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Abstract 
To recognize objects and to determine their poses in 

0 scene we need t o  find correspondences between the 
features eztracted from the image and those of the ob- 
ject models. Models are commonly represented by  de- 
scribing a few characteristic views of the object repre- 
senting groups of views with similar properties. 

Most feature- based matching schemes assume that 
011 the features that are potentially visible in a view will 
appear with equal probability, and the resulting match- 
ing algorithms have to allow f o r  uerrors" without really 
understanding what they mean. PREMIO M an object 
recognition system that w e 3  CAD models of 3D ob- 
jects and knowledge of rurface reflectance properties, 
light sources, sensor characteristics, and feature detec- 
tor algorithms to generate probabilistic models for U 
given view cluster. 

The purpose of this poper is t o  present 0 Bayesian 
approach to the problem of given an image, how to de- 
termine the correct view class it belongs to ,  using the 
probabilistic models produced by  PREMIO. 

1 Introduction 
Model-based vision systems are very useful for in- 

dustrial vision tasks where CAD models of the parts 
to be manipulated or inspected are already available. 
Other areas where vision systems based in CAD mod- 
els are useful are applications in hazardous environ- 
ments, such as nuclear plants and nuclear waste man- 
agement. Examples of such vision systems are found 
in [l, 4, 6, 9, 11, 13, 141. 

A model based vision system attempts to find cor- 
respondences between feahres of a model object and 
features detected in an image for purposes of recog- 
nition, localization or inspection. Critical to this is 
the problem of describing the models. A common ap- 
proach is to describe them by using characteristic views 
[5, 14, 2 ,  171. A characteristic view is a representative 
view of a grouping of views or view aspect with similar 
properties. 

The view aspect concept is very important in ob- 
ject recognition since it captures the topological char- 
acteristics of the views of' an object. It allows a com- 
pact representation of the features of the models to 
be matched against the features in an image. Then, 
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the object recognition/localization task can be divided 
into the following steps: (1) determine the correct view 
class; (2) find the correspondences between the features 
extracted from the image and those in the view class 
representation; and (3) use these correspondences and 
the links between the 3D features and the view class 
features to determine the pose of the object. 

In this paper we will concentrate on the first step. 
That is, we will show how to the determine the correct 
view class given an image of an object. An example of 
how to solve the steps (2) and (3) can be found in [4]. 

2 Characteristic Views 
Characteristic views can be found by analytically 

partitioning a viewing sphere centered at the object 
into aspects [20, 8, 19, 101. The boundaries between 
these aspects are very accurate. However, the number 
of aspects tends to be large due to accidental view- 
points. An alternative approach, is to uniformly sam- 
ple the viewing sphere around the object and to group 
together views that are "similar" [16]. This method 
results, in general, in a lesser number of aspects. How- 
ever, the number of aspects will depend on the res- 
olution of the sampling scheme and on the similarity 
measure used. In this paper, we use the later method 
to demonstrate our theory on view classification, since 
it is easy to implement. However, we realize of the 
shortcomings of this method and we plan to use an 
analytical approach in the future. 

2.1 Sampling the Viewing Sphere 
The viewing sphere is sampled using a hierarchical 

tessellation that subdivides the faces of an icosahedron 
recursively [16]. The centroid of each equilateral tri- 
angle is taken as a representative viewpoint for that 
triangle and the corresponding topological view, i.e. 
the aspect depends on this viewing position. For this 
paper, we used a resolution of 320 sample viewpoints, 
which is fine enough to partition the view sphere into 
fairly well defined clusters for our experiments. 
2.2 Clustering Views 

The views obtained from the sampled viewing 
sphere are grouped into equivalence classes using a sim- 
ilarity metric. 

For this particular application we decided to cluster 
views depending on which model segments were ob- 
served in the views. Thus, each cluster had views in 
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which roughly the same segments were observed. This 
is a simple but effective criteria for classification. 

Formally, let C be the set of sampled views C = 
{VI ,  U Z ,  .. . , U,,}. Each view is represented by a binary 
vector, each bit representing a model segment. A bit 
in the vector is set to 1 if the corresponding segment 
is observed in the view, and it is set to 0 otherwise. 
Then, we want find a partition {Cl, C,,, . . , Cc) of the 
set C such that U;=,Ci = C and C; n Cj = 4, V i  # j, 
and such that all the views in each subset Ci have the 
same segments. 

This problem can be solved by using hierarchical 
clustering[7]. The algorithm starts with c = 320 sin- 
gleton clusters. These clusters are then merged succes- 
sively on the basis of a similarly function: 

XTZ' 

/I x 1 1 1 1  2' I I  d(Ci, Cj) = 

where x ,  x' are the two binary vectors that need to 
be compared. This metric will cluster together those 
views that share in general, a high number of model 
segments. 

3 Probabilistic Prediction Models 
Most feature-based matching schemes assume that 

all the features that are potentially visible in a view 
cluster will appear with equal probability, and the re- 
sulting matching algorithms have to allow for "errors" 
without really understanding what they mean. P R E  
MI0 [3] is a CAD-based vision system that models 
some of the physical processes that can cause these er- 
rors. It uses CAD models of 3D objects and knowledge 
of surface reflectance properties, light sources, sensor 
characteristics, and feature detector algorithms to es- 
timate the probability of the features being detectable 
as well as their attributes. 

For each view cluster C of an object, the system 
PREMIO builds a probabilistic predict ion model  [4] by 
combining hundreds of views within the cluster. Next, 
we will briefly describe this model since it is the basis 
of our matching scheme. 

A model A4 is a quadruple M = (L, R, f~ , gR)  where 
L is a set of model features or labels, R is a set of rei* 
tional tuples of labels, f~ is the attribute value map- 
ping that associates a value with each attribute of a 
label L, and gR is the strength mapping that associates 
a strength with each relational tuple of R. 

The system predicts  which features are detectable 
for a given configuration of light and sensor and a given 
image processing sequence. Then, given a set of n pre- 
dictions within a view cluster, PREMIO approximates 
the detectability of a 2D feature by the frequency rate 
of its appearance. Two 2D features appearing in two 
different images are considered to be the same feature 
if they have a common 3D originating feature. 

The set of labels L in the model M is formed by 
those 2D features that have high enough probability 
of being detected (above threshold t t ) ,  as a whole 
or in pieces for the given set of sensors and light 
sources. Furthermore, each feature in L has associated 
attributes which are given by the mean and the stan- 
dard deviaiion of the attribute values of the feature for 
the n predictions. 

Similarly, PREMIO predicts which relationships 
among features would be detected and their attributes. 
The probability of a relation among a set of features 
to holding is approximated by the frequency rate of its 
appearance. The set of relational tuples R is formed 
for those relations among features in L such that they 
have high enough probability of holding (above thresh- 
old t R ) .  As with feature attributes, the relationship at- 
tribute values of the tuples in R are represented by the 
mean and standard deviation of the relational tuples 
for the n predictions. 

The model M = (L, R, fu, 9s.) obtained in this way, 
is a probabi l idic  model of the object for the given set of 
configurations of sensors and lights. Note that neither 
all the features in L, nor all the relational tuples in R 
need to be present in a single prediction. Neither do 
all the features of a particular prediction need to be 
in L. The model M combines a group of predictions 
into a single model, which is a sort of "average" model. 
The differences between the model M and the individ- 
ual predictions that were used to build the model are 
summarised in a set of statistics 0 [4]. 

3.1 Features and Relations 
The system PREMIO, in its current implementa- 

tion, uses line segments as features. The edges ex- 
tracted from an image are grouped perceptually to 
form interesting patterns [12]. These patterns consti- 
tute the relations among the features that are used in a 
consistent labeling scheme to match image features to 
model features. These arrangements are abstract, and 
their significance is determined by the three dimen- 
sional structure that they imply and by the amount 
of information they contribute to estimating the pa- 
rameters in a transformation from three-dimensional 
model to the two-dimensional image. These features 
and relations are described in detail below. 

Segments. Segments are characterized by their two 
vertices s = ( ~ 0 ~ ~ 1 ) .  The segments in the model 
are uniquely labelled and during the matching 
process, it is desirable that there is a one-to-one 
mapping between the image segments and corre- 
sponding model segments. Each segment has 4 
attributes associated with it, ie. the length of the 
segment, the midpoint of the segment (the x and 
y coordinate) and the orientation of the segment. 

Junctions of 2 segments. Junctions of two seg- 
ments, are junctions where two line segments 
meet, J2 = ( ~ 0 ~ ~ 1 ) .  

Junctions of 3 segments. Similarly, junctions of 3 
segments are junctions where three line segments 
meet, 33 = (so, 3l,s2). 

Triples. A triple is an ordered set of three lines, 
T = ( 1 0 , 1 ~ , 1 2 ) ,  with the lines traced clockwise, 
so that the triple has a well-defined inside. The 
convention for numbering the segments of a triple 
is fixed and is clockwise from inside. The angles 
are not measured, only their convexity is tested. 
Triples are good relations since they are plentiful 
in images of machined parts, but are not likely to 
be accidental. 



3.2 Metric 
Likewise a model, an image I is a quadruple I = 

(U,S,fv,gs) where U ia a set of image features or 
units, S is a set of relational tuples of units, fv is 
the attribute-value mapping associated with U and gs 
is the strength mapping asociated with S. 

In order to compare the attributes of the labels in a 
set L and those of the corresponding units in a set U 
we used the metric deecrihed below. 

Let h : L + U be the feature correspondence m a p  
ping, that assigns labels in the model to units in the 
image. Then, the feature metric error for the mapping 
h, Ejv(h) ,  is defined by: 

Ejcr(h) = P(fU 0 h, fLIW = C P l U ( I ,  h(l)) I (2) 
I€H 

with 

where u = h(Z) and 

-1 
((Zm', dm), (F2, CL-), (A  , U;), (a', (7;)) are the at- 
tribute values of label I, (a:, yk, Au, a") are the at- 
tribute values of unit U, and H is the domain of the 
mapping h. 

4 View Classification 
Given an image, the objective is to identify an ob- 

ject and in particular which view class it was origi- 
nated from. Let C1, C2,. . . , C, be a set of potential 
view clusters. Given an image I, our aim then, is to 
select the cluster Ci to which the image will most likely 
belong to. To achieve thici, we will use a Bayesian ap- 
proach. 

Let P(C) be the a priori probability that an image 
from cluster C will be obslerved, and let P(IIC) be the 
probability that a given image I is captured when the 
object is observed from a viewpoint within cluster C. 

Then, given an image I, we will classify it as coming 
from cluster C,, if the U p o s t e r i o r i  probability P(CII) 
is maximum for C = C,. 

The a poster ior i  probability P ( C ( I )  can be com- 
puted using Bayed Theoriem [18]: 

4.1 Probabilistic Model 
In order to apply equation (3), we need to compute 

the involved probabilities. In this section we describe a 
probabilistic model that c a n  be used for this purpose. 

The probabilities P ( C )  can be estimated from the 
area that the corresponding cluster spans on the view- 
ing sphere. The larger the area, the higher the prob- 
ability. The probabilities P(IIC) depend on the se- 
lected features comprising the model. We will model 

this probability as a multivariate Gaussian distribu- 
tion with mean vector and covariance matrix C of 
the form: 

P(I1C) = (4) 

where g is (d  + 4) x 1 feature vector representing the 
image I. The feature vector 2 consists of: the number 
of segments in the image, the number of junctions of 2 
segments, the number of junctions of 3 segments, the 
number of triples, and the feature metric error for the 
d most detectable segments. The mean and covariance 
matrix of the distribution can be estimated from a set 
of samples generated with the prediction module of the 
PREMIO system. 

The discriminant function for the ith class is 
g;(z) = P(GII)P(C;) , 

or equivalently, 

g:(z) = -1/2(p - p i ) * ~ - ' ( g  - - -a p . )  + InP(Ci) . (5) 

5 Experimental Protocol 
The importance of controlled experiments has only 

recently been stressed in computer vision. Controlled 
experiments are essential in order to illustrate the va- 
lidity of a solution presented. We tested the system 
using artificially generated data as well as real images. 
In this section we describe the experimental protocol 
used to test the system, based upon the one presented 
in [15]. 

5.1 Model Generation 

ated below. 
The steps needed to generate the model are enumer- 

1. 

2. 

3. 

4. 

5. 

Partition the viewing sphere C into a finite set of 
partitions CI, C2, . . . , C,. Each partition is called 
a cluster and C1UC9U..Cn = C 

Each region C of the viewing space is a union 
of spherical sectors between two spheres. Each 
subregion is specified by a range of longitude 
(@cmin,@cm..) and latitude (ecmin,0cm..) angles 
and radius of the viewing spheres (pcmin, pc,,,). 

Corresponding to each cluster select a region Z 
of the illumination space. The illumination space 
is defined in a manner identical to that of view 
space specification, i.e. by a patch which is 
bounded by ( @ I ~ ~ ~ ,  @Im.=) along the longitude and 
(elmin, $Immx) angles along the latitude. The radius 
is specified (piminl a,,.,). 
The cluster is uniformly sampled. Let C,, denote a 
set of viewing positions and I,, be the correspond- 
ing set of light orientations. Here, the categorical 
variable vi will take values which are limited by 
the cluster boundaries defined above. 

Generate the predictions. For each pair (Ci, I,) E 
C, x Z,, use the prediction module to predict the 
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subset of detectable labels Lv,, its associated re- 
lationship attribute mapping f ~ ~ ; ,  the subset of 
dectectable relational tuples €2,,i, and ita associ- 
ated relationship attribute mapping gRvi. The 
prediction module also generates the correspond- 
ing set of units Uvi,  the associated mapping fuVi, 
the set of relational tuples Suil and the associated 
attribute mapping gsvi. 

6. Obtain detectability frequencies. The previ- 
ous step produced Nu x N, different predic- 
tions. We approximate the probability of a la- 
bel/relationship being detected, given that the 
view and the light are in the specified re ions Ci 
and Z,, by the observed frequency rate of tgheir de- 
tectability in the generated predictions. These ap- 
proximations are based on the fact that the predic- 
tions were made from camera and light positions 
that were generated having uniform distributions 
aa well as on the central limit theorem ( provided 
that N, and N, are large enough). 

Select the desired 
minimum label detectability t f  and the minimum 
relational detectability t R  and that the relational 
tuples have a detectability grrater than tR. 

7. Select desired detectability. 

8. Combine thc predictions. The Nu x Ni predic- 
tions are coniliined into a single model M; = 
(L, R, f ~ ,  gR) for each cluster such that the labels 
in L have a detectability greater than t ~ .  

Figure 1: (a) Cube3Cut. (b) Fork. 

9. Estimate the mean and covariance matrix of the 
probability distribution P(IICi) by using the sam- 
ple mean and covariance. 

6 Experiments and Results 
In our experiments we used a CCD camera with 

focal length 4.8 mm. and a resolution of 1.25901 
"./pixel x 1.18758 "./pixel. The light is a point 
source of unpolarized light, of intensity 1 cd. The set 
of features L is made up of 2D-segments, projections 
of the 3D-segments forming the objects. The feature 
attribute mapping f~ assigns with each label I ,  four at- 
tributes: its midpoint image coordinates, xf, and, yL, 
its length, A', and its orientation a'. Each label at- 
tribute value is given by a mean and a standard devia- 
tion representing the variations of the attribute among 
the different predictions used to obtain the model. The 
set of units U is the set of 2D-segments forming the im- 
age to be matched. The feature attribute mapping fv 
associates to each unit U four attributes: its midpoint 
image coordinates, xk and, yk, its length, X u ,  and its 
orientation au. 

Figure 1 shows images of CubeJCut and Fork, two 
of the objects modeled in PREMIO. Figure 2 shows a 
few predictions for a cluster of CubeJCut and a cluster 
of Fork. 

We had used 5 clusters, of which 3 belonged to 
CubeJCut (Cl,C2, and C3) and 2 belonged to Fork 
(Fl  and Fa). Figures 3 and 4 show visualizations of 
the sets of features of the models of CubeJCut and 
Fork respectively. The features are drawn as segments 

with their mean attribute values. The numbers shown 
by the segments are the feature ID'S and they indicate 
their relative detectability, with the lower the number, 
the higher the detectability. 

The classification results for 100 images of each clus- 
ter are summarized in Table 1 and 2. Table 1 gives the 
classifications obtained by selecting the cluster with 
the highest probability, while Table 2 gives the clas- 
sifications obtained by selecting the cluster with the 
highest or second highest probability. 

Table 1: Classification Results (First Choice). 

7 Conclusions 
We presented a Bayesian approach to the view class 

determination problem. The view classes used con- 
tained probabilistic information that takes into ac- 
count both geometrical and illumination characteris- 
tics. As shown in Tables 1 and 2 the test images 
matched best or second best to the correct view class 
in approximately 80% of the cases and above 90 % 
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Figure 2: (a) Cube3Cut: predicted images. (b) Fork: 
predicted images. 

of the cases respectively. The images that failed to be 
correctly classified correspond to views near the bound- 
aries of the clusters. Even though these views have the 
same segments as the rest of the views in their class, 
they look significantly different. This suggests that 
different definitions of clusterhg should be studied. 
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