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An Exact Solution to General Four-Block Discrete-Time
Mixed Problems via Convex Optimization

H. Rotstein and M. Sznaier

Abstract—The mixed H2=H1 control problem can be motivated as
a nominal LQG optimal control problem subject to robust stability
constraints, expressed in the form of anH1 norm bound. While at the
present time there exist efficient methods to solve a modified problem
consisting on minimizing an upper boundof the H2 cost subject to the
H1 constraint, the original problem remains, to a large extent, still open.

This paper contains a solution to a general four-block mixedH2=H1
problem, based upon constructing a family of approximating problems.
Each one of these problems consists of a finite-dimensional convex
optimization and an unconstrained standardH1 problem. The set of
solutions is such that in the limit the performance of the optimal controller
is recovered, allowing one to establish the existence of an optimal solution.
Although the optimal controller is not necessarily finite-dimensional, it is
shown that a performance arbitrarily close to the optimal can be achieved
with rational (and thus physically implementable) controllers. Moreover,
the computation of a controller yielding a performance �-away from
optimal requires the solution of a single optimization problem, a task
that can be accomplished in polynomial time.

Index Terms—H2, H1, multiobjective.

I. INTRODUCTION

Consider the system illustrated in Fig. 1, where the signalsw1 2
Rp (an l2 signal) andw2 2 Rp (white noise) represent exogenous
disturbances,u 2 Rp represents the control action,�1 2 Rm

and �2 2 Rm represent regulated outputs, and wherey 2 Rm

represents the measurements. This paper is concerned with the mixed
H2=H1 control problem of finding an internally stabilizing con-
troller u(z) = K(z)y(z) such that the rms value of the performance
output �2 due to w2 is minimized, subject to the specification
kT� w (z)k1 � 
. This problem was originally introduced in [2]
and has received considerable attention since. A large portion of this
work (see for instance [2], [5], [19], [17], [7] and references therein)
addresses the related problem of minimizing anupper boundof the
H2 norm, subject to theH1 constraint. This modified problem is
based upon the intuitively plausible idea that minimizing this upper
bound should also reduce the actual objective function. Unfortunately,
numerical results [1] suggest that for some examples the solution to
the “modified” problem may yield anH2 norm larger than the one
achieved by the “central” solution to the pureH1 problem. These
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Fig. 1. The generalized plant.

examples illustrate the need to develop tools for solving theexact
H2=H1 problem.

In the state-feedback case, some partial results in this direction
were presented in [10]. By fixing instead the order of the controller,
[14] used Lagrange multipliers to find necessary conditions for opti-
mality. Unfortunately, this approach is prone to numerical difficulties.
An alternative approach is to use the Youla parameterization to recast
theH2=H1 problem as aninfinite-dimensional convex optimization
[3]. Truncation then yields a finite-dimensional problem which is,
at least in principle, tractable [4]. At the moment it is not clear
whether one can actually solve the resulting optimization for any
sensible problem and how the choice of controller order affects the
achievable performance.

The approach pursued in this paper evolves from [16]. The
extension to a general multi-input/multi-output (MIMO), four-block
problem is not straightforward but can be achieved by using some of
the ideas in [12] and [15]. As in [16], it will be shown that asub-
optimal solution to the mixedH2=H1 problem can be obtained by
solving a finite-dimensional convex optimization problem followed
by an unconstrainedH1 minimization. Additional results include the
existence of an optimal solution, the convergence in theH2 topology,
and the fact that the optimal performance achieved overH1 and the
smaller (and physically more meaningful) spaceAo is the same.

II. PRELIMINARIES

A. Notation

L1 denotes the Lebesgue space of complex-valued matrix func-
tions which are essentially bounded on the unit circle, equipped
with the normkG(z)k1

:
= ess supjzj=1 ��(G(z)), where�� denotes

the largest singular value. ByH1(H�1) we denote the subspace
of functions inL1 with a bounded analytic continuation outside
(inside) the unit disk.RH1 denotes the subspace of real rational
transfer matrices ofH1 andAo denotes the subset ofH1 functions
continuous in the unit circle. The norm onH1 is defined by
kG(z)k1

:
= ess supjzj>1 ��(G(z)). By H2 we denote the space

of complex-valued matrix functionsG(z) with analytic continuation
outside the unit disk and square integrable there, equipped with the
usualH2 norm

kGk22
:
= sup


>1

1

2� jzj=


jG(z)j2F
dz

z

wherek � kF denotes the Frobenious norm.
Also of interest is the Banach spaceH1;� of transfer matrices in

H1 which have analytic continuation outside the disk of radius�;
0 < � < 1 equipped with the normkG(z)k1;�

:
= supjzj>� ��(G(z)).

Similarly, the spaceH2;� is defined as the Banach space of transfer
matrices having analytic continuation outsidejzj = � and square
integrable there, equipped with the norm

kGk22;�
:
= sup


>�

1

2� jzj=


jG(z)j2F
dz

z
:
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Given G(z) 2 H1 one can write the formal seriesG(z) =
1

i=0
Giz

�i. The series converges pointwise for eachjzj > 1 and
uniformly outside any disk with radius larger than one. The projection
operatorPn : H1 ! RH1 is defined by

Pn(G(z))
:
=

n�1

i=0

Giz
�i: (1)

It is a standard result thatG 2 H2 if and only if 1

i=0
kGik

2

F <1.
In this case, by Parseval’s theoremkGk2 = 1

i=0
kGik

2

F , and the
series converges also in theH2 norm.

B. The MixedH2=H1 Control Problem

Assume that the generalized discrete-time plantP is finite-
dimensional and linear time invariant. LetT (z) and S(z) denote
the closed-loop transfer matrices fromw1 to �1 and fromw2 to �2,
respectively, obtained when connecting a stabilizing controller from
y to u. Using the Youla parameterization, the set of all such transfer
matrices can be parameterized by [18]

T (z) = T11(z)� T12(z)Q(z)T21(z)

S(z) = S11(z)� S12(z)Q(z)S21(z) (2)

where Tij ; Sij are stable transfer matrices, andQ(z) 2 H1 is
the “free parameter” in the parameterization. In order to stress the
dependence onQ, the notationT (Q); S(Q) is sometimes used in the
sequel. The parameterization allows for precisely stating the mixed
H2=H1 problem as follows.

Problem 1 (MixedH2=H1 Control Problem): Find the optimal
value of the performance measure

�
:
= inf

Q2H
fkS11 � S12QS21k2

such thatkT11 � T12QT21k1 � 1g (3)

and, given� > 0, a controllerQ such thatkS(Q)k2 � � + � and
kT (Q)k1 � 1.

Lemma 1: Let S12; S21 have generically full column and row
rank, respectively, and assume that a solution to the mixedH2=H1
optimal control problem exists. Then this solution is unique.

Proof: Let Q1 andQ2 solve Problem 1, and assume by con-
tradiction thatQ1 6= Q2. By the strict convexity of theH2 norm
S11 � S12Q1S21 = S11 � S12Q2S21. Since by assumptionS12 has
full column rank andS21 has full row rank, necessarilyQ1 = Q2.

In general, Problem 1 admits a minimizing solution inH1
but not inAo [8], implying that the optimal controller cannot be
approximated by a rational transfer function. Moreover, the optimal
closed-loop system is in general not exponentially stable. From an
engineering standpoint, these undesirable properties motivate the
following problem.

Problem 2 (MixedH2=H1 Control Problem inAo): Find the
optimal value of the performance measure

�R
:
= inf

Q2A
fkS11 � S12QS21k2

such thatkT11 � T12QT21k1 � 1g (4)

and, given� > 0, find a controllerQ 2 Ao such thatkS(QR)k2 �
�R + � and kT (QR)k1 � 1.

In the sequel we solve these problems by constructing an optimiz-
ing sequence of controllersfQig such that the correspondingT (Qi)
satisfieskT (Qi)k1 � 1 and such thatkS(Qi)k2! �. We begin by
reviewing some mathematical background required for establishing
convergence. All the material is taken from [9] and included here for
ease of reference.

C. Preliminaries on Complex Analysis

Let ffng denote a sequence of complex-valued functions, each of
whose domain contains an open subsetU of the complex plane. The
sequenceffng converges normallyin U to f if ffng is pointwise
convergent tof in U and this convergence is uniform on each
compact subset ofU . The relevance of normal convergence is
highlighted by the following theorems.

Theorem 1: Suppose that each function in a sequenceffng is
analytic in an open setU and that the sequence converges normally
in U to the limit functionf . Thenf is analytic inU .

A family F of functions analytic inU is said to benormal if each
sequenceffng from F contains at least one normally convergent
subsequence. The following result is a corollary of the classical
Montel’s theorem.

Theorem 2: Let F = ffng be a family of functions analytic in
an open setU . If kfnk1 � 1 for eachfn 2 F , thenF is a normal
family in U .

III. PROBLEM SOLUTION

A. Problem Transformation

It is a standard result that the parameterization of all stabilizing
controllers can be selected so thatT12; T21 are inner and co-inner,
respectively, and there existT12?; T21? such that[T12 T12?] and
[ T

T
] are unitary. As a consequence, the equality

kT11 � T12QT21k1 =
G11 �Q� G12

G21 G22 1

holds, whereG = [
G G

G G
] is a stable transfer matrix. In the sequel

it is assumed thatG has a state-space realization of the form

G =
Ae Ba Bb

Ca Daa Dab

Cb Dba Dbb

(5)

and, for simplicity the notation

Be = [Ba Bb]; Ce =
Ca

Cb

Der = [Daa Dab]; Dec =
Daa

Dba

(6)

is used. With these definitions Problem 1 may be reformulated as
follows.

Problem 3: ComputeQ 2 H1 such thatk
G �Q G

G G
k1 � 1

and kSk2 is minimized.

B. Computation of a Solution overH1

In this section, a sequence of finite-dimensional convex optimiza-
tion problems is introduced. Thenth problem hasO(n) variables,
and its optimal cost�n satisfies�n � �. The sequence of problems
approximates Problem 1 in the sense that�n ! �, and the
partial solutions converge to the optimal solution asn ! 1. The
formulation of the approximating problems requires some results from
[12] which are reviewed next. Consider the Riccati equations

X̂ = AeX̂A
T
e +BeB

T
e + AeX̂C

T
a +BeD

T
er

� I �DerD
T
er � CaX̂CT

a

�1
CaX̂AT

e +DerB
T
e (7)

Ŷ = AT
e Ŷ Ae + CT

e Ce + AT
e Ŷ Ba + CT

e Dec

� I �DT
ecDec �BT

a Ŷ Ba
�1

BT
a Ŷ Ae +DT

ecCa :

From [12], there exists aQ satisfying thestrict H1 constraint if
and only if there exist positive-definite solutionŝX and Ŷ to these
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Riccati equations such that�(X̂Ŷ ) < 1. This is assumed in what
follows. For ease of notation, letx

:
= X̂1=2; y

:
= Ŷ 1=2.

Theorem 3: Let G have a state-space realization as in (5), and
let Qn

FIR(z) = n�1
i=0 Qiz

�i. Then there exists aQn
tail(z) 2 H1

such that
G11 �

n�1
i=0 Q

T
i z

i � znQn
tail(z)

� G12

G21 G22
1

� 1

if and only if ��(W (Qn)) � 1, where we have (8), as shown at the
bottom of the page.

Proof: For a proof see [12, Th. 8].
Using the projection operator defined in (1), consider the opti-

mization problem
Problem 4:

�n = min
[Q Q ��� Q ]

Pn S11(z)� S12(z)

n�1

i=0

Qn
i z
�i S21(z)

2

s.t. ��(W (Qn)) � 1:

The numbern of coefficients inQn
FIR(z) =

n�1
i=0 Q

n
i z
�i is called

the “horizon” in the sequel.
Lemma 2: Problem 4 is convex and�n � �n+1 � �.

Proof: Convexity is obvious. To prove the bounds, note that if
Qn+1

FIR (z) = n
i=0Q

n+1
i z�i is feasible for Problem 4 with horizon

n+1, thenPn(Q
n+1
FIR ) is feasible for Problem 4 with horizonn. Also

Pn S11 � S12Pn Qn+1
FIR S21 2

� Pn+1 S11 � S12Q
n+1
FIRS21 2

� S11 � S12QS21 2
:

A similar argument shows that�n � � for everyn.
As a consequence of Lemma 2,�n ! �lim. The equality�lim = �

is established next.
Theorem 4: Given a solutionQn

FIR to Problem 4, selectQn
tail as

in Theorem 3 and define

Qn(z)
:
= Qn

FIR(z) + z�nQn
tail(z): (9)

Assume that a feasible solution to Problem 1 exists, andS12; S21 are
generically full column and row rank, respectively. Then�n " � and
the sequencefQn(z)g converges normally to a solution of Problem 1.

Proof: See Appendix A.
Since the sequencefQng converges normally, so does the se-

quence of truncated closed-loop transfer matricesSn
:
= Pn[S11 �

S12Q
nS21]. Moreover, it can also be easily shown that the sequence

Sn is a Cauchy sequence in theH2 topology and hence converges
in theH2-norm. However, since normal convergence does not imply
uniform convergence, one cannot conclude thatQn will provide an
approximate solution to the problem, even ifn is taken very large.

IV. COMPUTATION OF A SOLUTION OVER RH1

In this section, an optimization problem involving only afinite
number of elements of the impulse response ofS is presented. This
problem can be used to compute a rational�-suboptimal solution to
the mixedH2=H1 problem. To establish this fact, it is first shown
that Problem 2 can be solved by considering a sequence of modified
problems. Then, it is shown that the optimal cost achievable with
controllers inRH1 can be made arbitrarily close to the optimum
over H1 (i.e., �R = �).

A. A Change of Variables

Consider a real rational transfer matrixF (z), and define the
mapping

F�(z)
:
= F (�z); 0 < � < 1 (10)

which amounts to a change of variablesz ! � � z. Note thatF (z)
has a pole atzo if and only if F�(z) has a pole atzo=�, and henceF�
is analytic outside the unit disk if and only ifF is analytic outside
the disk of radius�.

Lemma 3: Let K(z) be a controller such thatK�(z) internally
stabilizesP�(z). ThenK(z) internally stabilizesP (z); kT�k1 �
kTk1; kS�k2 � kSk2; andkT�(z)k1 = kT (z)k1;�.

Proof: Internal stability follows from the previous observation.
The H1 bound follows from the Maximum Modulus theorem,
while theH2 bound can be obtained from the expansionS�(z) =
1

i=0 Si=�
i z�i. The equalitykT�(z)k1 = kT (z)k1;� holds by

definition.
In the sequel,� is selected close enough to one so thatTij andSij

are analytic outside the disk of radius�.

B. A ModifiedH2=H1 Problem

Consider the following modifiedH2=H1 problem.
Problem 5 (ProblemH2=H1;�): Find

��
:
= min

Q2RH
fkS11 � S12QS21k2

such thatkT11 � T12QT21k1;� � 1g (11)

and the corresponding controllerQ�, where� denotes closure.
Note that the setfQ 2 RH1 : kT11 � T12QT21k1;� � 1g is

compact in theH1 topology and thusQ� is well defined. Comparing
the solution to this optimization problem for increasing� with the
solution to Problem 1 gives the following result.

Theorem 5: Given � > 0 there exists�; 0 < � < 1 such that
�� � � + �.

Proof: See Appendix B.

W (Qn) =

yAn
e x yAn�1

e Ba � � � yAeBa yBa yAn�1
e Bb yAn�2

e Bb � � � yAeBb yBb

CaA
n�1
e x CaA

n�2
e Ba � � � CaBa Daa CaA

n�2
e Bb CaA

n�3
e Bb � � � CaBb Dab

CaA
n�2
e x CaA

n�3
e Ba � � � Daa 0 CaA

n�3
e Bb CaA

n�4
e Bb � � � Dab 0

...
...

...
. . .

...
...

...
. . .

...
...

Cax Daa 0 � � � 0 Dab 0 0 � � � 0

CbA
n�1
e x CbA

n�2
e Ba � � � CbBa Dba CbA

n�2
e Bb CbA

n�3
e Bb � � � CbBb �Qt

0

CbA
n�2
e x CbA

n�3
e Ba � � � Dba 0 CbA

n�3
e Bb CbA

n�4
e Bb � � � �Qt

0 �Qt
1

...
...

...
. . .

...
...

...
. . .

...
...

Cbx Dba 0 � � � 0 �Qt
0 �Qt

1 �Qt
2 � � � �Qt

(n�1)

(8)
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Corollary 1:

1) �� � �R.
2) The optimal cost of Problems 1 and 2 are equal, i.e.,� = �R.

Proof: SinceQ� 2 RH1;�, it can be approximated arbitrarily
and uniformly by a transfer matrix inRH1 (e.g., by the partial
Cesaro sums of its Taylor expansion). LetQ̂� be a real rational
approximation toQ�. From Lemma 3,Q̂� is feasible for Problem 2
so that 1) follows. To show 2), note that�� � �R � � and, from
Theorem 5, a� can be found so that�� � � + � for any given
� > 0.

Thus, although the solution of theH2=H1 problem is not gener-
ically in Ao, the infimum achievable with controllers inRH1 is
equal to the optimal cost overH1.

Finally, we show convergence of the closed-loop systems and of
the controllers in theH2 topology.

Lemma 4: Consider a sequence0 < �i " 1. Then, the sequence of
corresponding closed loopsSi

:
= S11 � S12Q� S21 converges in the

H2 topology. Moreover, ifS12 andS21 have generically full column
and row rank, respectively, on the unit circle, then the sequence of
controllers converges in theH2 topology, i.e.,kQ� �Qlimk2 ! 0.

Proof: SincekSik2 # �, it follows thatQ� is an optimizing
sequence. Thus, from [8, Lemma 3] it follows that the sequenceSi
is Cauchy in theH2 topology. To complete the proof note that if
S12 (S21) has full column (row) rank on the unit disk, it follows
(from continuity) thatS12;� (S21;�) has full column (row) rank for
all � larger than some~�. Hence,Q� andQ�, the optimal solution to
Problem 1, are unique. The fact thatkQ� � Q�k2 ! 0 as � ! 1
follows now from [8, Lemma 3] and the equality� = �R.

C. Computing an Approximate Solution

From the Proof of Theorem 5, if a suboptimality level� > 0 is
given, then for a� which can be computed in terms of the data, the
solutionQ� to Problem 5 satisfies�� � � + �. Moreover,Q� can
be approximated arbitrarily close by

Qn
� (z) =

n�1

i=0

Qiz
�i + z�nQn

tail(z) (12)

whereQn
tail is defined in Theorem 3 and where(Q0 Q1 � � � Qn�1)

solves the followingfinite-dimensionalconvex optimization problem:

�n� = min
[Q Q ��� Q ]

Pn S11(z)� S12(z)

n�1

i=0

Qiz
�iS21(z)

2

s.t. ��(W�(Qn)) � 1

wheren is larger than some precomputable boundN�. To see this,
solve Problem 5 for a fixed� < 1. ThenkT11�T12QnT21k1;� � 1.
Moreover, by using the change of variables introduced in Section IV-
A so thatT12;� and T21;� are inner and co-inner respectively over
jzj = �, we have thatkQnk1;� � 1 + kT11k1;�. Hence

kS11 � S12Q
nS21k1;� � kS11k1;�

+ kS12k1;�(1 + kT11k1;�)kS21k1;� < M

for some constantM . ExpandingS11 � S12Q
nS21 =

1

i=0 Siz
�i,

it follows that ��(Si) � �i � M , which yields the following bound
for the truncation error:

k(I �Pn)(S11 � S12Q
nS21)k2 � constant� M�np

1� �2
(13)

where the constant depends only on the dimensions ofS11. By taking
n sufficiently large, sayn � N� ; �

n
� approximates�� as closely as

(a)

(b)

Fig. 2. (a) Performance�n andkS11 � S12Q
nS21k2 as a function of the

horizon length. (b)kT11�T12QnT21k1 as a function of the horizon length.

desired. Note, though, thatN� is usually very large and hence may
not be useful for computations. This difficulty can be circumvented by
combining the upper bound introduced in this section with the lower
bound introduced in Section III-B to obtain sequences of suboptimal
and superoptimal solutions.

V. NUMERICAL EXAMPLE

In this section we present a numerical example to illustrate the
results discussed above. LetP be as in(S) with

A =
1:1314 1:1815 �:1791
�:9064 :2005 :1689
�:5154 �:3643 :7966

D =

�:0621 �:0507 �:0339 �:0369
�:0060 :0297 �:1171 :0050
�:0197 :0897 �:0834 �:1230
�:1227 :0144 :1279 :0687

B1 =
:0142 :1967
�:0043 :0906
:0519 �:0999

B2 =
�:0715
�:1253
:0104

B3 =
�:0631
�:2842
�:1383

C1 =
:1612 �:0574 �:2380
:2318 :1363 �:0082

C2

C3

=
:1173 :0853 �:0379]
�:0815 :1149 �:1224

:

Minimizing kTk1 and using the central solution giveskT �k1 =
:872; kSk2 = 1:069, while the minimization of theH2-norm gives
kTk1 = 2:166; kS�k2 = :372. The value of�n defined in
Theorem 3 for increasing values ofn is shown in Fig. 2(a), together
with the actual norm ofkS11 � S12Q

nS21k2. For short horizons,
�n is a poor estimate of the two-norm and hence the two values
are far apart; however, forn as small as 20, the two values become
almost indistinguishable. Note also that�n increases monotonically.
Fig. 2(b) shows the value ofkT11 � T12PnfQ

ngT21k1 also for
increasing horizon lengths. Again, the norm is significantly larger
than unity for small values ofn and decreases until satisfying theH1
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TABLE I
COMPARISON OF DIFFERENT �’s

constraint with less than 1% tolerance forn = 50. At this point the
algorithm was stopped, with�50 = :49. The corresponding 52-order
controller was approximated by considering a balanced truncation
of the Cesaro sumsQn

c (z) = n�1
i=0 (1 � i=n)Qn

i z
�i [6], yielding

an 11th-order admissible controller achieving virtually identicalH2-
performance. Further model reduction yielded the following third-
order controller:

kr(z) =
5:0473z3 + 9:1395z2 + 4:6276z + 1:2564

z3 + :9548z2 + :4584z + :1811
: (14)

The corresponding values ofkTk2 and kSk1 are kTk2 = 0:4905
andkSk1 = 0:989. Finally, Table I shows the performance achieved
for different values of�.

VI. CONCLUSION

In this paper a solution to a general mixedH2=H1 control
problem has been presented. As opposed to most of the literature on
the subject, theH2 norm, rather than an upper bound, is minimized.
The main idea is to construct a family of optimization problems
and then show that the set of solutions thus generated converges
to a solution of the original problem. At each step, the optimization
problems are convex and have a structure which allows for finding a
solution in polynomial time [11], leading to computationally tractable
problems. While these computations are not inexpensive, they are
cheaper than those required by other currently available methods. In
addition, our approach provides additional new insight into some
properties of the optimal solutions. This includes the fact that,
although an optimal solution is not in general “well-behaved” since
it is not continuous on the border of the region of stability (and
thus the resulting closed-loop system is not exponentially stable),
the optimal performance can be approached arbitrarily close by a
real-rational controller. Moreover, from a practical standpoint, our
approach allows for finding exponentially stable suboptimal solutions
with a prescribed degree of stability, by selecting� < 1 in Problem 5,
or an � suboptimal solution. An extension of these ideas to more
general objective functions can be found in [13]

APPENDIX A: PROOF OF THEOREM 4

It suffices to show that a feasible solution to Problem 1 achieving
anH2 cost of�lim exists. Consider the sequence of functionsfQng.
SincekT11�T12Q

nT21k1 � 1 and sinceT12 andT21 are inner and
co-inner, respectively, it follows that

kQnk1 = kT12Q
nT21k1 � 1 + kT11k1: (A1)

From Theorem 2 this implies thatfQng is a normal family. LetQlim

denote the limit function of some normally convergent subsequence.
It is first claimed thatkT11 � T12Q

limT21k1 � 1. To see this,
consider
 > 1 and� > 0. SinceQn(z) converges normally toQlim

in jzj > 1, it follows that there existsN such that for eachn � N;
��(Qn(z)� Qlim(z)) � � for any jzj � 
. Then

��(T11(z)� T12(z)Q
lim(z)T21(z))� 1 + �

and, since� is arbitrary

��(T11(z)� T12(z)Q
lim(z)T21(z))� 1

for each jzj � 
. Thus

kT11(z)� T12(z)Q
lim(z)T21(z)k1

= sup
jzj>1

��(T11(z)� T12(z)Q
lim(z)T21(z))� 1: (A2)

To show thatkS11 � S12Q
limS21k2 = �lim, consider an arbitrary

� > 0 and take
 > 1. SinceQlim is also anH2 function, there exists
an N1(
) such that for everyn � N1

kS11 � S12Q
limS21k2;


� kPn(S11 � S12Q
limS21)k2;
 + �=2: (A3)

Normal convergence ofQn implies that there exists anN2(
) such
that kQn � Qlimk2;
 � �=2 (this follows from the fact that a fixed
multiple of theH1 norm over-bounds theH2 norm). Then, for every
n � maxfN1; N2g we have that

kS11 � S12Q
limS21k2;
 � kPn(S11 � S12Q

nS21)k2;


+ kQlim �Qnk2;
 + �=2

� �lim + �=2 + �=2: (A4)

Since � is arbitrary, it follows that

kS11 � S12Q
limS21k2;
 � �lim 
 > 1:

Hence, from the definition of theH2 norm it follows that

kS11 � S12Q
limS21k2 � �lim:

Suppose now that the whole sequencefQng is not converging. Then
(see, e.g., [9, p. 298]) there exists another subsequence, sayfQm g,
which converges normally to a different limit function, sayQ̂lim. But
then Q̂lim solves Problem 1 and hence by Lemma 1Qlim = Q̂lim.
This contradicts the assumption that the whole sequence is not
converging.

APPENDIX B: PROOF OF THEOREM 5

From continuity arguments it follows that there exists0 < �� < 1
such that for some constants�ij ; ��ij ; �, the following inequalities
hold for each� > ��:

kTij � Tij;�k1 � �ij(1� �)

kTij � Tij;�k2 � ��ij(1� �)

kS12;�k1 � �kS12k1:

Recall that� and �� are defined by

�
:
= inf

Q2H
fkS11 � S12QS21k2

such thatkT11 � T12QT21k1 � 1g (B1)

��
:
= inf

Q2H
fkS11 � S12QS21k2

such thatkT11;� � T12;�Q�T21;�k1 � 1g: (B2)

Let � > 0 be given. Since by Theorem 4 an optimal solution to (B1)
exists, and by assumption a transfer matrix satisfying the strictH1
inequality also exists, then for someQ 2 H1

kT11 � T12QT21k1 � 
 < 1

kS11 � S12QS21k2 � �+ �=2:

It follows from the first inequality thatkQk1 < 1 + kT11k1. It is
claimed thatQ1=�(z)

:
= Q(z=�) is a suboptimal solution to (B2). To

see this, note that by the triangular inequality

kT11;� � T12;�QT21;�k1

� kT11 � T12QT21k1 + kT11 � T11;�k1

+ kT12Q(T21 � T21;�)k1 + k(T12 � T12;�)QT21k1

� 
 + [�11 + (�21 + �12)(1 + kT11k1)](1� �):
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Using Lemma 3 and a similar argument we have that

kS11 � S12Q1=�S21k2 � �+ �=2 + [��11 + (��21�kS12k1

+ ��12kS21k1)(1 + kT11k1)](1� �):

Selecting� such that

[�11 + (�21 + �12)(1 + kT11k1)](1� �) < 1� 


and

[��11 + (��21�kS12k1 + ��12kS21k1)(1+ kT11k1)](1� �) � �=2

we have that kT11;� � T12;�QT21;�k1 < 1 and kS11 �
S12Q1=�S21k2 � �. ThusQ1=� is feasible for (B2) and achieves a
performance of at most� + �. This establishes the claim and the
theorem, since necessarily�� � � + �.
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Optimal Random Perturbations for Stochastic
Approximation Using a Simultaneous
Perturbation Gradient Approximation

Payman Sadegh and James C. Spall

Abstract—The simultaneous perturbation stochastic approximation
(SPSA) algorithm has recently attracted considerable attention for chal-
lenging optimization problems where it is difficult or impossible to obtain
a direct gradient of the objective (say, loss) function. The approach is
based on a highly efficient simultaneous perturbation approximation to
the gradient based on loss function measurements. SPSA is based on
picking a simultaneous perturbation (random) vector in a Monte Carlo
fashion as part of generating the approximation to the gradient. This
paper derives the optimal distribution for the Monte Carlo process. The
objective is to minimize the mean square error of the estimate. The
authors also consider maximization of the likelihood that the estimate be
confined within a bounded symmetric region of the true parameter. The
optimal distribution for the components of the simultaneous perturbation
vector is found to be a symmetric Bernoulli in both cases. The authors
end the paper with a numerical study related to the area of experiment
design.

Index Terms—Experiment design, optimal probability distribution,
optimization, SPSA, stochastic approximation.

I. INTRODUCTION

Consider the problem of determining the value of ap-dimensional
parameter vector to minimize a loss functionL(�), where only
measurements of the loss function are available (i.e., no gradient
information is directly available). The simultaneous perturbation
stochastic approximation (SPSA) algorithm has recently attracted
considerable attention for challenging optimization problems of this
type in application areas such as adaptive control, pattern recognition,
discrete-event systems, neural network training, and model parameter
estimation; see, e.g., [1]–[6].

SPSA was introduced in [7] and more thoroughly analyzed in [8].
The essential feature of SPSA—which accounts for its power and
relative ease of use in challenging multivariate optimization prob-
lems—is the underlying gradient approximation that requires only two
loss function measurements, regardless of the number of parameters
being optimized. Note the contrast of two function measurements
with the 2p measurements required in classical finite difference-
based approaches (i.e., the Kiefer–Wolfowitz SA algorithm). Under
reasonably general conditions, it was shown in [8] that thep-
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