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Abstract

In many filtering problems of practical interest, some of
the noise signals satisfy the assumptions of Hz (Kalman-
Bucy) filtering, while others can be more accurately mod-
eled as bounded energy signals (hence more amenable to
an Moo filtering approach). These problems may be ad-
dressed by considering a mixed H2/H filtering problem.
In this paper we present a novel theory which solves the
mixed problem ezactly and in a computationally efficient
way. The applicability of the theory is illustrated by de-

" signing a filter to estimate the states of an aircraft flying
through a downburst.

1. Introduction

State estimation of dynamic systems in the pres-
ence of process noise and based upon noisy mea-
surements pose an important problem in many en-
gineering applications. A natural way of assess-
ing the performance of a given filter is by con-
sidering its effect on the norm of the error sig-
nal {ex}, and different performance indices may
be defined, depending on the a priori assumptions
on the noise signal. In the classical H, filtering
approach (Wiener-Hopf or Kalman-Bucy filtering)
the L2 norm of the error is minimized, under the as-
sumption that the noise characteristics are known
[1] (in the sense that the noise is either random
with known statistical properties or has a fixed and
known spectrum.) Alternatively, during the last
few years considerable interest has been given to
an M, filtering approach. This approach does not
require a-priori knowledge of the noise statistics;
rather the noise is only assumed to have a bounded
(possibly weighted) £2-norm, but it may otherwise
be arbitrary.

In practice, noise inputs into a dynamic sys-
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tem may be a combination of the two above men-
tioned types: noises with known spectral charac-
teristics (often modeled as Markov processes) and
noises with unknown spectral characteristic. This
motivated the introduction of the Ha/H, filter-
ing problem [2, 4], in which both noise charac-
teristics are considered simultaneously. Examples
in which the mixed filtering problem may be use-
ful can be found in aerospace applications. For
instance, during flight, an aircraft often encoun-
ters winds with varying types of profiles, includ-
ing windshear. The latter are attributed to wind
profiles with large changes (gradients) in the wind
direction and speed. Downburst, one of the most
threatening types of windshear, is a mass of cold air
that descends to the ground in a column creating
windshear and downdrafts.

The purpose of this paper is to present an ezact
solution to the Haz/H o, filtering problem together
with an aerospace application, namely, the estima-
tion of the states of an aircraft flying through a
downburst. This paper is and abridged version of
[7], where both the theory and the example are dis-
cussed in detail.

2. Problem formulation

Consider a discrete, linear, time-invariant system
with a state space model:

Tper = Azxy + Buy

# = Cizg

ye = Chzy + Duy z-1)
ek = Zp — Zj.

were w € IR™* is a vector containing both process
and measurement noise and y € IR™? is the vec-
tor of measurements. The filtering problem is to



produce an estimate # of the signal ¥ € IR™* from
the measurements y. It will be assumed through-
out that the initial state ¢ is known, and without
loss of generality, we will take zo = 0.

A filter F is said to be admissible if it is real
rational, stable and, given any initial state z(0),
JLim e(t) = 0, with 2 = Fy. It will be assumed in
what follows that the pair (A4, C3) is detectable.

Suppose that (with some abuse of notation) the
noise is partitioned as [w” vT]T, where w € L3
is such that |Jw||]2 < 1 but otherwise unknown
(therefore all weighting functions reflecting any
further information are absorbed into the process
equations) and the m, dimensional signal v is as-
sumed to be a zero-mean, Gaussian noise with unit
covariance. The state and measurement equations
become:

zpe1 = Azr + Boowr + Baw
Yk = Corry + Dewr + Dovg.
(2-2)

Let Tew (2, F), Sev(2, F') denote the transfer matri-
ces between the noise signals w and v and the error
signal e, resulting from an admissible linear time
invariant filter F. Then, the mixed H2/Ho prob-
lems considered in this paper are the following:

Problem 1 (Mized Ha/Ho filtering problem.)
Compute

¢? = inf {||Seoll3 + || Tew|l% s.t. F is admissible}

(2-3)
and given a number € > 0, find an admissible filler
F such that ||Sev||2 + || Tew||% < %2 +e.

Problem 2 (Constrained M. filtering problem.)
Compute

p° = inf {||Sevll2s-t. F is admissible, |Teylloc < 7}
(2= 1)

and given a number € > 0, find an admissible filter

F such that |[Tewfloo < ¥+ € and ||Sev|l2 < p° + €.

At the present time, no analytical solutions are
known for these problems. A problem related to
2-4, where ||Sey]|2 is replaced by an upper bound
was formulated in [2]. In [4] it was shown that
this modified problem can be cast into a convex
optimization over a bounded set of matrices and
solved using non—differentiable optimization tech-
niques. Unfortunately, there is little information

regarding the gap between this upper bound and
the true H, cost.

For simplicity, we will assume w.l.o.g. that v =
1. Consider a filter F, with a state space realization

(A— LCy)2r + Ly

41
2 Ciiy

2k

(2-5)

where the observer gain L is such that A — LCy
is stable. Then, from Theorem 2.1 in [4], F is an
admissible filter if and only if F' = Fy+ QT?, where

Y Y AT W

and @ is an asymptotically stable transfer matrix.
The transfer function [ Tew Sew ] from [ 1: ] to

e therefore results from an admissible filter if and
only if

Teaw=T1 = QT3, Seo =Vi—=QVa. (2-17)
Let Ay = A— LCy, By = Boo — LD.

Let X be the stabilizing solution of the algebraic
Riccati equation

X=AXAT +Boo BT, - (2-8)
(AXCT 4B DT) (Do DL, +C2 XCT) Y (C2X AT +Doo BY)

To facilitate exposition, it is assumed in what fol-
lows that X is non-singular, a condition that can be
enforced by elliminating the states asociated with
the null space of X [7]. Taking L = (AXCY +
Boo DT )(Doo DT, +C2XCT)~! and R, = Doo DL +
CrX C;F makes T5 into a co-inner transfer matrix.
If T, is not square, let Cy, D, solve the equations
C_LXAT +D_|_BZ° =0, CJ.XCZT +D_|_Dg‘° =0 and
C.XCT + D, DY = 1. Then,

G ~
nTl—QTznfu 11Q “ (2-9)

G2
where
G AL | ALXC,I'F
Cy C_LXC;‘F

(2 - 10)

3. Mixed H,/H, Filtering

By using 2-7, the mixed Hz/H filtering prob-
lem 2-4 can be precisely stated as solving the fol-
lowing convex optimization problem:



% 3
w= dnf |ISell=  nf, (Ens.-n%)
= \i=0
3-1)

subject to:
IT: — Q(2)T2lle0 < 1 3-2)

where ||.||F denotes the Frobenious norm and where
{S;} are the coeflicients of the impulse response of
Sey (recall that ey is stable).

Remark: 1 In the sequel we will assume that
Qg}f 1Ty —QT2||leo = v* < 1. This simplifies some

technical aspects of the problem.

Note that problem 3-1 is an infinite-dimensional
optimization problem. We will show that the mixed
Ha/Ho filtering problem can be solved by consid-
ering a sequence of problems, each one requiring the
solution of a finite dimensional convex optimization
problem.

Problem 3 (Ha/Ho,s Filtering Problem.)
Given Vi(2), Va(2),T1(2), T2(2) € RH o5, find

us = Qei%tli,s V1 — QVall2, s:t. }

00,6
(3-3)
where 6 <1 and G € RHoo,s is as in 2-10.

Remark: 2 From the mazimum modulus theorem,
any solution Q to Ha/Hoo,s is an admissible solu-
tion for Ha/Hoo, implying pd > p°.

Remark: 3 Problem Ha/Hoos can be thought as
solving problem Hy/He with the additional con-
straint that all the poles of the error system must
be inside the disk of radius 6. A parametriza-
tion of all admissible fillers such that T, V; satisfy
this additional constraint can be obtained from 2-
7 by simply changing the stability region from the
unit-disk to the é6-disk using the transformation
z = 6% before performing the factorization. Fur-
thermore, by combining this transformation with
the co-inner factorization, the resulting To(z) sat-
isfies Ty(62)Ta(£)~ = L.

Lemma 1 Consider an increasing sequence 6; ~—
1. Let p° and p; denote the solution to problems
Ha/MHoo and Hz/Hoo,s, respectively. Then the se-
quence p; — pu°.

Lemma 2 For every € > 0, there exists N(e,§)
such that if Q € My, satisfies the constraini

G(z)+ [ Q)" ]

Z I1Sill% < €2, where Sk denote the coefficients of
the impulse response of Sep = Vi — QV2.

< 1, it also satisfies
0,§

Given S € Moo, S(2) = Yoy Siz™*, consider
the projection Pn(S(z)) = SNo!'S;z7%. Since
Pn (Sev) = Pn(V1) — Pn(Va)Pn(Q), the first n
matrices S; may be written as a finite affine com- -
bination of Qq, -+, @n-1-

Lemma 3 Let N be as in Lemma 2, and consider
the following optimization problem:

oclin | IPn (V1 — QW)llp
subject to (3-4)

o (45 =

00,6
Let Q* denote the optimal solution and define uj =
Seulla- Then pg < p§ < pg + .

By combining the results of Lemmas 1, 2 and 3,
the following result is now apparent:

Lemma 4 Consider an increasing sequence & —
L. Let p° and pj. denote the solution to problems
Ha/Hoo and Ha/HE, 5, respectively. Then the se-
quence pj, has an accumulation point fi, such that
P Sp’te

For the proofs of Lemmas 1-4, see [7].

3.1. The H,, Constraint

In this section we show that each truncated prob-
lem considered in the previous section can be ez-
actly solved by solving a finite dimensional con-
vex optimization problem and an unconstrained
Hoo filtering problem. To establish this result we
will derive first a necessary and sufficient condition
for the feasibility of 3-2 when the first N parame—
ters in the expansmn Qz)=Qo+Quz" 1+ +
Qn_12=("=1 4 ... are fixed. An analogous result
was obtained in [8] for the SISO one-block con-
trol problem, and subsequently extended in [6] to
the one-block MIMO and four-block control prob-
lems. Although the problem relevant for Ho, fil-
tering is a special case of the latter, an alternative

1793



simpler derivation was given in [7]. Assume that
lIGz2llc < 1. Define M = I — CLXCTC,1XCT.
Then the algebraic Riccati equation
Le = ApL AT+ A xXCTCixAT
+ (ALL.CT + Apxctcxct)
X (M = CpL.C1) Y (CLL:AT + CLXCTC1 X AT)

(3-5)

has a stabilizing solution L. > 0.

Theorem 1 There erxists a Qi € RHoo, such
that 3-2 holds for Q(z) = Qo + @1z~ + -+ +
Qno12=CD 4 27" Quaq if and only f F(W;) < 1,
with

Wy =

[ 1,471, loHo loH(noy) = loHa I,H)
C.LAZ'IL; CiHp1 Cy Hp.a - CLH, C.LHo
C1A}™%lc CiHneg Hapes C.LHo 0

cTi. CLHo 0 (] 0

égAZ'llc CaHpoy CaHaoy - CaHy CaHo+Qo
C3AT™le CoHaz CaHaos - CaHotQF QT

| Cale C:Ho+Qy Q7 - -2 Qi |

where H; = AL XCT, Gy = R;'?C, and 1., 1, are
the positive square roots of L, and L, respectively.

4. Mixed H,/H., Filter Design

Combining Lemma 4 and Theorem 1 yields the
main result of the paper:

Theorem 2 A suboptimal solution to the mizred
Ha/Hoo,s filtering problem 3-3, with cost ps < p§ <
s + € is given by Q = QN + z~NQN. where

tas

R N-1 .

QN(2) = Y Qiz~* solves the finite dimensional
i=0

convez optimization problem:

QY (2) = argmin [[PN(Vi = QW) (4-1)
1w ]a<1

and QR solves the approzimation problem

,6 IT1(2)+ Q% T2(2) +2~~ Qr(2)T2(2)||co,5

(4-2)
where N (e, 8) is selected according to Lemma 2.

min
QR ERHoo

From Theorem 2 it follows that a suboptimal so-
lution to the mixed Ha/HM oo filtering problem 2-4
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(with cost arbitrarily close to the optimum) can be
found using the following iterative algorithm:

1. Data: An increasing sequence §; — 1, >
0,v>0.

2. Solve the unconstrained H3 filtering problem
(using the standard Kalman filtering theory).
Compute ||Tew|loo- If || Tew]loo < 7 stop, else
set ¢ = 1.

3. For each ¢, find a suboptimal solution to prob-
lem 3-3 proceeding as follows:

(a) Obtain Tj(z),Vi(2) € RHw,s,, with
Ty(z) co-inner in RH o5, This can
be accomplished by using the change of
variable z = 6;Z before performing the
factorization 2-7.

(b) Compute N(e,6;) from Lemma 2.
(c) Find Q(z) using Theorem 2.

4. Compute ||Tew(2)|joo- H |[Tew(2)lo > v —v
stop, else set i =7+ 1 and go to 3.

Remark: 4 At each stage the algorithm produces a
feasible solution to problem 2-4, with cost y; which
is an upper bound of the optimal cost p°.

4.1. Special Case: The One—Block Problem

Although in general problem 2-3 must be solved
in an iterative fashion, by solving a sequence of
problems of the form 2-4, in the special case where
the number of measurements equals the number of
noise signals with bounded spectra (i.e. my, = my,)
can be solved by exploiting the results of Lemma
4 and Theorem 1. Due to space limitations, an
explicit result is omitted. The interested reader is
referered to [7] for a detailed exposition.

5. An Aerospace Application

In this section we illustrate the theory by design-
ing a mixed Hz/Hoo filter to estimate the states
of a generic four-engined executive jet plane flying
through a moderate near to the ground downburst
after take—off. The aircraft was initially trimmed
for level flight at Mach 0.2 (67.7m/sec) at an al-
titude of 450m, when the downburst was encoun-
tered. A linear model, describing the perturbations
of flight variables relative to the initial trim con-
ditions in the vertical plane, i.e., the longitudinal
model, of a generic four-engined executive jet was
used [5]. The downburst was modeled by two rings
of the simplified ring-vortex downburst model [3].



5.1. The Designs

The wind profiles of the downburst show that the
energy of the horizontal and vertical wind compo-
nents is concentrated in the low frequency range.
These signals constitute the process noise inputs
for the simulation; their bandwidth depends on the
speed of the aircraft and the size of the downburst.
To model this wind, a low-pass weighting function
was added to each of the input channels, with cutoff
frequency calculated for the expected speed range
and an estimation of the expected size of the down-
burst (approximately 0.2Hz in our example.)

The measurement noise was assumed to be
a zero-mean Gaussian sequence, with covari-
ance equal to diag{1,2}°/sec. For comparison,
an Hy filter was first designed, by minmizing
[ITew #£Sev|loo- Taking & = 1 gave ||Seyll2 = 107
but {|Tew|lw = 54.8. Taking & = .001 gave
ITewlloo = -90 but ||Seyl]l2 = 313.7. Further reduc-
tion of k produced a marginal reduction on ||Tey ||oo
and a substantial increase on ||Sey||2. A seemingly
suitable tradeoff was achieved for £ = .005, giving

ISesllz = 186.0 and || T loo = 1.16.

For the H2/H oo design, the objective was to min-
imize ||Sey||2 subject to ||Tewlloo < 1.1. For this
problem, the parameterization described in Sec-
tion 2 is ill-posed, and therefore the constraint was
replaced by ||Tey £Sewlloo < 1.1, with £ = .001.
The final mixed Hy/H filter was designed for
n = 120, giving [|Sev(|2 = 27.82, six times smaller
than the one obtained by the H, design. The opti-
mal Q(z) had 240 terms, but a reduced order model
with 7 states was computed, which achieves a 2
norm of 28.61. The corresponding filter has order
15. Reducing this filter to order 8 further increased
the 2 norm to 28.73, about 3% more than the op-
timal solution. Fig. 5.1 shows the performance of
the filter with 15 states.

6. Conclusions

In this paper we have studied the mixed Hz/H oo
filtering problem, and illustrated its applicability
with an aerospace example. First we formulated
the mixed problem and the closely related prob-
lem of minimizing an Hs norm subject to an Heo
norm constraint. Then we showed that the solution
to a modified version of the latter problem can be
approximated arbitrarily close by the solution to
a finite dimensional convex optimization. Finally
we proved that, in the limit, the solution to the
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Figure 1: Performance of the mixed Ha/Hoo filter

modified problem converges to the solution of the
original one, in the sense that the same level of
performance is achieved. The approach was then
applied to the estimation of the states of an air-
craft flying through a downburst.
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