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Abstract 

In many filtering problems of practical interest, some of 
the noise signals satisfy the assumptions of H 2  (Kalman- 
Bucy) filtering, while others can be more accurately mod- 
eled as bounded energy signals (hence more amenable to 
an H, filtering approach). These problems may be ad- 
dressed by considering a mixed H 2 I ? i ,  filtering problem. 
In this paper we present a novel theory which solves the 
mixed problem ezac t ly  and in a computationally efficient 
way. The applicability of the theory is illustrated by de- 
signing a filter to estimate the states of an aircraft flying 
through a downburst. 

1. Introduction 

State estimation of dynamic systems in the pres- 
ence of process noise and based upon noisy me% 
surements pose an important problem in many en- 
gineering applications. A natural way of assess- 
ing the performance of a given filter is by con- 
sidering its effect on the norm of the error sig- 
nal { e k } ,  and different performance indices may 
be defined, depending on the a priori assumptions 
on the noise signal. In the classical 'H2 filtering 
approach ( Wiener-Hopf or Kalman-Bucy filtering) 
the C2 norm of the error is minimized, under the as- 
sumption that the noise characteristics are known 
[l] (in the sense that the noise is either random 
with known statistical properties or has a fixed and 
known spectrum.) Alternatively, during the last 
few years considerable interest has been given to 
an 'H, filtering approach. This approach does not 
require a-priori knowledge of the noise statistics; 
rather the noise is only assumed to have a bounded 
(possibly weighted) &-norm, but it may otherwise 
be arbitrary. 

In practice, noise inputs into a dynamic sys- 
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tem may be a combination of the two above men- 
tioned types: noises with known spectral charac- 
teristics (often modeled as Markov processes) and 
noises with unknown spectral characteristic. This 
motivated the introduction of the 3 i 2 / 3 i t ,  filter- 
ing problem [2, 41, in which both noise charac- 
teristics are considered simultaneously. Examples 
in which the mixed filtering problem may be use- 
ful can be found in aerospace applications. For 
instance, during flight, an aircraft often encoun- 
ters winds with varying types of profiles, includ- 
ing windshear. The latter are attributed to wind 
profiles with large changes (gradients) in the wind 
direction and speed. Downburst, one of the most 
threatening types of windshear, is a mass of cold air 
that descends to the ground in a column creating 
windshear and downdrafts. 

The purpose of this paper is to present an exact 
solution to the I H 2 / ' H ,  filtering problem together 
with an aerospace application, namely, the estima- 
tion of the states of an aircraft flying through a 
downburst. This paper is and abridged version of 
[A, where both the theory and the example are dis- 
cussed in detail. 

2. Problem formulation 

Consider a discrete, linear, time-invariant system 
with a state space model: 

were w E IRmv is a vector containing both process 
and measurement noise and y E IR". is the vec- 
tor of measurements. The filtering problem is to 
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produce an estimate i of the signal Z E Rm* from 
the measurements y. It will be assumed through- 
out that the initial state 20 is known, and without 
loss of generality, we will take 20 = 0. 

A filter F is said to be admissible if it is real 
rational, stable and, given any initial state +(O), 
lim e ( t )  = 0, with i = Fy. It will be assumed in 
what follows that the pair ( A ,  C2) is detectable. 
t-oo 

Suppose that (with some abuse of notation) the 
noise is partitioned as [wT vTIT, where w E ,Cyw 
is such that 111~112 < 1 but otherwise unknown 
(therefore all weighting functions reflecting any 
further information are absorbed into the process 
equations) and the mu dimensional signal v is as- 
sumed to be a zero-mean, Gaussian noise with unit 
covariance. The state and measurement equations 
become: 

x k + 1  = AZk + BwWk + B2Vk 
yk = C2Zk -k DmWk + DzVk. 

Let T e w ( z ,  F ) ,  Seu(z,  F )  denote the transfer matri- 
ces between the noise signals w and v and the error 
signal e ,  resulting from an admissible linear time 
invariant filter F .  Then, the mixed 'H2/ 'Ha0 prob- 
lems considered in this paper are the following: 

(2 - 2) 

Problem 1 (Mixed % 2 / ' H ,  filtering problem.) 
Compute 

$2 = inf { IlSe,11; + IITewllL s.t. F is admissible} 

and given a number E > 0, find an admissible filter 
F such that llSeullE + llTewIIL 5 $' + E .  

(2 - 3) 

Problem 2 (Constrained 'Hz filtering problem.) 
Compute 

po = inf {IISeul12s.t. F is admissible, ITeu,lloo 5 7) 
(2 - 4) 

and given a number E > 0 ,  find an admissible fi l ter 
F such that ITewIlm 5 7 + E and llSevll2 5 PO + E .  

At the present time, no analytical solutions are 
known for these problems. A problem related to 
2-4, where llSeul12 is replaced by an upper bound 
was formulated in [2]. In [4] it was shown that 
this modified problem can be cast into a convex 
optimization over a bounded set of matrices and 
solved using non-differentiable optimization tech- 
niques. Unfqtunately, there is little information 

regarding the gap between this upper bound and 
the true 7 - l ~  cost. 

For simplicity, we will assume w.1.o.g. that 7 = 
1. Consider a filter F2 with a state space realization 

where the observer gain L is such that A - LC2 
is stable. Then, from Theorem 2.1 in [4], F is an 
admissiblefilter if and only if F = F2 +Q?2, where 

+z = (W). 
and Q is an asymptotically stable transfer matrix. 

The transfer function [ T,, Se, ] from [ ] to 

e therefore results from an admissible filter if and 
only if 

Te, = TI - QT2, Se, = VI - QV2. (2 - 7) 

Let AL = A - LC2, BL = B, - LD,. 

Let X be the stabilizing solution of the algebraic 
Riccati equation 

X = A X A ~  +B, BL - (2-8) 
( A X C , T + B , D : ) ( D , D : + C , X C , T ) - ~ ( C ~ X A ~ + D , B : )  

To facilitate exposition, it is assumed in what fol- 
lows that X is non-singular, a condition that can be 
enforced by elliminating the states asociated with 
the null space of X [7]. Taking L = ( A X G  + 
B , D g ) ( D , D ~ + C 2 X C ~ ) - 1  and R, = D,Dg+ 
C 2 X G  makes T2 into a co-inner transfer matrix. 
If TZ is not square, let CI, DI solve the equations 
CIXAT + D l  B g  = 0, CIXCT + D l  D g  = 0 and 
ClXCT + DI DT = I .  Then, 

where 

(2 - 10) 

3. Mixed 3-12/3-1, Filtering 

By using 2-7, the mixed I H 2 / ' H ,  filtering prob- 
lem 2-4 can be precisely stated as solving the fol- 
lowing convex optimization problem: 
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Lemma 2 For every E > 0, there etists N ( E , S )  
/ m  \ f  

where 1 1 . 1 1 ~  denotes the Frobenious norm and where 
{Si} are the coefficients of the impulse response of 
Se, (recall that Se, is stable). 

Remark: 1 In  the sequel we will assume that 
inf llT1-QT21100 = y* < 1. This simplifies some 

QE'H, 
technical aspects of the problem. 

Note that problem 3-1 is an infinite-dimensional 
optimization problem. We will show that the mixed 
X2/Xm filtering problem can be solved by consid- 
ering a sequence of problems, each one requiring the 
solution of a finite dimensional convex optimization 
problem. 

(3 - 3) 
where 6 < 1 and G E %%,,& is as an 2-10. 

Remark: 2 From the maximum modulus theorem, 
any solution Q to X2/X,,6 is an admissible solu- 
tion for X 2 / X H , ,  implying p: 2 po. 

Remark: 3 Problem 'H2/'Hm,6 can be thought as 
solving problem N 2 / N ,  with the additional con- 
straint that all the poles of the error system must 
be inside the disk of radius 6. A parametriza- 
tion of all admissible filters such that T,, V;. satisfy 
this additional constraint can be obtained from 2- 
7 by  simply changing the stability region from the 
unit-disk to the 6-disk using the transformation 
z = 65 before performing the factorization. Fur- 
thermore, by  combining this transformation with 
the co-inner factorization, the resulting T2(z) sat- 
isfies T2(6z)T2(&)" = I .  

Lemma 1 Consider an increasing sequence 6i -+ 
1. Let po and p i  denote the solution to problems 
'H2/'H, and X2/Xm,ci respectively. Then the se- 
quence pi + p o .  

such that i f  Q E X~t , ,6  satisfies the constraint 

/ ( ~ ( z )  + [ Q(;)- ] // 5 1, it also satisfies 
00.6 

00 

IlSill$ 5 c2 ,  where sk denote the coeficients of 
i=N 
the ampulse response of Se, = fi - QG.  

Given S E 'Ifm, S ( z )  = CEoSiz- i ,  consider 
the projection PN(S(Z) )  = CL;' SizVi. Since 
PN (Se,) = ?"(VI) - P N ( V ~ ) ~ N ( Q ) ,  the first 71 
matrices Si may be written as a finite afl6ne com- 
bination of Qo, . e . ,  Qn-l. 

Lemma 3 Let N be as in Lemma 2, and consider 
the following optimization problem: 

Let Q' denote the optimal solution and define p i  = 
IISe*,ll2. Then p:  I pi I p:  + E .  

By combining the results of Lemmas 1, 2 and 3, 
the following result is now apparent: 

Lemma 4 Consider an increasing sequence Si + 
1. Let p o  and pi i  denote the solution to problems 
X2/'?im and X 2 / X k , 6 i  respectively. Then the se- 
quence pii  has an accumulation point jic such that 
p o  5 f i t  5 p o  + E .  

For the proofs of Lemmas 1-4, see [7]. 

3.1. The Constraint 
In this section we show that each truncated prob- 

lem considered in the previous section can be ex- 
actly solved by solving a finite dimensional con- 
vex optimization problem and an unconstrained 
7.1, filtering problem. To establish this result we 
will derive first a necessary and sufficient condition 
for the feasibility of 3-2 when the first N parame- 
ters in the expansion Q(z) = QO -I- Q1z-l + + 
Qn_lz-("-l) + . . are fixed. An analogous result 
was obtained in [SI for the SISO one-block con- 
trol problem, and subsequently extended in [SI to 
the one-block MIMO and four-block control prob- 
lems. Although the problem relevant for Nm fil- 
tering is a special case of the latter, an alternative 
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simpler derivation was given in [7]. Assume that 
11G:211w < 1. Define M = I - C l X C y C 1 X c .  
Then the algebraic Riccati equation 

L,  = A ~ L , A ~  + A ~ X C T C ~ X A E  (3-5) 
+ ( A ~ L , c :  + A L X C T C ~ X C : )  

x ( M  - C I L , C ~ ) - ~ ( C I L , A ~  + C l X C T C 1 X A z )  

has a stabilizing solution L,  2 0. 

Theorem 1 There exists a Qtail E R X W ,  sach 
that 3-2 holds for Q(z )  = QO + Q1z-l + . ' -  + 
Qn-lz-(n-l) + z-"Qtail if  and only if  F(W1) 5 1, 
with 
I/I' I 1 -  

IoHi 

CiHo 
0 

0 

C a  Ho + Q a  

QT 

Q l f -  i 

where Hi = AZXCT,  C 2  = R,1f2C2 and l , ,  1, are 
the positive square roots of L, and Lo respectively. 

4. Mixed 3 c 2 / 3 c m  Filter Design 

Combining Lemma 4 and Theorem 1 yields the 
main result of the paper: 

Theorem 2 A suboptimal solution lo  the mixed 
'H2/Uw,a filtering problem 3-3, with cost pa 5 p; 5 

+ c i s  given by Q = 0" + Z-"Q~", ,~ where 

Q"(Z) = solves the finite dimensional 

convex optimization problem: 

N-1 

i = O  

and QR solves the approximation problem 

(4 - 2) 
where N ( E , S )  i s  selected according to  Lemma 2. 

From Theorem 2 it follows that a suboptimal so- 
lution to the mixed 'H2 /7 iw  filtering problem 2-4 

(with cost arbitrarily close to the optimum) can be 
found using the following iterative algorithm: 

1.  Data: An increasing sequence -+ 1 , c  > 
0, v > 0. 

2. Solve the unconstrained '7 f~  filtering problem 
(using the standard Kalman filtering theory). 
Compute I I T e w l l w .  If l l T e w l l w  I7 stop, else 
set i = 1. 

3. For each i, find a suboptimal solution to prob- 
lem 3-3 proceeding as follows: 
(a) Obtain q ( z ) , & ( z )  E R3-lm,ai, with 

Tz(z)  co-inner in R'Hm,ai. This can 
be accomplished by using the change of 
variable z = 6 i f  before performing the 
factorization 2-7. 

(b) Compute N(c ,6 j )  from Lemma 2. 
(c) Find Q(z )  using Theorem 2. 

stop, else set i = i + 1 and go to 3. 
4. Compute I I T e w ( z ) l l w -  If IITew(z)llm 2 7 - v 

Remark: 4 A t  each stage the algorithm produces a 
feasible solution to problem 2-4, with cost pi which 
is an upper bound of the optimal cost po. 

4.1. Special Case: The One-Block Problem 
Although in general problem 2-3 must be solved 

in an iterative fashion, by solving a sequence of 
problems of the form 2-4, in the special case where 
the number of measurements equals the number of 
noise signals with bounded spectra (i.e. my = m,) 
can be solved by exploiting the results of Lemma 
4 and Theorem 1. Due to space limitations, an 
explicit result is omitted. The interested reader is 
referered to [7] for a detailed exposition. 

5. An Aerospace Application 

In this section we illustrate the theory by design- 
ing a mixed 3-12/'Hm filter to estimate the states 
of a generic four-engined executive jet plane flying 
through a moderate near to the ground downburst 
after take-off. The aircraft was initially trimmed 
for level flight at Mach 0.2 (67.7m/sec) at an al- 
titude of 450m, when the downburst was encoun- 
tered. A linear model, describing the perturbations 
of flight variables relative to the initial trim con- 
ditions in the vertical plane, i.e., the longitudinal 
model, of a generic four-engined executive jet was 
used [5]. The downburst was modeled by two rings 
of the simplified ring-vortex downburst model [3]. 
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5.1. The Designs 
The wind profiles of the downburst show that the 

energy of the horizontal and vertical wind compo- 
nents is concentrated in the low frequency range. 
These signals constitute the process noise inputs 
for the simulation; their bandwidth depends on the 
speed of the aircraft and the size of the downburst. 
To model this wind, a low-pass weighting function 
was added to each of the input channels, with cutoff 
frequency calculated for the expected speed range 
and an estimation of the expected size of the down- 
burst (approximately 0.2Hz in our example.) 

The measurement noise was assumed to be 
a zero-mean Gaussian sequence, with covari- 
ance equal to diag{ 1,2)'/sec. For comparison, 
an 31, filter was first designed, by minmizing 
llTew ICSeull,. Taking IC = 1 gave l lSevl l2  = . lo7 
but l lTewl lm = 54.8. Taking IC = .001 gave 
IITewllm = .9O but l lSevl l2  = 313.7. Further reduc- 
tion of IC produced a marginal reduction on llTew /loo 
and a substantial increase on IISeUllz. A seemingly 
suitable tradeoff was achieved for IC = .005, giving 
llSeul12 = 186.0 and I l T e ~ I l ,  = 1.16. 

For the 312/31, design, the objective was to min- 
imize llSeul12 subject to ~ ~ T e , , , ~ ~ ,  5 1.1. For this 
problem, the parameterization described in Sec- 
tion 2 is ill-posed, and therefore the constraint was 
replaced by llTeu K S e w l l m  5 1.1, with IC = .001. 
The final mixed 312/31, filter was designed for 
n = 120, giving l lSevl l2  = 27.82, six times smaller 
than the one obtained by the 31, design. The opti- 
mal Q ( z )  had 240 terms, but a reduced order model 
with 7 states was computed, which achieves a 2 
norm of 28.61. The corresponding filter has order 
15. Reducing this filter to order 8 further increased 
the 2 norm to 28.73, about 3% more than the op- 
timal solution. Fig. 5.1 shows the performance of 
the filter with 15 states. 

6. Conclusions 

In this paper we have studied the mixed 3-12/31, 
filtering problem, and illustrated its applicability 
with an aerospace example. First we formulated 
the mixed problem and the closely related prob- 
lem of minimizing an 312 norm subject to an 7-1, 
norm constraint. Then we showed that the solution 
to a modified version of the latter problem can be 
approximated arbitrarily close by the solution to 
a finite dimensional convex optimization. Finally 
we proved that, in the limit, the solution to the 
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Figure 1: Performance of the mixed 'Hz/ 'Hw filter 

modified problem converges to the solution of the 
original one, in the sense that the same level of 
performance is achieved. The approach was then 
applied to the estimation of the states of an air- 
craft flying through a downburst. 
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