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Abstract

Optimal H,—controllers may exhibit large gains, result-
ing in large control efforts. In this paper we consider the
problem of designing a minimum gain static full state-
feedback controller such that the closed-loop transfer
function satisfies a H o —constraint. The main result of the
paper shows that, by minimising an upper bound for the
Frobenius-norm of the feedback-gain matrix and using a
parametrisation as in [6], the problem can be cast into a
finite—dimensional, convex optimisation problem. Scalar
cost—functions for the H—bound and various other con-
straints allow the application of gradient-based software
packages to these problems. Finally, we illustrate how to
apply this theory to the mixed Ha/H—control problem
with minimum control effort.

1. Introduction

Consider the following linear time-invariant system:

z = Az + Biw+ Bau
Z2 = Coz+ Dou ‘
z 20 = Ciz+ Diu (1)
y = =
% = Ky

where (A, Ba) is controllable. z € R™ represents the
states, ¥ € R™ represents the control action, z; € RP
represents variables subject to possible Hy—performance
specifications, w € R’ represents an exogenous distur-
bance and the transfer function from w to z., € R7 is
subject to the Ho—bound. Note that a non-zero direct
feedthrough matrix from w to z. can be incorporated into
this framework as well. However, without loss of general-
ity we assume this feedthrough matrix to be sero. Given
a state—feedback matrix K € R™*", the closed-loop sys-
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tem can be expressed as follows:

z2a = Aaza+ Blw
S = (A <+ BzK)zd + Biyw (2)
'Y zz2 = (Co+ DoK)zei = Cooza
Zoo = (Cl + D]_K)lcl = Cenzea

Let T3(s) denote the closed-loop transfer function from
w(s) to z2(s) and Teo(s) the closed—loop transfer function
from w(s) to zeo(s). Let T'r(.) represent the trace opera-
tor, then we can state the design objective of a minimum
control effort Hoo—problem as follows:

P1l. Find a stabilising state—feedback gain matrix K
such that [|Tw(s)|lcc < v and (an upper bound for)
|Kllr = Tr{K K™} is minimised.

We also address the problem where || K||r is not actually
minimigzed but bounded from above by a certain prespec-
ified value bx. Hence we can define an alternate criterion
as follows:

P1’. Find a stabilising state—feedback gain matrix K
such that ||[Teo(s)[lec < ¥ and || K||F < bx.

The mixed Ha/Hoo—control problem with minimum con-
trol effort can be put into the following form:

P2. Find a stabilising state—feedback gain matrix K such
that ||Tee(#)]|e < v and an upper bound for the weighted
sum of ||T3(s)||2 and || K||# is minimised.

Similar to objective P1’ we can also define design objec-
tives where bounds are imposed on ||T3(s)||2 and/or | K| »
if so desired. These cases will be outlined later. Note
that all problems involving an H.-bound have a solu-
tion if and only if the associated pure Ho—problem has
a solution as shown in [14]. Also, design strategies that
include a bound either on ||K||r as in P1’ or a bound on
||T2(s)|}2 such that || T2(s)]j2 < b2 may not have a solution
even if the corresponding pure Ho-bound problem has a
solution—~

In general all the above objectives will reduce the control
effort according to ||uljz < ||K||r|[z|la. Without proof we
state the following results.

Lemma 1 ([6], [7]) For a stable system T, the follow-
ing statements are equivalent:



1. | Teo(8)]]ae <

2. ARI: There ezists a symmetric positive—definite ma-
triz Y such that

YAT + AaY +77?YCHCenY + BiBf <0 (3)

For future reference we define the convex sets

® = {XeR™*: X=XT>0}
T = {(X,W)eexR™"}

N = {(nX)eERxO:7>0}
¥ = {{(r,X,W)eQxR™*"}

Lemma 2 ([8]) Consider the system defined in Lemma
landlet K = WX~ with(X,W) € T, then the following
holds:

1. The matriz function Q(X,W): T — R™*"

X[A+BWX T +[A+ B,WX X
+ 1X[C.+ DIWXTYICL + DIWX X
+ B.BT (4)

QAX, W)

1s convez on T. Furthermore, there exists a static state—
feedback K = WX ™! such that ||Te(s)]lec <7 if and only
if there is a (X, W) € T such that Q(X, W) < 0.
Converity is defined in terms of the usual ordering of sym-
metric matrices:

Qla(Wi, X1) + (1 - a)(Wz, X2)] (5)
< aQ(W, X1) +(1 - a)Q(Wa, X3).

for two pairs of matrices(Wy, X1) € T and (W3, X2) € T.
2. The scalar quantity

R(X,W) = Tr{[Co+DoWX']X[Co+ DoWX )7}
is convez on T. Furthermore, if (X, W) € T satisfies
Q(X, W) <0, then R(X, W) > | Ta(s)Il3-

Obviously Q(X, W) represents the lefi—side argument of
inequality (3) with a state feedback X = WX ™! in place
and Y = X € ©. Hence the parametrisation X = WX~
allows the formulation of the mixed H3/H ~problem in a
convex setting. It should be noted that a pair (X,W) € T
that satisfies Q(X,W) < 0 implies that ||To(s)|lc < 7-
However, Q(X,W) € ¥ and K = WX™! that satisfies
the Ho—bound ||Teo(s)l|ee < ¥ does not necessarily im-
ply Q(X,W) < 0. In this case Lemma 1 states that there
is a matrix Y such that (3) is satisfied. In order to have
Q(X,W) < 0 satisfied, we have to require additionally.
that Y = X. Hence Q(X, W) < 0 is only a sufficient con-
dition for ||To(2)|lco < 7, not a necessary one. Note that
Lemma 2 only refers to the existence of a static state-
feedback matrix (that satisfies the H—bound) in terms
of Q(X,W). In the next section we will give a convex
upper bound for [WX~!||z that allows us to formulate
the overall problem P1 as a convex optimization problem.

2. Convex Upper Bounds for |WX™!||r

Theorem 1 Consider the Frobenius norm of the state—
feedback gain matriz ||K||r = [|[WX }||», then

Isi(r, X, W) = -;-T’AM(X“)+%T1-(WTW)
Isa(r X, W) = %Tr(r’X‘1)+%Tr(WTW)

with 72X > I represent upper bounds for ||WX ~||p such
that

"WX-IHF S JB:\(T, X_, W) S Jm(‘r,x, W)

Furthermore, Jp1(7, X, W) and Jpz(+, X, W) are conver
on ¥ and '

HI-X<0(<=1X>1I)
is a convez constraint on ¥,

Proof: The following chain of inequalities proofs that
JB1(m, X, W) and Jpy(r, X, W) represent upper bounds
for |WX~||r.

IWX~le = /Tr(WX-1X1WT) (6)
< VTr(r X1WTW) (7
.t ;1;1 —X<o
< AT A X1TH(WTW)  (8)
< %r’Am,.(X'1)+%Tr(WTW) 9)
< %Tf(T’X'1)+%Tr(WTW) (10)

provided that 251 — X < 0. Obviously equation (9) is
equivalent to Jpi (7, X, W) and equation (10) represents
Jp2(7, X, W). Equation (7) follows from (6) by the scal-
ing of ||K||r with 7X > I. (8) follows from (7) using
Lemma 3 in the Appendix. (9) follows from (8) using the
arithmetic-geometric mean inequality with @ = 1 and
the facts that Amae(72X 1) > 0 and Tr(WTW) > 0 (see
Appendix). Jp:1 (1, X, W) < Jpa(r, X, W) finally follows
from Amaez(Z) < Tr(Z) for any Z € ©. Convexity of
Tr(WTW) is shown in [4] (p. 556, problem 33) and the
remaining convexity proofs are provided in the Appendix -
(see Theorems 4 and 5). As the sum of convex mappings is
convex, overall convexity follows. Note that 4T - X <0
is equivalent to 7?X > I. I - X < 0, however, is a
convex constraint on {1 as shown in Theorem 6.

Both bounds are continuous on ¥ and Jei{r, X, W) is
obviously a tighter bound than Jgz(r, X, W). However,
Jp2(r, X, W) is differentiable on ¥ while Jpy(r, X, W)
is not differentiable at points where Amao(X7T!) =
X(X 1) = 25(X7Y), 1 # 7. This property is importaxt in
the numerical solution of the minimisation problem. De-
sign problems corresponding to these objectives can now



be stated as follows.

P1: Minimum effort control with an H,-bound:
(7,%6' JPI (1‘, xl W)

Jei(r, X, W) = Jgi(r, X, W), i=1 or i=2

s.t. QX,W)<o0

li-x<o
po
P2: Minimum effort mixed H2/M—control:
i W
(r D Jp2(r, X, W)
JP?(Ty Xy W) = ﬁJB‘.(T) x’ W) + (1 - ﬂ)R(X’ W)'
1i=1o0r i=2
s.t. QX,W)<0
li-x<o
p

where 8 € [0,1] is a weighting factor. For § = 0 only
the Hz—performance measure is taken into consideration,
with # = 1 the minimum effort control problem is ad-
dressed. Both minimisation problems are continuous in
all involved parameters and convex on ¥,

3. A Gradient—Based Formulation

Ellipsoid or Cutting-Plane methods are applicable to this
type of problem. For a review of the advantages and dis-
advantages of these methods and descent methods see [2]
and references therein. In many cases, however, descent—
methods provide faster convergence rates. In this section,
we will show how to characterize the above constraints in
terms of differentiable functions that maintain the con-
vexity properties of the original constraints. Hence we
arrive at unconstrained optimisation problems.

Theorem 2 Let (X,W) € T. We define a scalar mea-
sure for the Hoo—bound as

Ji(X, W, ts) = Tr{e3X:W)is} (11)

where the scaling factor t; is introduced for algorithmic
reasons (see section {). Ji(X,W,t;) has the following
properties:
1. Ji(X,W,t;) is non-negative.
Given a ty, Ji(X,W, 1) is continuous, differentiable
and convez on T.

2. limtf—om minx,w J[(X, W,tf) =0 & Q(X,W) <
0

Proof: Convexity follows from (6), Weyl's Theorem
and Lemma 5 (see Appendix). The latter property of
Ji(X,W,t;) follows from the fact that Q(X,W) < 0 is
equivalent to Q(X, W) being stable as Q(X, W) is Her-
mitian. As Tr{e?X'¥)ts} is the sum of the exponential
of the eigenvalues of Q(X, W)ty, property 2. follows di-
rectly.

It can be shown that first—order gradients of J;(X, W, ;)
can be found using the matrix series expansion of the
involved matrix exponential and Kleinman’s Lemma (see
e.g. [13], p.263). After some matrix algebra, the gradient
expressions are as follows.

§Jr (X, W,t
§I(X, W, ts) 7 1) _ 34,[BF 4 DFU)AX W)y
8§Ji(X,W, 1) tf[T‘q(x.W)t, +eQ(x'W)'fTT]
§X
where
T = AT+clu
U = 7_2(01X+D1W)

Other constraints such a8 %I — X < 0 can be converted
to convex scalar functions as well. Also, at this point
we want to emphasise, that suboptimal design objectives
such as in P1’ can be accommodated in the same way
by forming a scalar penalty function. As long as the
constraint is in the form of a Hermitian matrix inequal-
ity or a scalar inequality such as Jgi1 (7, X, W) < bk or
R(X,W) < ba, this method will result in a penalty func-
tion with the same property as in Theorem 2 retaining
the convexity properties of the original constraint.

4. Proposed Algorithm

The problem formulation combines all the peformance

costs and the constraint penalty functions into single cost
function Jo(X,W, ;).

Jo(X, W, ts) = Jp(r, X, W) + Je(v, X, W,t;} (12)

where Jp(r, X, W) is either Jpy (7, X, W) or Jpa(r, X, W)
and represents the performance objective. Je(r, X, Wt;)
is the sum of all penalty function terms correspond-
ing to constraints including the H—penalty function
Ji(X,W,t;). The proposed algorithm starts at a small
t4, 50 that initial guesses W, X and 7 that do not satisfy
the constraints will not result in numerical overflow prob-
lems. In a feasibility stage we optimize on Jeo(7, X, W, 1;,)
only, trying to find a feasible solution W, X and 7 satis-
fying the relevant constraints. Once a feasible solution is
found, the performance part of the overall cost function is
optimised. t; isincreased to a large value ¢ such that the
Jo(r, X, W,tn) << Jp(r,X,W,t5) (note, that in the
limit as ¢; — oo all exponential terms in Jo(W, X, 7, t;)
will go to sero if the according constraints are satisfied).
In fact, for large but finite ¢y, Jo(r, X, W,t;) acts as a
barrier function in the optimization process.

5. Example

To illustrate our approach, consider a 4**—order system
used in [11]. It represents the scaled subsystem of the
lateral dynamics of a BOEING 767 aircraft:
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-0.0168  0.1121 0.0003 -—0.5608
—0.0164 -—0.7771 0.9945 0.0015

A=1 _00417 -36595 —0.9544 0 '
0 0 1 0
1 —0.0243
0 ~0.0634
Bi=1 9| B=| _36042 |’
1 0

Co=(0 01 0), D=1,
- G=(001 0 001 0), Dy=0.01

The open-loop system is stable, the subsystem T (s)
is non-minimum phase. The minimally achievable
[[Tew(#)|| is approximately 0.007. In the following pic-
ture we plot 2 curves. Each ¢ represents a point de-
sign solving the convex optimisation problem P1 (see
(11) with Jg1 (v, X, W) as performance index subject to
Q(X,W) < 0 with 9,pec being the specified Ho—-bound.
Fach o represents a point design that solves the following
(non—convex) optimisation problem.

(B Ipi(r, X, W)

subject t0 ||Too (8)]|cc < Vapee. Both curves show a typical

10!

10°

Xl 10—t

1072

103 T T T T |
0 0.2 0.4 0.6 0.8 1
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behaviour for mixed performance/robustness design ob-
Jectives. For large v,pec, || K||» is very small. If the over-
all problem becomes unconstrained in terms of the Hoo—
constraint, that is if 4,p.c is chosen large enough, ||K||»
will converge to sero (if the open-loop plant is stable). For
small 9,pec on the other hand a dramatic increase in the
controller gain can be observed for both design curves.
The constraint Q(X,W) < 0 — as pointed out earlier
— is conservative in terms of the H.—-bound as it only
represents s sufficient condition for [|Tw(s)]lee < Yepee.
This fact is reflected in the difference between the two
curves. The constraint ||Te(s)||eec < 7epec yields bet-
ter performance than the constraint Q(X,W) < 0 for a
given ¥,pec. However, the latter constraint is convex while
HToo(8)llco < Yspec is mot.

6. Conclusions

During the last decade a powerful H.—framework has
been developed, addressing the issue of robust stability
in the presence of norm-bounded plant perturbations. In
general, suboptimal controllers are preferred, since opti-
mal H—controllers may exhibit some undesirable prop-
erties, such as very large gains. Since suboptimal con-
trollers are seldom unique, the extra degrees of freedom
available can be used to solve a problem of the form nom-
inal performance with robust stability. Nominal perfor-
mance in this paper is characterised by minimum control
effort. First we have shown that, by using a controller
characterisation as in [6], this problem can be cast into a
finite—dimensional convex constrained optimization form.
In the second part transformed this optimisation problem
into a unconstrained differentiable optimiszation problem,
amenable to solution by gradient—based methods.
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Appendix

Theorem 3 (Weyl’s Theorem, [4], p.181)
Let G, H € R™*™ be Hermitian matrices, let the eigen-
values of G, H and G + H be arranged in the following
order
M(G) £ 33(G) £ . € An(G) = Amen(G)
AMAE) S M(H) L .. S Av(H) = Amaa(H)
AL(G+H) € 2a(G+H) < ... € An(G+H) = Amas(G+H),
then

A(G + H) < Xi(G) + Amae(H) (13)
foralli=1,2,...n.
In particular we have

Amas(G + H) € Amas(G) + Amas(H).  (14)
and, for H <0,

X(G+H)
Amee(G + H)

2(G)
Amas(G).

IA IA

Lemma 3 ([13], p.630)
Let G, H € R™*™ be Hermitian matrices such thatG > 0
and H > 0, then

Tr(GH) < Amee(G)Tr(H). (15)
Lemma 4 ([1])
(Arithmetic—Geometric Mean Ineguality)
Let 2 and y be two non-negative scalars, then

221" <az + (1 -a)y (16)
Jor every a € (0,1).

Lemma 5 ([5])
Let 2, and Z; be Hermitian matrices and a € (0,1), then

Tr{e[azl +(1-a)Z3]ty } < [T'(ezxt, )]a[Tf(elzt, )](l.—a)
< aTr(e®*) + (1 - a)Tr(e®*).
Theorem 4
The function
J(1, X) = 1 Amea(X 1) (17)

is convez on §J.

Proof: The proof utilises results in [6] and is very similar
to that. As J(ar,aX) = aJ(r,X) we only have to show
that

J(r+ 7, X+ X3) L J(n, X))+ (e, X2). (18)

Let S be a nonsingular matrix such that

sTx.s =
57X, =

A =diag(A1), 1=1,2,..,n
A: = diag(Az,,'), 1= 1, 2, oy
Such a matrix exists for positive—definite matrices X; and
Xz (see [6]).
J(n+ 7, X1+ Xa2)
= Amasl(n + 1)} (X1 + X2)7H)
2
Amea[S— {diag( (Lt ) 1 5-7
(S~ {diag( v 3577
2
AmealS~ {diag(- + T 4 p)} 7]
AL Az
Amaa[r?STIATISTT 4 725TIAST ST
+5* diag(¥:)S 7]

Ag,3=T3A "3 .
where §; = — (LR i =12 m,
Thus

J(r 472, X1+ X3) = Ame=[r? X + 2 X714+ Q] (19)
for Q@ = 5~'diag(+:)S~T < 0 and hence

I 47X+ X)) < Amee(rI X' +7EX5)
< Imaa(TRXTY) + Amae(T3 X7)

J(T1,X1)+ J(Tz,X:)

The inequalities follow immediately from the above Lem-
mas and Weyl’s Theorem. An alternative proof can be
constructed using Fischer’s min-max theorem (see [8}).

Theorem 5
The function
J(nX)=T+r*X"1) (20)

is convez on (1.

Proof: A proof can be constructed using the same tools as
above. It is essentially equivalent to the proof of Lemma
4.4 in [6] and is omitted here.

Theorem 6
Consider a mapping f : 1 = R™*™ and f given by

1
fnX)=51-X. (21)
Then f(1,X) is a real-analytic convez mapping on Q.
Proof: f(r,X)is affine in X. & is a strictly monotoni-

cally decreasing function for all + > 0. Convexity on {2
follows immediately.



