~ W ) * f }  is the sum of the exponential of 
the eigenvalues of Q ( X ,  W ) t j ,  (25) follows directly. 

Remark 2: Expression for the first order gradients of 
J l ( X ,  W , t j )  can be found using the matrix series expan- 
sion of the involved matrix exponential and Kleinman's 
Lemma (see [22], [13]). 
Remark 3: Using this technique, additional con- 

straints such as $I - X < 0 can be converted to con- 
vex scalar functions as well. Also, at this point we want 
to emphasize that suboptimal design objectives such as 
JB(T, X ,  W )  5 E or JB(T, X ,  &W) 5 fu can be accom- 
modated in the same way by forming scalar penalty func- 
tions Tr{e[JB(T~X~W)- gltl} T r ( C I J ~ ( T . X ' B a W ) - f , l l j } .  

In general, as long as the constraint is in the form of 
a hermitian matrix inequality or a scalar inequality this 
method wiU result in a penalty function with the same 
properties M in Theorem 2, maintaining the convexity 
properties of the original constraint. 

5. Proposed Algorithm 

We now form a cost function that combines all the per- 
formance costs and the constraint penalty functions into 
one overall cost function J o ( X ,  W , t j ) .  

Jo(X,  W, if) = CP JP(T, X, W )  + Jc(T, X ,  W, t j )  (26) 

where J p ( 7 ,  XI W) represents the performance objec- 
tive J B ( T , X , & W ) ,  c p  is a weighting factor, and 
Jc(T ,X ,  W , t j )  is the sum of all penalty function terms 
corresponding to inequality constraints including the 
31,-penalty function J r ( X ,  W , t j ) .  The proposed algo- 
rithm starts at a small t j  = t j ,  so that initial guesses w, 
X and 7 that do not satisfy the constraints will not re- 
sult in numerical overflow problems. In a feasibility stage 
we optimise on J c ( T , X ,  W , t j )  only ( C P  = 0), trying to 
find a feasible solution W , t  and T satlfying the rele- 
vant constraints. Once this minimization has converged 
for t j  = t j , ,  t j  is increased and the optimisation is re- 
peated. This process terminates when a set w, d and ? is 
found. Now t j  is increased to a large value t jr .  such that 
J c ( ? , x , w , t j L )  < c p  J p ( t , X , W )  (note, that in the 
limit as tt + 00 all exponential terms in J c ( W , x , ~ , t j )  
wiU go to sero if the according constraints are satisfied). 
In fact, for large but finite t j ,  J c ( ~ , x , W , t j )  practi- 
cally acts as a barrier function in the overall optimiza- 
tion process. For thie t f L  now we optimize on the over- 
all cost function J o ( X ,  W, t j ) .  If during thin optimization 
cp J p ( r ,  X ,  W )  approaches values close to Jc(T, X ,  W, t j )  
we can always increase t j L  or c p  so that Jp(7 ,  XI W )  re- 
mains the dominating cost in the overall optimisation. 
Alternatively we can also define a penalty function a p  
proach in which we optimize the overall cost function fiom 
the beginning. Starting with a small t j ,  (26) is " i a e d .  
Once this optimisation has converged, we increase t j  and 
repeat the minimization. This iteration will terminate as 
soon as all the constraints are satisfied. 

6. Example 

w e  illustrate our approach on a discrete 41h-order sys- 
tem (see [12]), representing the lateral dynamics of a 
BOEING 767 aircraft. The state-space matrices are given 
as follows: 

0.9966 0.0227 -0.0084 -0.1120 
-0.0037 0.7952 0.1633 0.0005 
-0.0063 -0.6008 0.7661 0.0003 
-0.0007 -0.0045 0.1779 1.0000 

A =  ( 
0.1885 -0.0029 

B1 = ( -0'0003 ) , B2 = ( -0*0762 ) 
-0.0007 -0.6529 ' 
0.2000 -0.0683 

C1 = ( 0.0100 0 0.0100 0 ) , D1 = 0.0100. 

The open-loop system is stable; the open-loop 31,- 
norm ~ ~ T , ( z ) ~ ~ ,  is 7.4826 and the minimally achievable 
norm ~ ~ T w ( z ) ~ ~ ~  is approximately 0.0069. The Froebe- 
nius norm of the open-loop syatem-matrix A is llAllp = 
1.9102. Figure 1 shows llActllp versus the specified 31,- 
bound 7 for several values of 7 obtained by solving the 
following optimisation problem: 
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Figure 1: llAelll~ versus specified ?&,-bound 7 

The uppermost curve is the actual cost that we opti- 
mize on. From the theory an well as the plot it follows that 
JB(T, X, B2 W )  + llAllp in an upper bound for (IAsil(~.  In- 
teresting is the fact that IIA.rllp decreases monotonically 
up to 7 = 0.1. For 7 > 0.1 1]ACtllp increases and converges 
to the open-loop norm llAllp. This fact is due to the sta- 
bility of the open-loop system. Note, that for 7 2 7.4826, 
W = 0 will satisfy the required %=-bound and “stabi- 
b e ”  the system and IIAeillp = IlAllp in this case. Hence, 
for large 7 ,  IJA& and J B ( ~ , X ,  B2W) + IlAllp converge 
to the same value, namely llAllp. llKll~ on the other 
hand shows the typical performance/stability robustness 
tradeoff. 

7. Conclusions 

During the last decade, a large research dfort has been 
devoted to the problem of designing robust controllers, 
capable of guaranteeing stability in the face of plant un- 
certainty. As a result, a powerful %,-framework has been 
developed, addressing the issue of robust stability in the 
presence of norm-bounded plant perturbations. In gen- 
eral, suboptimal controllers are preferred, since optimal 
‘H,-controllers may exhibit some undesirable properties, 
such as very large gains. Since suboptimal controllers 
are not unique, the extra degrees of freedom available can 
then be used to optimize some performance measure. This 
leads naturally to a robust performance problem: design 
a controller guaranteeing a desired level of performance 
in the face of plant uncertainty. However, in spite of 
a large research dart, this problem has not completely 
been solved. 

Alternatively, the extra degrees of freedom can be used 
to solve a problem of the form nominal performance with 
robust stability. In this case the controller yields a desired 
performance level for the nominal system while guaran- 
teeing stability for all possible plant perturbations. The 

problem that we address in this paper, finding a feed- 
back controller such that both time-domain ,and %=- 
constraint are satisfied, falls under this class. 

In the first part of the paper we show that, by us- 
ing a technique similar to [a], this problem can be cast 
into a finitdimensional convex constrained optimization 
form. In the second part of the paper we show that this 
opthisation problem can be transformed into a uncon- 
strained differentiable optimization problem, amenable to 
solution by gradient-based methods. 

The proposed design method results in low-order con- 
trollers (as opposed to procedures based upon the Youla 
paramethation [3]) that do not exhibit the large gain 
often associated with optimal H=controllers. 
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Appendix 

Theorem S (Weyl's Theorem, [e], p.181) 
Let G I  H E Rnxn be Hermitian matrices, and let the 
eigenvalues of G, E and G + R be arranged in the follow- 
ing order 
h ( G )  5 Az(G) 5 ..e 5 L ( G )  = Lam(G) 
k ( H )  I h ( H )  5 e . .  5 L ( H )  = L a m ( H )  
k ( G + H )  5 h(G+IP) 5 5 Xn(G+H) = Xmam(G+H), 
then 

for all i = 1,2, ... n. 
In  particular we have 

Xi(G + a) 5 k ( G )  + Lam(H) (27) 

Xmam(G + H) I Lam(G) + &nam(H). (28) 

and, for H 5 0, 

k ( G + H )  5 Xi(G) 
&naa(G+H) 5 Amam(G). 

Lemma 4 ( [Za],  p.630) 
Let GI H E Rnx" be Hermitian matrices such that G 2 0 
and €I 2 0 , then 

T t ( G H )  I Xma.(G)Tr(H). (29) 

Lemma 5 ([I]) 
(Arithmetic-Geometric Mean Inegudaty) 
Let c and 9 be two non-negative scalars, then 

5 az + (1 - a ) g  z"y('-") (30) 

for every a E (0,l) .  

Lemma 6 ([7]) 
Let 21 and 22 be Hermitian matrices and a E (0, I), then 

~~{e [az1~( ' -P )~21r f}  < - [Tr(ezltf )]"[Tr(ez3tf ) ] ( l -a )  

5 aTr(eZlt') + (1 - a)Tr(ez2tf). 

Theorem 4 
The function 

is convex in R x 0 
J(T, X) = TT(T'X-')  (31) 

Proof: The proof is essentially equivalent to the proof of 
Lemma 4.4 in [8] and is omitted here. 

Theorem 5 
The set n = { ( r , X )  E R x 0 : T > O , $ I  - X  5 0) is 
convex. 

Proof: Consider the mapping f : R x 0 + Rnx" given by 

(32) 
1 

T2 
f (TI X) = ---I - x. 

f ( T , X )  is affine in X and f is convex for all T > 0. 
Convexity of n follows immediately. 


