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tem can be expressed as follows:

Optimal 4.-controllers may exhibit lage gains, result-
ing in large control efforts. In this papar we consider the
problem of desgning a minimum gain static ful state-
feedback controller such that the dosed-loop transfer
function satisfies a 4.-constramlt. The main result of the
paper shows that, by minimizing an upper bound for the
Frobenius-norm of the feedback-gain matrix mad using a

parametrization as in [6], the problem can be cast into a

fi.nite-dimensional, convex optimization problem. Scalar
cost-function-s for the 74.-bound and various other con-

straints allow the application of gradient-based software

packages to these problems. Finaly, we illustrate how to
apply this theory to the mixed 7z/`4.-control problem
with minimum control effort.

1. Introduction

Consider the following linear time-invariant system:

= Az+Biw+B2u
z = Coz+Dou

S: zoo<x, = Ctz+Diu (1)

I =

t v =Ky

where (A, B2) is controllable. z E R" represents the
states, u E R' represents the control action, £2 E RP
represents variables subject to possible 72-performance
specifications, w E R" represents an exogenous distur-
bance and the transfer function from w to z.. E R' is
subject to the 74.-bound. Note that a non-zero direct
feedthrough matrix from w to xz. can be incorporated into
this framework as well. However, without loss of general-
ity we assume this feedthrough matrix to be sero. Given
a state-feedback matrix K e RmX`, the closed-loop sys-

1, 3 This work was supported in part by
NASA Ames DFRF under grat NAG-2-629.

2 This work was supported in part by
NSF under grant ECS-9211169.

e

Ea :
22
zoo

= Aciza+ Biw
= (A + B2K)z:l + Btw

= (Co + DoK)zcl = Cloze.1
= (Cl + DiK)z,l = Ccl1zec

(2)

Let T2(s) denote the closed-loop transfer function from
Us(s) to Z2(s) and T.(.s) the dosed-loop transfer function
from w(s) to zn.(j). Let Tr(.) represent the trace opera,.

tor, then we can state the design objective of a minimum
control effort f..-problem as folows:

P1. Find a stabilizing state-feedback gain matrix K
such that ITca(s)all. < 'y ad (an upper bound for)
IIKIlp= Tr{KKT} iS minimized.
We also address the problem where fIKIlp is not actually
minimized but bounded from above by a certain prespec-

ified value bK. Hence we can define an alternate criterion
as follows:
P1'. Find a stabilizing state-feedback gain matrix K
such that IlT.-s)IIJo <7 and IIKIKW < kc.

The mixed W2/74.-control problem with minimum con-

trol effort can be put into the following form:
P2. Find a stabilizing state-feedback gain matrix K such
that IIT..(s)II. < and an upper bound for the weighted
sum of lIT(a)112 and IIKIIP is minimized.

Similar to objective P1' we can also define design objec-
tives where bounds are imposed on IIT2(S)112 and/or IIKOhI
if so desired. These cas will be outlined later. Note
that all problems involving an 74.-bound have a solu-
tion if and only if the associated pure 74.-problem has
a solution as shown in [14]. Also, design strategies that
include a bound either on IIKI' as in P1' or bound on

JIT2(e)112- such that 11T2(s)I2 < b2 may not have a solution
even if the corresponding pure 4.-bound problem has a

solutioni.
In general all the above objectives will reduce the control
effort according to IIU1:2 IIKIIpIlr112. Without proof we
state the following results.

Lemma 1 ([6], [7]) For a stable system Ea the follow-
ing statements are equivalent:
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1. IITm(s)IIoc<i
2. ARI: There exists a symmetric positive-definite ma-

trix Y such that

YA" + AcjY + -2YCT11C.lY + B1BT < 0 (3)

For future reference we define the convex sets

o3 := {XcE R^xn X = XT>}
T = {(Xi W) E e x Rr }

= {(r,X)ERxG):r>O}
*i := {(r,X,W)EOxRrXfl}

Lemma 2 ([6j) Consider the system defined in Lemma
1 and let K = WX- with(X,W) E Tthen thefollowing
holds:
1. The matrix function Q(X, W): T -. Rnxn

Q(X, W) : X[A + B2WX-i]T + [A +B2WX-7]X
+ Y-2X[Ci + D1WX- ]T[C1 +DIWX-']X
+ B1jBT (4)

is convex on T. Furthermore, there exists a static state-
feedback K = WX-' such that IITm(s)ll < 7 if and only
if there is a (X, W) E T such -that Q(X, W) < 0.
Convexity is defined in terrms of the usual ordering of sym-
metric matrices:

Q[a(Wi,XI) + (1 - a)(W21 X2)]
C aQ(Wi, XI) + (1 -Ct)Q(W21X2)-

(5)

fortwopairsofmatrices(Wi,Xi) E T and(W2,X2) E T.
2. The scalar quantity

R(X, W) = Tr{[Co + DoWX-']X[Co + DoWX-lT]}
is convex on T. Furthermore, if (X, W) E T satisfies
Q(X,W) < O, then R(X, W) > 2jTa(s)ji.

Obviously Q(X, W) represents the left-side argument of
inequality (3) with a state feedback K = WX-' in place
and Y = X E 0. Hence the parametrization K = WX-'
allows the formulation of the mixed 72/7i..-problem in a
convex setting. It should be noted that a pair (X, W) E T
that satisfies Q(X,W) < 0 implies that 1IT,4s)110 <7 .

However, Q(X, W) E * aad K = WA-' that satisfies
the 74.-bound IIT..(s)IIo. <7 does not necessarily im-
ply Q(X, W) < 0. In this case Lemma 1 states that there
is a matrix Y such that (3) is satisfied. In order to have
Q(.X, W) < 0 satisfied, we have to require additionally
that Y = .. Hence Q(X, W) < 0 is only a sufficient con-
dition for IITm(s)jloo < , not a necesary one. Note that
Lemma 2 only refers to the existence of a static state-
feedback matrix (that satisfies the X7.-bound) in terms
of Q(X, W). In the next section we will give a convex
upper bound for IIWX-'Ilp that allows us to formulate
the overall problem P1 as a convex optimization problem.

2. Convex Upper Bounds for IIWX-1 Ip

Theorem 1 Consider the Frobenius normn of the state-
feedback gain matrix KIIp IIWX'XIIp, then

Jin(TsXiW) = 42 A(rI)+ 2Tr(WTW)

Jn2(r,X,W) = !Tr(r2X i)+ 'Tr(WTW)

with r2X > I represent upper bounds for IIWX-' Ijp such
ihat

jIWX1IP .< JB1(r,X,W) < J52(T,X,W)-
Furthermore, JD'1 (r, X, W) and Jm (r, X, W) are convex
on 'P and

IY-X. (i< r2X > I)

is a convex constraint on T.

Proof: The following chain of inequalities proofs that
JB1 (r, X, W) and Jm (r, X, W) represent upper bounds
for J1WX-'1.

IIWXIIr = Tr(WX-XIWT)
. /Tr(r2X1WW)

(6)
(7)

S. t. -1-X<0

< V/r24,A(X-I)Tr(WTW) (8)
< 72 A'nSM (X - ) + 2Tr(WTW) (9)

2~~~~~
. 1 T(r2X_1M)+2Tr(WTW) (10)

provided that I - X < 0. Obviously equation (9) is
equivalent to JBI(r,X,W) and equation (10) represents
Jm (r, X, W). Equation (7) follows from (6) by the scal-
ing of 1JKIIr with r2X > I. (8) foUows from (7) using
Lemma 3 in the Appendix. (9) follows from (8) using the
arithmetic-geometric mean inequality with a = 2 and2
the facts that A.(rX-) > 0 and Tr(WTW) > 0 (see
Appendix). JBj (r, X, W) < Jm (Tr, X, W) finally follows
from A,,.(Z) < Tr(Z) for any Z E E. Convexity of
Tr(WTW) is shown im [4] (p. 556, problem 33) and the
remaining convexity proofs are provided in the Appendix
(see Theorems 4 and 5). As the sum of convex mappings is
convex, overall convexity follows. Note that 1I - X < 0
is equivalent to r2X > I. I - X < 0, however, is a
convex constraint on 0 as shown in Theorem 6.

Both bounds are continuous on 'P and JBi(r, X, W) is
obviously a tighter bound than Jr2 (r, X, W). However,
JB92 (tr, X, W) is differentiable on ' while J81 (r, X, W)
is not differentiable at points where Amaa(X71) -
Ai(X-) = A1(X-'), i $ j. This property is important in
the numerical solution of the minimization problem. De-
sign problems corresponding to these objectives can now

596



be stated as follows.

P1: Minimum effort control with an fl,-bound:

(r,X,W)E

Jpi(r, X, W) =JBi(r, X, W), i = 1 or i=2
S.t. Q(X,W)<o

-I - X <0
i2

P2: Minimum effort mixed t2/lt,.-control:

min Jn2(r,X,W)
(r,X,W)Et
Jps(r, X, W) = 16JBnr, X, W) + (1 - 13)R(X,W),
i=1 or i=2
a.t. Q(X,W)< 0

1 I-X C 0T2 -

where P E [0, 1] is a weighting factor. For P = 0 only
the W2-performance measure is taken into consideration,
with 16 = 1 the minimum effort control problem is ad-
dressed. Both minimization problems are continuous in
all involved parameters and convex on 'P.

3. A Gradient-Based Formulation

Ellipsoid or Cutting-Plane methods are applicable to this
type of problem. For a review of the advantages and dis-
advantages of these methods and descent methodcs see [2]
and references therein. In many cases, however, descent-
methods provide faster convergence rates. In this section,
we will show how to characterize the above constraints in
terms of differentiable functions that maintain the con-
vexity properties of the original constraints. Hence we
arrive at unconstrained optimization problems.

Theorem 2 Let (X, W) E T. We define a scalar mea-
sure for the 1t-bound as

JI(X, W, tf) = Tr{eQ(X,W)tI } (1)
where the scaling factor tf is introduced for algorithmic
reasons (see section 4). J(X, W, tf) has the following
properties:

1. JI(X, W, tf) is non-negative.
Given a tf, Ji(X,W tf ) is continuous, differentiable
and convex on T.

2. himtf,-.. minx,w J1(X, W,t,) = 0 * Q(X, W) <
0

Proof: Convexity follows from (6), Weyl's Theorem
and Lemma 5 (see Appendix). The latter property of
JI(X,W,tf) follows from the fact that Q(X,W) < 0 is
equivalent to Q(X, W) being stable as Q(X, W) is Her-
mitian. As TT{eQ(Xrw)tf } is the sum of the exponential
of the eigenvalues of Q(X, W)tf1, property 2. follows di-
rectly.

It can be shown that first-order gradients of JI(X, W, tf)
can be found using the matrix series expansion of the
involved matrix exponential and Kleinman's Lemma (see
e.g. [13], p.263). After some matrix algebra, the gradient
expressions are as follows.

6J4X,W,t;) = 2t,[B + DTU]eQ(X,W)tf
6W

6Jx(X,W,tf) t,[TCQ(X,W)tf + eQ(XIW)tITT]

where

T = AT+CTU
U = <-2(CX +D1W)

Other constraints such as I - X < 0 can be converted
to convex scalae functions as well. Also, at this point
we want to emphasize, that suboptimal design objectives
such as in Pl' can be accommodated in the same way
by forming a scalar penalty function. As long as the
constraint is in the form of a Hermitian matrix inequal-
ity or a scalae imequality such as JE11('r,X,W) < bK or
R(X,W) < b2, this method wil result in a penalty func-
tion with the same property as in Theorem 2 retaining
the convexity properties of the original constraint.

4. Proposed Algorithm

The problem formulation combines all the peformance
costs and the constraint penalty functions into single cost
function Jo(X W, t1).

Jo(X,W,tf) = Jp(r,X,W) + JC(r,X,W,tf) (12)
where Jp(r, X, W) is either Jpl (r, X, W) or Jp2(r, X, W)
and represents the performance objective. Jc(r, X, Wtf )
is the sum of all penalty function terms correspond-
ing to constraints including the 74.-penalty function
J,(X,W, t,). The proposed algorithm starts at a small
tf. so that initial guesses W, X and r that do not satisfy
the constraints will not result in numerical overflow prob-
lems. In a feasibility stage we optimize on Jc(r, X, W, tp,)
only, trying to find a feasible -solution W, X and r satis-
fying the relevant constraints. Once a feasible solution is
found, the performance part of the overall cost function is
optimized. tf is increased to a large value tf I such that the
Jc(r,X,W,tfL) << Jp(r, X,W,tf) (note, that in the
limit as tf -- oc all exponential terms in Jc(W,X,r,tf)
will go to zero if the according constraints are satisfied).
In fact, for large but fiite tf, Jc(r,X,W,tf) acts as a
barrier function in the optimization process.

5. Example

To illustrate our approach, consider a 4th-order system
used in [11]. It represents the scaled subsystem of the
lateral dynamics of a BOEING 767 aircraft:
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-0.0168 0.1121 0.0003 -0.5608
-0-0164 -0.7771 0.9945 0.0015
-0.0417 -3.6595 -0.9544 0

0 0 1 0
^1 \ _-0.0243

BI = B) -3.6942

Co= (0 0 1 0), Do =1
Cl = (0.01 0 0.01 0 ), =0=01.

The open-loop system is stable, the subsystem T.,()
is non-minimum phase. The minimally achievable
IIT,o(s)JII is approximately 0.007. In the following pic-
ture we plot 2 curves. Each o represents a point de-
sign solving the convex optimization problem P1 (see
(11) with JBi(r,X,W) as performance index subject to
Q(X, W) < 0 with J being the specified 7i-bound.
Each o represents a point design that solves the following
(non-convex) optimization problem.

min JD,t(r,XIW)
(r,X,W) 6*

subject to IIT..(a)IIm <'Tpee. Both curves show a typical

101

100~~~~~~~~

to-

10-2

10-3 -

0 0.2 0.4 0.8 0.8

'Tepee

behaviour for mixed performance/robustness design ob-
jectives. For large 'Teee IIKIIr is very small. If the over-
all problem becomes unconstrained in terms of the 7.-
constraint, that is if ypT.,' is chosen large enough, IIKlip
will converge to sero (if the open-loop plant is stable). For
small 'yepee on the other hand a dramatic increase in the
controller gain c be observed for both design curves.
The constraint Q(X, W) < 0 - as pointed out earlier
- is conservative in terms of the fl.-bound as it only
represents a sufficient condition for ItT=(a)II. < 'Tepee.
This fact is reflected in the difference between the two
curves. The constraint IiTo(e)II. <'T.e. yields bet-
ter performance than the constraint Q(X, W) < 0 for a
given f However, the latter constraint is donvex while
IIT (s)AIIco < 7Jpe9 is not.

6. Conclusions

During the last decade a powerful 4<,O-framework has
been developed, addressing the issue of robust stability
in the presence of norm-bounded plant perturbations. In
general, suboptimal controllers are preferred, since opti-
mal f.-controllers may exhibit some undesirable prop-
erties, such as very large gains. Since suboptimal con-
trollers are seldom unique, the extra degrees of freedom
available can be used to solve a problem of the form nom-
-inal performance with robust stability. Nominal perfor-
mance in this paper is characterized by minimum control
effort. First we have shown that, by using a controller
characterisation as in [6], this problem can be cast into a
finite-dimensional convex constrained optimization form.
In the second part transformed this optimisation problem
into a unconstrained differentiable optimization problem,
amenable to solution by gradient-based methods.
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Appendix

Theorem 3 (Weyl's Theorem, [4], p.181)
Let GC H E RSXT be Hermitian matrices, let the cigen-
values of G, H and G + H be arranged in the following
order
Ai(G) < A2(G) < ... C A(G) =Am(G)
Ai1(H) < A2(H) < ... < An(H) = Am (H)
Al(G+H) < A2(G+H) < ... < An(G+H) = Anmsa(G+H)j
then

Ai(G +H)< Ai(G) +A s(H) (13)
for all i = 1, 2,...n.
In particular we have

Let S be a nonsingular matrix such that

STX1S = Al=diag(AXli), i=1,2,.I.,n
STX2S = A2=diag(A2,i), i =1,2,...,n

Such a matrix exists for positive-definLite matrices X1 and
Xz (see (6]).

J(r + r2,XI + X2)
= )mss[(rl + m)2(XI + X2)']
= ALmo[S-1{diag( (ri + A2) )}ST]A11i + A\,i~

= Ae[S-'{dia,(gQ + A2 + tS)lS-T]
[,r2-l [- + s-r2-'A -'= Amu[r?S'AF'S-- +rS' S T

+S-diag(Oi)ST]

where 1i =- (r -r )3 ., 11=2..,n.
Thus

tmsao(G + H) < Am. (G) + Xams(H). (14)

and, for H < 0

Aj(G +C H) < A(G)
Aws(G + Hi) < Xmz(G).

Lemma 3 ([13], p.630)
Let G, H E RfXf be Hermitian matrices such that G > 0
and H > 0, then

Tr(GH) < ¾w.(G)Tr(H).

Lemma 4 ([1])
(Arithmetic-Geometric Mean Ineqsality)
Let x and y be two non-negative scalars, then

z4 ('-') < at + (I -a)y

(15)

J(rI + r2,X +X) = Amas[r?xr +rX +Q] (19)

for Q = S1'diag(ti)S-T < 0 and hence

J(r+rz,X+X )+X2) < m(r?XF1 +r2X
< Aw4(r?X() + Am(Xn?X;' )

= J(1, X1) + J(m2, X2)

The inequalities follow immediately from the above Lem-
mas and Weyl's Theorem. An alternative proof can be
constructed using Fischer's mmi-max theorem (see [8]).

Theorem 5
The function

J(r, X) = Tr(r2 X-1) (20)
is convex on 0.

(16)

for every a E (0, 1).

Lemma 5 ([5])
Let Z1 and Zz be Hermitian matrices and a E (0,1), then

TT{e[aSL+(I-a)Z2]tJ}I [Tr(eZt )][Tr(z2t )](1-a)

< aTT(e 'tf ) + (1- a)Tr(e't2f).

Theorem 4
The function

(17)

Proof: A proof can be constructed using the same tools as
above. It is essentially equivalent to the proof of Lemma
4.4 in [6] and is omitted here.

Theorem 6
Consider a mapping f: 0 -nRfXf and f given by

1fQ(r,X) =-;2I-X. (21)

Then f(r, X) is a real-analytic convex mapping on 0.

Proof: f(r,X) is affine in X. 1 is a strictly monotoin-
cally decreasing function for all T > 0. Convexity on n
follows immediately.

is convex on 0.

Proof: The proof utilises results in [6] and is very similar
to that. As J(ar, aX) = aJ(-r, X) we only have to show
that

J(r1 +r ,Xl X2) 5 J(i,X1)+J(rtX2) (18)

aSW

J(-r, X) = r2AVY'an(x-l)


