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Abs t rac t  

In this paper we propose a new robust identification frame- 
work that combines both frequency and time-domain ex- 
perimental data. The main result of the paper shows that 
the problems of establishing consistency of the data and of 
obtaining a nominal model and bounds on the identiiica- 
tion error can be recast as a constrained finite-dimensional 
convex optimization problem that can be efficiently solved 
using Linear Matrix Inequalities techniques. This approach, 
based upon a generalized interpolation theory, contains as 
special cases the Carath6odory-Fejtr (purely time-domain) 
and Nevanlinna-Pick (purely frequency-domain) problems. 
The proposed procedure interpolates the fiequency and 
time domain experimental data while restricting the iden- 
tified system to be in an U priori given class of models, 
resulting in a nominal model consistent with both sources 
of data. Thus, it is convergent and optimal up to a factor 
of 2 (with respect to central algorithms). 

1 Introduction 

During the past few years a large research effort has 
been devoted to  the problem of developing determin- 
istic identification procedures that, starting from ex- 
perimental data and an a priori  class of models, gen- 
erate a nominal model and bounds on identification 
errors. These models and bounds can then be com- 
bined with standard robust control synthesis methods 
(such as X-, p or P )  to obtain robust systems. This 
problem, termed the Robust Identification problem was 
originally posed by Helmicki et. al. [7] and has since at- 
tracted considerable attention [3, 6, 8, 9, 12, 14, 16, 171 
and references therein. 
The case where the experimental data available is gen- 
erated by frequency-domain experiments leads to X w -  
based identification procedures. In this context the 
main effort has been directed towards establishing ro- 
bust convergence of the algorithms and analyzing their 
untuned characteristics [SI. 

The case where the experimental data available origi- 
nates from time-domain experiments leads to 1, identi- 
fication, addressed in [8, 10, 121. The untuned nature of 
the algorithms based on time series is strongly depen- 
dent on the input sequence [lo]. It can be shown that 
there is no untuned algorithm capable of identifying a 
system using only impulse response measurements [8]. 
Finally, recent papers [5, 181 proposed interpolatory 
algorithms that use data obtained from time domain 
experiments to generate a nominal model together with 
an X, bound on the identification error. 
In this paper we propose a new robust identification 
framework that takes into account both time and fre- 
quency domain experiments. Thus, the problem where 
“good” frequency response fitting (small X, error 
norm) leads to “poor” fitting in the time-domain is 
avoided. Additionally, from an information theoretic 
viewpoint, more experiments produce a smaller consis- 
tency set of undistinguishable models, and as a conse- 
quence a smaller worst case error. 
The main result of the paper shows that the problems 
of establishing consistency of the data and of obtaining 
a nominal model and bounds on the identification error 
can be recast as a constrained finite-dimensional con- 
vex optimization problem that can be efficiently solved 
using Linear Matrix Inequalities techniques. This ap- 
proach includes as special cases the frequency based 
approach of Chen et. al. [3] and the time domain ap- 
proach of Chen and Nett [5] and Zhou and Kimura 
[W. 

2 Preliminaries 

2.1 Notation 
By L, we will denote the Lebesgue space of complex 
valued matrix functions essentially bounded on the unit 
circle, equipped with the norm: 

A 
llG(z)llw = ess SUP a(G(z))  

121=1 
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where a denotes the largest singular value. B~ 31, we 
denote the subspace offunctions in L, with a bounded 
analytic continuation inside the unit disk, equipped 
with the norm llG(z)llm = esssupl, l<la(G(z)).  Also 
of interest is the space Rm,p of transfer matrices in X, 
which have analytic continuation inside the disk of ra- 
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time domain bound: dim p > 1, i.e. the space of exponentially stable sy5  
tems with a stability margin of (p-  1). When equipped 

with the norm IIG(Z)llm,p = S~p~, (<pB(G(Z)) ,  Hm,p 

becomes a normed Banach space. E H m =  { F  E X,, 
llFll, 5 1 )  denotes the closed unit-ball in H,. Simi- 
larly i?l-lw,p denotes the closed unit-ball in 
Given a vector x E Rn its infinity norm is defined as 
(Izll, = maxj Jxil. tl denotes the space of absolutely 
summable sequences h = {h,} equipped with the norm 

llhlll, = ,E /hi1 < 00. tco denotes the space of bounded 

A sequences h = {hi} equipped with the norm l l h l l k ,  = 
sup lh,l < 00. Given a sequence h E tl, its z-transform 
i > O  

is defined as H ( z )  = 
For simplicity in the sequel we consider SISO models, 
although all results can be applied to MIMO systems, 
following Chen et. al. [4]. 

A 

A 

A 

A m  

r=O 

kz". 

2.2 The Robust Identification Framework 
In this paper we consider the case where the a posteriori 
experimental data originates from two different sources: 
i) frequency and ii) time domain experiments. The first 
type of information consists of a set of NI samples of 
the frequency response of the system: y i  = & g + l j i ,  k = 
O , ,  . .,NI - 1, where j i k  = E(dnh), k = 0,. . ., N f  - 
1, !& denotes the sampling frequencies; and where ~i 
represents complex additive noise, bounded by cf in 
the t ,  norm (i. e. in the class &,(~f)). 
The time domain data consists of a set of the first Nt 
samples of the time response corresponding to a known 
but otherwise arbitrary input, also corrupted by addi- 
tive noise yk = (Uh), + v i ,  n = 0, . . . , Nt - 1, where 

is the Toeplitz matrix corresponding to the input se- 
quence and where the noise $, is real and belongs to 
&(et) .  In the sequel, for notational simplicity we will 
collect the samples y i  and yf, in the vectors yf E (cNf 
and y' 
The a priori information available is that the system 
R under consideration belongs to the following classes 
of models: 

1. H E 3 ~ , ( p ,  K )  2 (H E 'JC,,~: IIHllm,p I XI i.e. 
exponentially stable systems having a stability 
margin of ( p  - 1) and a peak response to com- 
plex exponential inputs of K. Thus the impulse 
response of these systems satisfies the following 

-~ ~ 

lNotc that this is the inverse of the usual z transform. There- 
fore for causal, stable systems H ( z )  is analytical in lzl < 1. 

2. Additionally, the system H is known to belong 
to a class 9 of models satisfying a time-domain 
bound of the form: 

Note that this class includes as a special case the 
systems described by (1) when q5t(k) = - K P - ~  
and & ( I C )  = K p e k .  

To combine both classes of models we define the a pri- 
oriset of systems 

The a priori information we have considered simply 
adds to the usual 'H, identification procedures a bound 
on the first N4 samples of the impulse response. 
To recap, the a priori information and the a posteriori 
experimental input data are: 

By using these definitions the robust identification 
problem with mixed data can be precisely stated as: 

Problem 1 Given the ezperiments (yf , yi) and the a 
priori sets (S, N f ,  Nt), determine: 

1. If the a priori and a posteriori information are con- 
sistent, i.e. the consistency set 

is nonempty. 

tency set S ( y f  , y') ,  and an error bound. 
2. If (3) holds, find a nominal model in the consis- 

2.3 Generalized Interpolation Framework 
In this section we briefly present a generaliied interpo- 
lation framework developed in [I] and applied to X, 
control in [15]. This framework will be used in section 
I11 to solve Problem 1 

Theorem 1 There ezzsts a transfer function f ( z )  E 
OX, (BI3,) such that: 

(4) f ( z )C-  (21 - A)-' = C+ 
&€I) 
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i f  and only i f  the  following discrete tame Lyapunou 
equation has a unique positive ( semi)  definite solution. 

M = A* M A  + CTC- - C;C+ (5) 

where A , C -  and C+ are constant complez matrices 
of appropriate dimensions. If M > 0 then the solu- 
t i o n  f ( z )  is non-unique and the set of solutions can be 
parametrized in t e rms  of q ( z ) ,  a n  arbitrary element of 
OX,, as follows: 
- 

where T ( z )  is the J-lossless2 matriz:  

T ( z )  E 

AT = 
BT = 

CT = 

DT = 

Remark 
Pick and 

A 
M - l ( A '  -I)-' [ -C i  CI ] 

M - l  (A* - I)-l [ -C; Cf- ] I + [  $ 1  
1 It can  be shown that  both the Neuanlinna- 
the Carathiodory-Fejir problems are special 

cases of this theorem,  corresponding t o  a n  appropriate 
choice of the  matrices  A and C- [15]. 

3 Main Results 

Nevanlimna-Pick based identification algorithms ad- 
dress the case where the experimental data available 
is purely frequency domain, while Carath6odory-FejCr 
-based identification deals only with time domain data. 
In this section we exploit the generalized interpolation 
framework introduced in the previous section to solve 
Problem 1, obtaining a robust identification algorithm 
that combines both sources of data. To this effect, we 
will divide Problem 1 into two subproblems: i) consis- 
tency and ii) identification. The first consists of deter- 
mining the existence of a candidate model H € S which 
may have produced both, the time and frequency do- 
main experimental data. Clearly, this is a prerequisite 
to the second stage, the computation of the nominal 
model itself and a bound on the identification error. 

3.1 Consistency 
From equation (3) it follows that the problem of deter- 
mining consistency of the a posteriori and a priori in- 
formation reduces to establishing whether or not there 
~~ ~ 

'A transfer function H ( r )  is said to be J-lossless if 
H T ( l / r ) J H ( r )  = J when 121 = 1 ,  and H T ( 1 / r ) J H ( r )  < J 

[ :  :*I when 121 < 1. Here J = 

exists a model H E S that interpolates the frequency 
experimental data: 

L = y f  + g f ,  gf Enif (8) 

and has an impulse response that satisfies the following 
constraints: 

where the noiseless output U h  is the convolution of 
the input vector uT = [ uo u1 . . . U N , - ~  ] and the 
system H ( r ) .  
The main result of this section shows that consistency 
can be established by solving a finite-dimensional con- 
vex optimization problem. To establish this result we 
will first obtain an equivalent condition for consistency 
(Lemma 1) in the form of a linearly constrained gener- 
alized interpolation problem. In Theorems 2 and 3 we 
will show that this generalized problem can be recast 
in terms of an LMI optimization. 

Lemma 1 The a priori and a posteriori information 
are consistent i f  and only i f  there ezists a func t ion  H E 
X , ( p ,  K )  such that  

A = y f + v f ,  vf €Nf (10) 

(11) 

where 

The next Theorem 
conditions for the 

provides necessary and sufficient 
existence of a function H E 

X, (p ,  K )  which interpolates fixed frequency domain 
experimental data while, at the same time, satisfying 
a time-domain constraint. 

Theorem 2 Given  NI frequency-domain data points, 
H ( z i )  = wi, i = 0 ,  ..., N f  - 1 and Nt t ime-  
domain data points h k ,  k = 0,. . . , Nt - 1, there ezists 
H E X , ( p ,  X )  that  interpolates the frequency domain 
data and such that  H ( z )  = ho + h l z  + h2z2  + . . . + 
hN,-lzN'-l + . . . i f  and only if 

A M R ( w ,  h )  = 
MX 1 > o  



where ing LMI feasibility problem (in Ft and W):  

Mx 
R 

Q 

so where this  last inequality should be understood in the 
componentwise sense and where 

Remark 2 T h e  (1 , l )  block of MR i s  the Pick ma-  
t r i z  corresponding to  the frequency domain consistency 
problem solved in Chen. et. al. [3] via the classi- 
cal Nevanlinna-Pick interpolation. Block (2,2) is the 
Carathiodory-Fejir matrix  corresponding t o  the time 
domain consistency problem solved in [5] and [d]. MX 
is a cross-coupling term due t o  the existence of both 
types of experimental data. 

3.2 Identification 
Once consistency is established, the second step to- 
wards solving Problem 1 consists of generating a nom- 
inal model in the consistency set S(yfl yt). The iden- 
tification algorithm that we propose is based on the 
Parameterization of all solutions of the generalized 
Nevanlinna-Pick interpolation problem [l] presented in 
Theorem 1. For simplicity we consider the case where 
the matrix MR is strictly positive definite and therefore 
the solution is nonunique. Details for the degenerate 
case where there exists a unique solution can be found 
in [l]. The algorithm can be summarized as follows 

Combining the previous result with Lemma 1 yields the 
following necessary and sufficient condition for consis- 
tency: 

Lemma 2 The a priori and a posteriori information 
are consistent if and only i f  there exists two vectors: 

1.- Find feasible data vectors w, h for the consistency 
problem (21), (22) by solving the LMI feasibility 
problem given by (23). 

2.- Compute the generalized Pick matrix MR in (13). 
3.- Use Theorem 1 to compute a model from the con- 

sistency set 5. Recall that all the models in S 
(i.e. all the solutions to the generalized interpo- 
lation problem) can be parametrized as a Linear 
Fractional Transformation (LFT) of a free param- 
eter q(z) E EHm as follows: 

ho 

w = [ : ] ? h =  [ 1 (20) 

W N j  - 1 hNt-1 

such that 

M ~ ( w , h )  > 0 and (21 ) 
(W - yf)  E Nj , (Uh - y*) E Nt (22) 

From Lemma 2 it follows that the consistency problem 
can be reduced to solving a feasibility problem in terms 
of the time and frequency domain vectors h and w. 
This feasibility problem can be recast in terms of LMI's 

In particular, if the free parameter q(z) is chosen as 
a constant, then the model order is less than or equal 
to Nf + Nt.  

Remark 3 Note that T ( z )  depends o n  the choice of 
vectors w,  h. Thus,  there are additional de.qrees of free- 

(and thus efficiently solved, using for instance interior- 
point methods [13, 21) as follows. 

dom available in the problem (choices of wi h and q(z))  
Theorem 3 T h e  con8istency problem with mized that could be used to  optimize additional performance 
time/frequency-domain data is equivalent t o  the follow- criteria (e.g. model order). 
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Since the proposed algorithm is interpolatory, it has 
several advantages over the usual “two step” algorithms 
sometimes used in the context of robust identification 
[6, 71. In particular, since the identified model is in 
set S(yf ,yt) ,  its distance to the Chebyshev center of 
this set is within the diameter of information 1111. As a 
consequence the algorithm is optimal up to a factor of 2 
as compared with central strongly optimal procedures. 
For the same reasons, it is also convergent and therefore 
the modelling error tends to zero as the information is 
completed. 

3.3 Analysis of the Identification Error 
In this section we derive upper and lower bounds for the 
worst-case identification error. Since these bounds are 
given in terms of the radius and diameter of information 
[7, 31, they are valid for all interpolatory algorithms 
taking as inputs the available a priori and a posteriori 
information. 

Lemma 3 A s s u m e  that  Gu(k) = - @ p ~ ( k )  = @(k) 2 
0, k = 0,. . . , N* - 1 (symmetric  t ime  domain  a priori 
i n f o m a t i o n ) ,  and let 6 = min[ef, @(a), e], where 
U is a Vector whose components are the input  signal 
sequence. Then ,  the radius of information ‘Rz satisfies: 

Lemma 4 A s s u m e  the same a priori i n f o m a t i o n  as 
in the previous lemma.  T h e n  the radius of information 
RI can be bounded above by: 

where M = Nt + N f  - 1 and U; are a func t ion  of the  a 
priori in format ion  only. 

4 Example 

We will see that the a priori assumptions are consistent 
with the time domain OT frequency domain a posteri- 
ori information, but not with both simultaneously. To 
this end, note that g(z) = 1 belongs to X,(p, K ) ,  and 
interpolates exactly the frequency data. On the other 
hand, 

10 
10 - z 

h(2) = - 

also belongs to R,(p, K), and interpolates exactly the 
time domain data. However, the generalized Pick ma- 
trix corresponding to this data is not positive definite, 
and therefore there is no function in X,(p ,K) ,  that 
interpolates simultaneously both set of data, 
Note in passing that in the noiseless case it is not neces- 
sary to use the generalized theory, as we can always find 
the solution to the “pure” Carathiodory-FejCr prob- 
lem, and then find interpolation constraints on the free 
parameter q(z). The real advantage of our procedure 
appears in practical cases with the presence of both, 
time and frequency measurements errors. 
To see this, we will use our algorithm to compute the 
smallest noise bound3 that renders the experimental 
data consistent with the a priori  information. In this 
example the smallest noise bound necessary for con- 
sistency satisfies 0.0484 < emin < 0.0485. This means 
that if (time and frequency) noise level is below 0.0484 
the a posteriori and a priom’ information are inconsis- 
tent. On the other hand, if both (time and frequency) 
levels are above 0.0485, there always exists an interpo- 
lating function for both types of data. 
In the latter case, a transfer function in the a priori  
class that approximately interpolates the samples is 
given by 

where the coefficients q, d; are given in Table 1. This 
function was obtained by taking q ( t )  = 0, in the pa- 
rameterization in Theorem l. Note that this function 
i s  analytical in IpI 5 5 and that the supremum of If(z)[ 
on IzI < p is 9.983, barely below K = 10. 

5 Conclusions and Directions for Future 
Research 

In this paper we propose a new generabed robust iden- 
tification framework that combines both frequency and 
time-domain experimental data, thus avoiding situa- 
tions where a “good” fit of the data provided by one 
class of experiments (such as frequency domain) leads 
to poor fitting of the data provided by the other exper- 
iments. This situation was illustrated with the simple 
example of section IV, where the time and frequency 

In this section, we present a simple example that il- 
lustrates the importance of considering both time and 
frequency experimental information. Take the follow- 
ing data: 
1. A priori  information: K = 10, p = 5. For SimPlic- 

ity, we will initially consider ~f = et = 0 (noiseless 
sampling). 

2. A posteriori information: 

0 Frequency data: f(l) = 1, f(j) = 1, f(-1) = 1 

0 Time domain data: fo = 1, fi = 0.1, fi = 0.01 

‘For simplicity, we consider the time and frequency noise 
There is no difficdty in removing this bounds to  be equal. 

assumption. 

4200 



i !  n; 
7 9.999767740779586e+OOI 
6 5.072924867250237e+OOO 
5 -2.551640808285396e+003 
4 -5.372773706720136e$OOl 
3 -1.574554690174881e+003 
2 -2.972034520574520e+004 
1 4.364987515471394e+004 
0 8.379592391659319e+005 

Table 1: Interpolating function coefficients. 

di 
1.000000000000000e+000 
1.338280454587666e+OOO 

-2.545742554172364e+OOl 
-3.375220737369664e+OOl 
-2.512930758906020e+OOl 
-2.973928502237764e+004 
4.943425510576053e+002 
8.379394293561344e+005 

domain data taken together is inconsistent with the a 
priori  information, but where each class of data is by 
itselfcompatible with it. 
The main result of the paper shows that the problems 
of establishing consistency of the data and of obtaining 
a nominal model and bounds on the identification error 
can be recast as a LMI feasibility problem that can be 
efficiently solved. 
Additionally, we have shown that in this context the 
set of models consistent with both the a priori and a 
posteriori information can be parametrized as a LFT of 
the experimental data, thus justifying the combination 
of the proposed algorithm with standard robust control 
synthesis techniques. 
Finally, as we indicated in section 111, there are still de- 
grees of freedom available in the problem. This raises 
the interesting possibility of using these degrees of free- 
dom to optimize an additional performance criteria, for 
instance minimizing the order of the nominal model, 
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