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Fig. 1. The generalized plant.

examples illustrate the need to develop tools for solving ekact

An Exact Solution to General Four-Block Discrete-Time  H{2/Ho problem.

Mixed HQ/H Problems via Convex Optimization In the state-feedback case, some partial results in this direction
i were presented in [10]. By fixing instead the order of the controller,

[14] used Lagrange multipliers to find necessary conditions for opti-

mality. Unfortunately, this approach is prone to numerical difficulties.

An alternative approach is to use the Youla parameterization to recast
Abstract—The mixed Hs/Hoo control problem can be motivated as thez/H- problem as arnfinite-dimensional convex optimization

a nominal LQG optimal control problem subject to robust stability [3]. Truncation then yields a finite-dimensional problem which is,

constraints, expressed in the form of arf{~. norm bound. While at the  at |east in principle, tractable [4]. At the moment it is not clear

present time there exist efficient methods to solve a modified problem \\hether one can actually solve the resulting optimization for any

consisting on minimizing an upper boundof the H2 cost subject to the . .

. constraint, the original problem remains, to a large extent, still open. sensible problem and how the choice of controller order affects the
This paper contains a solution to a general four-block mixedH>/H.. achievable performance.

problem, based upon constructing a family of approximating problems. The approach pursued in this paper evolves from [16]. The

Each one of these problems consists of a finite-dimensional convexeytension to a general multi-input/multi-output (MIMO), four-block

optimization and an unconstrained standard /.. problem. The set of . . . .
solutions is such that in the limit the performance of the optimal controller problem is not straightforward but can be achieved by using some of

is recovered, allowing one to establish the existence of an optimal solution. the ideas in [12] and [15]. As in [16], it will be shown thatsab-
Although the optimal controller is not necessarily finite-dimensional, itis  optimal solution to the mixedH./H.. problem can be obtained by
shown that a performance arbitrarily close to the optimal can be achieved solving a finite-dimensional convex optimization problem followed

with rational (and thus physically implementable) controllers. Moreover, ., o nconstrainett - minimization. Additional results include the
the computation of a controller yielding a performance e-away from

optimal requires the solution of a single optimization problem, a task €Xistence of an optimal splution, the convergence ittheopology,
that can be accomplished in polynomial time. and the fact that the optimal performance achieved @&vgrand the
smaller (and physically more meaningful) spade is the same.

H. Rotstein and M. Sznaier

Index Terms—H>, H.o, multiobjective.

Il. PRELIMINARIES
|I. INTRODUCTION

Consider the system illustrated in Fig. 1, where the signalse A. Notation
RP* (an!” signal) andw, € R?? (white noise) represent exogenous £> denotes the Lebesgue space of complex-valued matrix func-
disturbancesy € R represents the control actiod.. € R™' tions which are essentially bounded on the unit circle, equipped
and(; € R™ represent regulated outputs, and wheree R™¢  with the norm||G(z)||oc = esssup,.,—, 7(G(z)), wheres denotes
represents the measurements. This paper is concerned with the mikedlargest singular value. B¥{..(HY) we denote the subspace
H2/Hoo control problem of finding an internally stabilizing con-of functions in £°° with a bounded analytic continuation outside
troller u(z) = K (z)y(z) such that the rms value of the performancginside) the unit disk RH.. denotes the subspace of real rational
output ¢» due to w» is minimized, subject to the specificationtransfer matrices of{.. and.A, denotes the subset &f.. functions
1T o woe (2)|lsc < . This problem was originally introduced in [2] continuous in the unit circle. The norm oM., is defined by
and has received considerable attention since. A large portion of ti§(z)|.. = esssup|.|», 7(G(2)). By H2 we denote the space
work (see for instance [2], [5], [19], [17], [7] and references therei)f complex-valued matrix function§(z) with analytic continuation
addresses the related problem of minimizingugper boundof the outside the unit disk and square integrable there, equipped with the
‘H2> norm, subject to thé{., constraint. This modified problem is usual 4> norm
based upon the intuitively plausible idea that minimizing this upper 5 . 1 f 5 d
bound should also reduce the actual objective function. Unfortunately, G2 = T O G()lF =
numerical results [1] suggest that for some examples the solution to ' ‘,:H/
the “modified” problem may yield aftt> norm larger than the one Wherel|- |l denotes the Frobenious norm.

achieved by the “central” solution to the pute.. problem. These Also of interest is the Banach spaté. s of transfer matrices in
H. which have analytic continuation outside the disk of radius

< 6 < 1 equipped with the noriG () [|eo,s = sup.|5s 7(G(2)).
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Given G(z) € Ho. one can write the formal serie§(z) = C. Preliminaries on Complex Analysis

i—o Giz™". The series converges pointwise for edch> 1 and | et {#,} denote a sequence of complex-valued functions, each of
uniformly outside any disk with radius larger than one. The projectiQQnose domain contains an open suliSetf the complex plane. The

operatorPy : Hoo — RHo is defined by sequence{ f,} converges normallyn U to f if {f,} is pointwise
n—1 convergent tof in U and this convergence is uniform on each
Po(G(2)) = ZGifi- (1) compact subset of/. The relevance of normal convergence is
i=0 highlighted by the following theorems.

Theorem 1: Suppose that each function in a sequergg} is
analytic in an open sdf and that the sequence converges normally
in U to the limit function f. Then f is analytic inU.

A family F of functions analytic i/ is said to benormalif each
sequencef f,,} from F contains at least one normally convergent
B. The MixedH:/H.. Control Problem subsequence. The following result is a corollary of the classical

Assume that the generalized discrete-time pldntis finite- Montel's theorem.
dimensional and linear time invariant. L&t(z) and S(z) denote ~ Theorem 2:Let 7 = {f.} be a family of functions analytic in
the closed-loop transfer matrices fram,, to ¢, and fromws to ¢, an open set’. If || f.||~ < 1 for eachf, € F, thenF is a normal
respectively, obtained when connecting a stabilizing controller frofgmily in U.

y to u. Using the Youla parameterization, the set of all such transfer
matrices can be parameterized by [18] Ill. PROBLEM SOLUTION

T(2)=Ti(2) — Ti2(2)Q(2)To1(2)
S(2) = 811(2) = S12(2)Q(2) 521 (2) @

Itis a standard result tha&t € H- if and only if -2 [|G:[|F < <.
In this case, by Parseval's theord[G||> = > .2, ||G;||Z, and the
series converges also in tfié, norm.

A. Problem Transformation

It is a standard result that the parameterization of all stabilizing
where T;;, S;; are stable transfer matrices, ad{(z) € Ho is controllers can be selected so tHat, 75 are inner and co-inner,
17 1] ) “~, qe]

the “free parameter” in the parameterization. In order to stress tF%sZpectively, and there exiga1, Toi1 such thafTi, Tiz1] and

dependence ofp, the notatiorll (@), S(Q) is sometimes used in the Tmi] are unitary. As a consequence, the equality

sequel. The parameterization allows for precisely stating the mixed G —Q~ Gio
Hs2/Ho problem as follows. [1T31 = Th2QTn ||l = G G
Problem 1 (MixedH./H-. Control Problem): Find the optimal
value of the performance measure holds, where& = [?“ 212] is a stable transfer matrix. In the sequel
721 22
= inf {||Si1 — S12QS2 2 it is assumed thats has a state-space realization of the form
EH oo
449, Ba Bb
such that“TM - leQT21||OQ S 1} (3) G=|c, D.. Du (5)
and, givene > 0, a controller@ such that||S(Q)||z < ¢+ ¢ and ¢y Dia D
1T~ < 1. and, for simplicity the notation
Lemma 1: Let Si2, S21 have generically full column and row C
rank, respectively, and assume that a solution to the nitgdH .. B. =[B. B, C.= {Cﬂ
optimal control problem exists. Then this solution is unique. ’ (6)
Proof: Let Q1 and Q- solve Problem 1, and assume by con- D =[Dus Duas), D.. = {D””}
tradiction that@: # )-. By the strict convexity of thé> norm Dha

S11 = S512Q1521 = S11 — S12Q2521. Since by assumptiof;» has is used. With these definitions Problem 1 may be reformulated as
full column rank andS2; has full row rank, necessarit$; = .. O follows.

In general, Problem 1 admits a minimizing solution i Problem 3: Compute() € H-. such thaf] " %~ “?||. <1
but not in A, [8], implying that the optimal controller cannot be . L G2 Gaz
approximated by a rational transfer function. Moreover, the optimgpd 151> is minimized.
closed-loop system is in general not exponentially stable. From an . .
engineering standpoint, these undesirable properties motivate theComputation of a Solution ovét.

following problem. In this section, a sequence of finite-dimensional convex optimiza-
Problem 2 (MixedH/H~, Control Problem inA4,): Find the tion problems is introduced. Theth problem hasO(n) variables,
optimal value of the performance measure and its optimal cost:” satisfiesu™ < p. The sequence of problems
o approximates Problem 1 in the sense thét — p, and the
Mr = Q1é1£0{||511 = 512Q 522 partial solutions converge to the optimal solutionras— ~c. The
such that|Ty1 — T12QTs ||l < 1} (4) formulation of the approximating problems requires some results from

[12] which are reviewed next. Consider the Riccati equations

and, givene > 0, find a controller@ € A, such thatl|S(Qr)||2 < X =A4.X47 +B.B! + (A.XC] +B.D])
Ur + € and||T(QR)||x < 1. v £y —1 S o

In the sequel we solve these problems by constructing an optimiz- X (I = DerDe, = CaXCy ) (CGXAE + DerB. ) ™)
ing sequence of controllef®); } such that the correspondifig Q) V=AYA +C!C.+ (A'YB. +C!'D..)
sati_sfie_s||T(Qi)||oQ <1 and_such thal] S(Q:) |2 - We begin b_y _ x (T - DID.. — BZY’BG,)*I(BZYAE n DCTCCG).
reviewing some mathematical background required for establishing
convergence. All the material is taken from [9] and included here féirom [12], there exists &) satisfying thestrict H., constraint if
ease of reference. and only if there exist positive-definite solutiods andY" to these
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Riccati equations such thazt(f(f’) <1 This is gssumed in what IV. COMPUTATION OF A SOLUTION OVER RH oo
follows. For ease of notation, let = X'/, y = y"!/%, In this section, an optimization problem involving onlyfiaite

Theorem 3:Let G have a state-space realization as in (5), angumber of elements of the impulse responsesds presented. This
let Qi (2) = 327, Qiz . Then there exists 8.u(z) € Hwx  problem can be used to compute a rationaliboptimal solution to
such that o the mixedH,/Ho. problem. To establish this fact, it is first shown

Gu =Y QN2 —2"Qra(2)” G <1 that Problem 2 can be solved by considering a sequence of modified
G G ||~ problems. Then, it is shown that the optimal cost achievable with
if and only if (T (Qx)) < 1, where we have (8), as shown at thecontrollers inRH., can be made arbitrarily close to the optimum
bottom of the page. over Hoo (-8, tr = p).
Proof: For a proof see [12, Th. 8]. O

Using the projection operator defined in (1), consider the optk. A Change of Variables

mization problem Consider a real rational transfer matrik(z), and define the

Problem 4: mapping
u"” n
Qi er o enad Fs(2) = F(82), 0<68<1 (10)
n—1
P [Sll( ) = S12(2) <Z Qi ”_l>521(z)} which amounts to a change of variables— 6 - z. Note thatF(z)
2 has a pole at, if and only if Fs(z) has a pole at,/é, and hences
st. a(W(Qa)) < 1. is analytic outside the unit disk if and only ' is analytic outside
The numbem of coefficients iNQpr (2) = 1 Q=" is called the disk of radiuss.
the “horizon” in the sequel. Lemma 3: Let K(z) be a controller such thaks(z) internally
Lemma 2: Problem 4 is convex and™ < M“Jrl < p. stabilizes Ps(z). Then K(z) internally stabilizesP(z), ||Ts||- >
Proof: Convexity is obvious. To prove the bounds, note that il Zlloc: [|Ssll2 > [IS]l2, and [|Ts(2) [l = 1 T(2)|loo,s-
Qi (2) = Y, @itz is feasible for Problem 4 with horizon Proof: Internal stability follows from the previous observation.

n+1, thenP, (Qp}) is feasible for Problem 4 with horizon. Also  The Ho bound follows from the Maximum Modulus theorem,
while the > bound can be obtained from the expansiiy{z) =

n—+1
Pu[Si1 = S12Pa (Qiic ) S]] S5, (S:/6')=~". The equality][Ts(2)||- = [|T(2)]|.s holds by
< || Post (St1 = S12Q51R S21) |, definition,
< HSH — 5120851 ”2 In the sequel§ is selected close enough to one so fﬁ@tandsw
o are analytic outside the disk of radids
A similar argument shows that” < p for everyn.
As a consequence of Lemma2: — ™. The equality:'™ = 1 .
is established next. B. A ModifiedH:/H Problem
Theorem 4: Given a solutionQ¢r to Problem 4, seledD{,; as Consider the following modifie@. /H .. problem.
in Theorem 3 and define Problem 5 (Problent{. /H s): Find
@(2) = Qi () + =" Qi (2). © ps = min {||S11 — S12Q521]|2
Assume that a feasible solution to Problem 1 exists,$nd S2; are QERM oo 5
generically full column and row rank, respectively. Theh 1 ;1 and such thal|| 71 — T12QT%1||e,s < 1} (11)
the sequencél™ (=)} converges normally to a solution of Problem 1.
Proof: See Appendix A. O and the corresponding controllé)s, where™ denotes closure.
Since the sequencéQ™} converges normally, so does the se- Note that the se{Q € RHeo : ||[T11 — T12QTo1]|c0,s < 1} S
quence of truncated closed-loop transfer matriSgs= 7,[S11 — compact in thé<.. topology and thug)s is well defined. Comparing

S12Q" S21]. Moreover, it can also be easily shown that the sequentiee solution to this optimization problem for increasifigvith the
S, is a Cauchy sequence in tfé, topology and hence convergessolution to Problem 1 gives the following result.

in the H2-norm. However, since normal convergence does not imply Theorem 5: Given ¢ > 0 there existss, 0 < 6 < 1 such that
uniform convergence, one cannot conclude &t will provide an s < p + e.

approximate solution to the problem, evemifis taken very large. Proof: See Appendix B. O
yAlx yA"™'B, .-+ yA.B., yB., yA" B, yA" 2B, - yA.By yBy 7
CoA" ' C,A' 2B, +++ Cu4Ba Daa C.A"72By, C,A" B, - C.Bs D
C,A" %2 C,A" 3B, -+ Dua 0 C.,A" B, C,A"™'B, --. D,y 0
W(Qu) = | Cuz Do 0 0 Dy 0 0 0 (8)
ChAr™'2 CLA"™?B, --- CyBs Dy, CyA"72B, C A" ™*B, --- (OB, -Qf
CrA' %2 CRLA" 3B, - Do 0 ChA" B, CRA" "B, - —Q4 —Q!
L Cha Di, 0 - 0 -Q5 -Q1 —Qy o —Quy)
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Corollary 1: 1
1) ps > pr.
2) The optimal cost of Problems 1 and 2 are equal, jces .
Proof: Since@s € RH.s, it can be approximated arbitrarily ¢ i
and uniformly by a transfer matrix iRH.. (e.g., by the partial
Cesaro sums of its Taylor expansion). L@ be a real rational 94
approximation taRs. From Lemma 3@5 is feasible for Problem 2 o2 . X . ) .

0.8 4

1 1

so that 1) follows. To show 2), note that > pur > p and, from 3 10 s 2 % 3iorszonffngtn w®
Theorem 5, & can be found so thats < p + € for any given
e> 0. O @)

Thus, although the solution of tife, /.. problem is not gener-
ically in A,, the infimum achievable with controllers IRH . is
equal to the optimal cost ovéf ..

Finally, we show convergence of the closed-loop systems and af
the controllers in the/, topology. 11
Lemma 4: Consider a sequenée< 6; T 1. Then, the sequence of

corresponding closed loogs = S11 — S12Qs, 521 converges in the

‘H- topology. Moreover, ifS12 and.Sa; hgve_ generically full column  0.5; 5 5 20 25 3 % yn = %
and row rank, respectively, on the unit circle, then the sequence of horizon length
controllers converges in thd- topology, i.e.||Qs, — Q"™|l» — 0. (b)

Proof: Srllnceusing Lo it foIIOWS_ tfhﬁtQﬁf ;]s anh optimizing Fig. 2. (a) Performancg,, and||Si1 — S12Q™S21]|2 as a function of the
sequence. T us, from [8, Lemma 3] it follows that the sequéi’]ce_ horizon length. (b)|T11 — T12Q™ T%1 ]|« as a function of the horizon length.
is Cauchy in theH: topology. To complete the proof note that if

Si2 (S21) has full column (row) rank on the unit disk, it follows .

(from continuity) thatSi.5 (S21.5) has full column (row) rank for desired. Note, though, tha¥; is usually very large and hence may
all 5 larger than somé. Hence,Qs andQ”, the optimal solution to not bg qseful for computatlons. This dlﬁlgulty.can bg cwcqmvented by
Problem 1, are unique. The fact th&s, — Q*||l» — 0 asé — 1 combining the upper bound introduced in this section with the lower
. o bound introduced in Section I1I-B to obtain sequences of suboptimal

follows now from [8, Lemma 3] and the equality= p. . ;
and superoptimal solutions.

C. Computing an Approximate Solution
. . . . V. NUMERICAL EXAMPLE
From the Proof of Theorem 5, if a suboptimality levet> 0 is

given, then for & which can be computed in terms of the data, the In this section we present a numerical example to illustrate the
solution s to Problem 5 satisfiegs < u + ¢. Moreover,(Q)s can results discussed above. LBtbe as in(S5) with

be approximated arbitrarily close by [1.1314 1.1815 -—.1791
- A= [-.9064 .2005 .1689
Qi(z) = Z Qiz"" + 2TQRA(2) (12) :—.-5154 —.3643  .7966

i=0 —.0621 —-.0507 —-.0339 —.0369

—.0060 .0297 —.1171 .0050
—.0197 .0897 —.0834 -—-.1230
|—.1227  .0144 1279 .0687

whereQy,; is defined in Theorem 3 and whef@, Q1 -+ Qn_1) D=
solves the followindinite-dimensionatonvex optimization problem:

Hs = (@0 o, Q1] [.0142 1967
- By = |—-.0043 .0906
P, <511(2) — 512(2) Z Qz2i521(2)> | 0519  —.0999
i=0 2 —.0715 —.0631
sit. a(Ws(Qn)) <1 By = [—.1253 | B3 = |-.2842
) ) .0104 —.1383
wheren is larger than some precomputable boukigd To see this, -1619 Z 0574 —.9380
solve Problem 5 for a fixefl < 1. Then||T11 —T12Q" To1]|se,s < 1. C, = {‘231é 1363 —-(_)082}
Moreover, by using the change of variables introduced in Section V- o ) )
A so thatTy, s and Ty, s are inner and co-inner respectively over [02} _ { 1173 .0853 —-0379]}
z| = 6, we have that|Q"||ce,s < 14 ||T11]|ec,s- Hence Cs —.0815 .1149 —.1224
1511 = S12Q" So1 [lo.s < [|1S11]lc0.s Minimizing ||T||- and_ using th_e _ce_ntre_ll solution givﬁ@"*nm_ =
’ .872, ||S]|z = 1.069, while the minimization of thé<-norm gives
F 11502 lloe s (14 [[Tanllsc )1 52100 0 < M IT]|lc = 2.166, ||S*|]2 = .372. The value ofu™ defined in
for some constandZ. ExpandingSi; — $12Q" Sa1 = 3152, Si2 7, Theorem 3 for increasing values ofis shown in Fig. 2(a), together
it follows that #(S,) < &' - M, which yields the following bound With the actual norm of| 11 — $12Q" S2:||2. For short horizons,
for the truncation error: " is a poor estimate of the two-norm and hence the two values

are far apart; however, for as small as 20, the two values become
Vs (13) almost indistinguishable. Note also that increases monotonically.
- Fig. 2(b) shows the value ofTi; — T12P{Q"}T21||~ also for
where the constant depends only on the dimensioits afBy taking increasing horizon lengths. Again, the norm is significantly larger
n sufficiently large, say. > N5, us approximateg:s as closely as than unity for small values of and decreases until satisfying the,,

(T = P.)(S11 — 512Q"S1)|» < constantx —r
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TABLE | for each|z| > ~. Thus

COMPARISON OF DIFFERENT 'S im
[T11(2) = T2 (2) Q™™ (2)To1 (2)||s

8 1 Tll2 115 loo N = sup a(Ti1(2) — Ti2(2)Q"™ (2)Th1(2)) < 1 A2
0.85 0.4839 0.983 54 e 0T () ~Tu(HQ™ (@) < 1. (A2)
ggg ggg; gg:g 18855 To show that]|S11 — $12Q"™Su1l. = '™, consider an arbitrary
’ . - e > 0 and takey > 1. SinceQ"™ is also ariH- function, there exists
an N1(v) such that for everyr» > N
constraint with less than 1% tolerance for= 50. At this point the 1511 = S12Q"™ So1 ]2,
algorithm was stopped, withso = .49. The corresponding 52-order <||Pa(S11 = 512Q"™S51) |2y + €/2. (A3)

controller was approximated by considering a balanced truncation o _

of the Cesaro sum@? (=) = "' (1 — i/n)Q7 =" [6], yielding Normal convergence of™ implies that there exists aiNa () such
= n lim H :

an 11th-order admissible controller achieving virtually identigat  that [|Q" — Q™"[|2., < /2 (this follows from the fact that a fixed

performance. Further model reduction yielded the following thirdnultiple of the?{.. norm over-bounds th#/, norm). Then, for every

order controller: n > max{Ni, N2} we have that
o (2) = 5.04732" 4 9.13952" + 4.6276= + 1.2564 (14) 1511 = 512Q"Sa1ll2.7 < Pu(S11 = $12Q" S21) |2
z3 4 .95482% + 4584~ + .1811 +1Q"™ = Q™ |2y +€/2
The corresponding values {ff’||. and||S]||- are||T||: = 0.4905 < P4 e/2 4 /2. (A4)
and|| S|« = 0.989. Finally, Table | shows the performance achieved ) ] ]
for different values ofs. Sincee is arbitrary, it follows that

[|S11 — Slehm521||2,~/ < /lrhm v > 1.

VI ConcLusion Hence, from the definition of th/> norm it follows that
In this paper a solution to a general mixéd,/H.. control

lim lim
problem has been presented. As opposed to most of the literature on [[S11 = S12Q™ Sl < 1™

the subject, thé{. norm, rather than an upper bound, is minimizedsuppose now that the whole sequel¢E' } is not converging. Then
The main idea is to construct a family of optimization problemgsee, e.g., [9, p. 298]) there exists another subsequence(Xay},
and then show that the set of solutions thus generated converggsch converges normally to a different limit function, say™. But
to a solution of the original problem. At each step, the optimizatioen Q"™ solves Problem 1 and hence by Lemma™ = Qlm,
problems are convex and have a structure which allows for findingrais contradicts the assumption that the whole sequence is not
solution in polynomial time [11], leading to computationally tractablgonverging.
problems. While these computations are not inexpensive, they are
cheaper than those required by other currently available methods. In
addition, our approach provides additional new insight into some L . . =
properties of the optimal solutions. This includes the fact that, From continuity arguments it tOHOWS that there. eX'QK 6 <,,1
although an optimal solution is not in general “well-behaved” sincgH'Ch that for some constars;, &:;, &, the following inequalities
it is not continuous on the border of the region of stability (anaOIOI for eachs > é:
thus the resulting closed-loop system is not exponentially stable), |T:5 — Tij,slloo < Kij(1—6)
the optimal performance can be approached arbitrarily close by a Ti; = Tiyslla < Raj(1—6)
real-rational controller. Moreover, from a practical standpoint, our ’ B
approach allows for finding exponentially stable suboptimal solutions 1512 [l < 51812l e
with a prescribed degree of stability, by selecting 1in Problem 5, Recall thaty and s are defined by
or an e suboptimal solution. An extension of these ideas to more ..
general objective functions can be found in [13] = Qgﬁfo@{”S“ = 5120522

such thall| i1 — T12Q7T%1 || < 1} (B1)

APPENDIX A: PROOF OF THEOREM 4 ps = int (IS = $12Q521 |-

APPENDIX B: PROOF OF THEOREM 5

It suffices to show that a feasible solution to Problem 1 achieving
an’H. cost of "™ exists. Consider the sequence of functigis’ }.
Since||T11 — T12Q" T21 || < 1 and sincel1» andl>; are inner and Lete > 0 be given. Since by Theorem 4 an optimal solution to (B1)
co-inner, respectively, it follows that exists, and by assumption a transfer matrix satisfying the Stfict

n n inequality also exists, then for so o
1Q" oo = IT12Q" Torllow < 14 |Turllce (A1) MOAURTY ! e € 7t

1T = Ti2QToi]|ee < v < 1

such thatl|Ti1 s — Th2,6QsT21 5| < 1}. (B2)

From Theorem 2 this implies th&)" } is a normal family. LetQ"™
denote the limit function of some normally convergent subsequence. 511 = $12QS1 ]2 < pu+ /2.

H < H lim H
It is first claimed that||Ti; — T1:Q™Thilec < 1. To see this, i follows from the first inequality thallQ[jee < 1+ [|T11]|co. It is

. H n/. lim ) . . .
considery > 1 ande > 0. SinceQ" (=) converges normally t@ claimed thatQ, ;s(z) = Q(z/6) is a suboptimal solution to (B2). To
in |z| > 1, it follows that there existsV such that for each > N, geg this, note that by the triangular inequality

—cAngy _ Alimy - A
7@ ? (2)) < efor ani];' = 7. Then 17015 — Th2,6QT51 5|0
(T (2) = Tiz(2)Q™ (:)Taa(2) < 1 + ¢ <ITi = T0QTon | + I T01 = T ]l
and, sincee is arbitrary F 1T22Q(To1 = Tor5)|loo + [(Thz = Ti2,5)QTo1 |0
F(Tii(z) = Ti2(2)Q"™ (2)Tos (2)) < 1 <y [+ (8o + si2) (14 [ Tia]|oo)](1 = 6).
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Using Lemma 3 and a similar argument we have that [18] K. Zhou, J. Doyle, and K. GloverRobust and Optimal Control
Englewood Cliffs, NJ: Prentice-Hall, 1995.

|1Si1 — 5120165212 < 4 €/2 4 [Ri1 + (K21 k|| S12]|co [19] K. Zhou, K. Glover, B. Bodenheimer, and J. Doyle, “Mixéd, and

1 Rizl|Sor o) (1 4 [|T11[leo)](1 = 6). H performance objectives I: Robust performance analysEEE

Trans. Automat. Contrvol. 39, pp. 1564-1574, Aug. 1994.

Selectingé such that

K11+ (ko1 + K12) (1 + [|T1|]o0)](1 = 6) < 1=~

and

B B B Optimal Random Perturbations for Stochastic
[fr1 + (Fa1sllShalloe + FrzllSailloe) (1 + [[Taalls0)J(1 — 8) < /2 Approximation Using a Simultaneous
we have that||Ti1s — T12.5QTa1s]le < 1 and [|S11 — Perturbation Gradient Approximation

S12Q1 /55212 < p. Thus @, s is feasible for (B2) and achieves a
performance of at most + e. This establishes the claim and the

Payman Sadegh and James C. Spall

theorem, since necessarifys < p + e.
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