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Abstract 

In this paper we present a robust identification framework 
that combines both frequency and time response experi- 
ments. The main result of the paper provides necessary 
and sufficient conditions for consistency with both sources 
of experimental data in terms of the solution to a finite 
dimensional constrained convex optimization problem. 

1. Introduction 

One of the important research areas of the 90's is Ro- 
bust Identification: deterministic identification pro- 
cedures which can be used as a first step of a Ro- 
bust control design method. The Robust Identifica- 
tion problem has been posed in [6] and has deserved 
considerable attention since then ([2, 5, 71). 
These new identification procedures are based not 
only on the data ( 4  pos ter ior i  information), but also 
on the 4 p r i o r i  assumptions on the class of systems 
to be identified. The algorithm produces a nominal 
model based on the experimental data and a wors t  
case bound over the set of systems defined by the 4 

p r i o r i  information. 
Starting from frequency response measurements, 
identification of exponentially stable LTI systems in 
the context of an 31, framework has been considered 
in [2, 61 and a complete class of robustly convergent 
algorithms has been presented in [5]. From time re- 
sponse data, &I identification has been presented in 
[7] and references therein. Finally, interpolatory algo- 
rithms with time domain experiments and 7-1, identi- 
fication errors have been developed recently [3, 111, al- 
though both types of experimental information, time 
and frequency, have not been considered. 
In this paper we propose a robust identification 
framework that takes into account both time and fre- 
quency domain experiments. Thus, the problem were 
"good" frequency response fitting (small 31, error 
norm) has a "poor" fitting in the time domain, is 
avoided. Additionally, from an information theoretic 
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point of view, more experiments produce a smaller 
consistency set of undistinguishable models, and as 
a consequence a smaller worst case error ([7]). The 
main result of the paper provides a necessary and 
sufficient condition for the consistency of the a pr ior i  
information with the mixed time/frequency experi- 
mental data. This condition is given in terms of the 
solution to a finite-dimensional constrained convex 
optimization problem. Additionally, we propose an 
7-1, interpolation algorithm which restricts the time 
response in the L ,  sense and produces a nominal 
model in the consistency set. Because this algorithm 
is interpolatory, it is optimal up to a factor of 2 with 
respect to strongly optimal central algorithms ([7]) 
and convergent. The problem is restricted to FIR 
systems or, in practical cases, to IIR systems when 
the time response experiment duration is longer than 
the settling time of the system. The general case has 
been solved in [lo]. 

2. Background 

The class of systems considered are continuous or 
discrete time, causal, linear and stable. To unify 
the treatment we denote them as A ( z )  = Ai,(X"), 
X > 0 in the continuous case or B ( z )  = ad( $) in the 
discrete time case, with z E C. Note that the above 
definition for continuous systems is the inverse of the 
usual bilinear transformation. Therefore, causal sta- 
ble systems E ( z )  will be analytic inside the unitary 
circle, with time and frequency representations re- 
lated by H ( z )  = C'p=, hhzh. For simplicity we con- 
sider SISO models, although all results can be applied 
to MIMO systems, following [4]. 
The 4 posteriori  experimental data can be obtained 
from two different sources. The set of N f  samples 
of the frequency response of the system measured 
with additive bounded noise y i  = H(eJ"h) + v i ,  
IC = 0,. . . , N f  - 1 represent the components of vector 
yf E C N f .  The noise is complex and bounded by 

in the e, norm, therefore it belongs to the class 

4-f = I , (E~) .  The time domain data is the set of 
first Nt impulse response samples also corrupted by 
additive noise f = h, + TA, TZ = 0, . . . , Nt - 1 which 
represent the components of vector y t  E EN*. The 
noise is real and belongs to J\lt = &,(et). 
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To present the a priori information, consider the set 
X , ( p , K )  defined in [SI which corresponds to ex- 
ponentially stable systems (finite or inffinite dimen- 
sional). From a practical viewpoint, these systems 
have a stability margin of (p -  1) and a peak response 
to complex exponential inputs of K ,  an.d satisfy the 
bound I h(k) I 5 Kp-I" . 
In the time domain, a general class of models is de- 
fined as follows: 

2. Compute a nominal model which belongs to the 
consistency set by means of an interpolation al- 
gorithm. 

3. Consistency 

The consistency problem stated above can be re- 
cast into the following constrained interpolation form: 
Find a model H E S which interpolates the frequency 
experimental data: 

9 e {h(*)  I Ih(le)l 5 +(k), +(.) E e l ,  nomincreasing} (I) f = y f + q f ,  qf  ENf (3) 
which includes X,(p, K )  as a particular case, when 
+ ( l e )  = K P - ~ .  Therefore to combine both classes 

of models we define the set S = X,(p, K )  n 9 = 

For the experimental a posteriori information we con- 
sider, without loss of generality, the impulse as the 
input to the time domain experiment. 'This paper is 
restricted to the case of FIR systems or, from a practi- 
cal viewpoint, a time response experimental duration 
Nt 2 Tb, with T, the settling time of the system (see 
[ lo]  for the general IIR case). If q5(Nt) 5 et then 
we have the number of data points which provides 
all the useful (time) experimental information ([9]), 
according to the a priori assumptions. For compu- 
tational reasons (but without loss of generality) we 
consider the number of data points of both experi- 
ments as N = max(Nf , Nt)  and the frequency points 
equispaced, i.e. a k  = $k. With these assump- 
tions we can use the FFT algorithm and consider 
H(eJ"h) = Crzi &eJnnk for the FIR case, or ap- 
proximately in the case of IIR systems when we take 
Nt as mentioned above. 
Therefore the model H ( z )  in the frequency domain 
can be represented by the complex vector f i  = 
[ H(eJno) ... H(eJnN-1) 1' and in the time do- 

main by the real vector h = [ ho . . . hnr-1 1'. 
Both are related by the linear operations f i  = FFT(h) 
and h = I F F T ( k ) .  
Here we approach X, robust identification with a 
restricted behavior in the time domain. Specifically 
the time response of the model (step, impulse, etc.) 
should be limited in a weighted too sense, according 
to the consistency in the time domain. The consis- 

A 

Xm(P1 K ) .  

and has an impulse response restricted by 

YL I h 5 YU 

( Y L ) ~  = m m  [Y; - et, - ~ p - j ]  

( y u ) j  = min [Y; + e t ,  K p - j ]  

(4) 

(5) 

(6) 

In the above, we have considered without loss of gen- 
erality, an impulse response experiment. The case 
of a generic input uT = [ uo un ] can be 
handled by simply replacing h by U h  in (4), were 

'111 . . . 
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Also in the general case were the experimental points 
y t  in (4) do not coincide with the N points of vec- 
tor h to be determined, the necessary data points 
can be interpolated from the experiment. As men- 
tioned before, we are considering the case were each 
hk has a corresponding experimental datum yi, for 

Next we define an equivalent condition for consis- 
tency, based on the relation between both admissible 
experimental noises qf E Nf and qt E Nt. 

Lemma 3.1 Both a priori and a posteriori informa- 
tion are consistent if and only if there exists a func- 
tion H E S with frequency points f = yf + qf , such 
that qf  E A, the latter being defined by:  

h e { q f  

le = 0 , .  . .) N - 1. 

yL - I D F T ( J J )  5 m F q q f )  5 yu - I D F T ( Y ~ ) }  

tency and identification procedures will be attempted a convex subset of Nf . 
as follows. 
Given the experiments y f  and y t  and the a priori 
sets S ,  Nf and Nt, determine: 

1. If the a priori and a posteriori information are 

The next theorem from [2] provides an equivalent con- 
dition for the existence of a function H E S which 
satisfies the unconstrained problem (3). 

consistent. i.e. the consistencv set, Theorem 3.1 There eoists H E S which interpo-  
lates the data points f = y f  + qf as in (3) if and 

only if 8 (Q-4 diag[fi]Qf) 5 K and Q > 0, where } (2) 
y i  - H ( G a k )  E Nf, 
Y4, - h, E . G ,  

is nonempty. Here k = 0 , .  . . , Nf - 1 and n = 
O , . . . , N t -  1. 
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and where diag[a] denotes a diegonal met+ whose 
main diagonal is vector a. 

Using this result we can state now the main result: 

Theorem 3.2 The mixed time/fiequency robwt 
identification problem presented so far i s  consistent 
if and only if  A # 0 and, 

The above is a linearly constrained convex (nondifeer- 
entiable) optimization problem. 

Corol lary  3.1 The mixed time/fieqssency robwt 
identification problem is consistent if the following are 
satisfied: 

YL F I D F T ( Y f )  5 Yu (10) 

(11) 5 ( Q - i  d i e g [ y f ] Q f )  5 K 

Furthermore, the models which belong to this subset 
of S ( y f ,  y t )  interpolate exactly the experiment y f  . 

4. Robust Identification 

Once consistency is established, the second step can 
be attempted. Using the above results, we obtain 
an identification procedure which produces a nomi- 
nal model in the consistency set S ( y f ,  yt ) .  This type 
of algorithms are called interpolation algorithms and 
have several advantages over the usual “two step” 
ones ([5, 61). Because the identified model is in set 
S ( y f  , y t ) ,  its distance to the Chebyshev center of this 
set is within the diameter of information ([7]). As a 
consequence the algorithm is optimal up to a factor 
of 2 as compared with central strongly optimal pro- 
cedures. For the same reasons, it is also convergent 
and therefore the modelling error tends to zero as the 
information is completed. 
The procedure is similar in spirit to the one in [2) 
and is based in the parameterization of all solutions 
of the Nevanlinna-Pick problem ( [ l ] ) .  Here we con- 
sider the generic case for which the Pick matrix is 
strictly positive definite and therefore the solution is 
nonunique. The degenerate case for which there is a 
unique solution can be found in [1, 21. 
e Find a noise vector TI! E A such that 

3 (Q-4 diag [ y f  + vi ]  Q j )  < K (12) 

Note that there is no need to find the optimal in 
(9), but any vector q f  in the admissible set A which 
achieves strict inequality. 
0 Compute the Pick matrix 

(which should be positive definite), replacing 

0 Compute the interpolating solution 
H(eJ0”)  = +?Ilk. 

for Q E %Yw and T ( z )  defined in [l]. If q(z)  is con- 
stant, H ( z )  is of order N. The multiplicity of solu- 
tions depends on the choice of q(z) and of T ( z ) ,  which 
in turn depends on qf E A. This suggests a further 
optimization step to select the optimal q f  and q ( z ) ,  
which minimizes a certain criteria. This problem can 
also be solved via convex optimization. 
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