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A Parametric Extension of Mixed higher frequency behavior which naturally leads to a nonparametric
Time/Frequency Robust Identification identification [8].
This new result extends the time/frequency identification procedure
Pablo A. Parrilo, Ricardo S.&ichez Pea, and Mario Sznaier  in [18], [21] and uses interpolation algorithms in [3], to the case
of parametric/nonparametric model structures, based on a similar
framework. The parametric portion of the model should aféne
) ‘ . X in the unknown parameters. This includes cases of practical interest
cation framework is presented. The results can be applied to stable linear hanical flexibl I del hich b
time-invariant systems on which time and/or frequency experiments have as mec anica . exi _e structures, as well as models whic cap e
been performed. The parametric portion of the model should be affine concisely described in terms of a set of Laguerre or Kautz functions
in the unknown parameters, which includes practical applications such or, more generally, any other basis7@t [12]. In the case of flexible
as flexible structures. The consistency problem is cast as a constrained gtryctures, the lower frequency modes can be computed from the

finite-dimensional convex optimization problem that can be formulated .
as a linear matrix inequality. The proposed procedure provides an peaks measured from the approximate frequency response.

Abstract—A parametric extension to the time/frequency robust identifi-

interpolatory identification algorithm, convergent and optimal up to a [N general, the parametric information does not appear explicitly

factor of two (with respect to central algorithms). in the a priori knowledge (I, p) usually considered. Therefore, it
Index Terms—Analytic interpolation, interpolatory algorithms, linear IS "T‘pf’rta“,t to Include' it, if available, so that. less f:onservatlve

matrix inequalities, parametric identification, robust identification. a priori estimates of(K’, p) for the nonparametric portion can be

derived. This is the case of large peaks in the frequency response
of a flexible structure which should be “covered” by large values
I. INTRODUCTION of K [8]. This is a consequence of the fact that the usualiori
During the past few years a large research effort has been devdfif@rmation characterizes only the smoothness and magnitude of the
to the problem of developing deterministic identification procedura¥hole class of models but cannot distinguish among other properties
that, starting from experimental data andaapriori class of models, (€.9., low-frequency model structure). Instead, ahgiori parametric
generate a nominal model and bounds on the identification errd¢gowledge provides more “structured” information.
These models and bounds can then be combined with standardhe fact that from our procedure we obtain a consistency set
robust control synthesis methods (suchHas, (1, or p-synthesis) to allows different descriptions of the uncertainty. For instance, we can
obtain robust closed-loop systems. This problem, termed the rob@empute a global bound which covers the whole set and includes
identification problem, was originally posed in [11] and has sindeoth the parametric and nonparametric uncertainty. This can also
attracted considerable attention. be interpreted as having “exact” nominal parameters and a global
The case where the available experimental data is generagyind due to the uncertainty of the nonparametric portion. Unless we
by frequency-domain experiments leadsHg.-based identification have extra information, both interpretations are indistinguishable. The
procedures [3], [7], [11], [19]. When the experimental data availabRPproach of computing a global uncertainty bound is practical when
originates from time-domain experiments, identification is used considering robust controller design metho#@.(, (1, p-synthesis).
(see [14] and references therein). These two types of experimentgvertheless, different bounds on the parameters and nonparametric
data represent the response of the same system to different kindg@tion can be computed as well, although there are no specific
inputs. In the perfect information case (infinite number of samplegptimal synthesis algorithms in this case.
no noise) they are clearly equivalent. However, in practical casesThe paper is organized as follows. In Section Il we introduce
(partial information contaminated by noise) using both kinds of daa robust identification framework using both time and frequency
usually provides extra information. experiments and some background material. Section Ill contains the
Recent papers [5], [25] proposed interpolatory algorithms thgtain theoretical results. We show that the problems of establishing
use data obtained from time domain experiments to generatecasistency of the experimental data and éheriori information
nominal model together with af.. bound on the identification and of determining a nominal model can be recast into a finite-
error. Furthermore, a new robust identification framework that takégnensional linear matrix inequality (LMI) optimization form, which
into accountboth time and frequency domain experiments, has bed@¢nerates a model that interpolates the frequency domain data points
introduced in [21] and generalized in [18]. and is consistent with the time-domain experiments. Finally, in
All of the above results address nonparametric identification &ection IV we illustrate the advantages of these results with a simple
models with a worst case global bound. In many cases, part &fample.
the model has a clear parametric structure, and disregarding this
information may lead to conservative results. This is usually the 1I. ROBUST IDENTIFICATION FRAMEWORK
case of mechanical flexible structures, which have a well-definedry . (|35 of systems considered are discrete-time, causal,

parametric model for the lower frequency modes and an unknO\{sj{Hd stable ones. We denote then¥Bs) = Ha(L), with = € C, and
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The a posteriori experimental data can be obtained from twavhereD, is the open disK z, |2| < p} andD, is its corresponding
different sources: frequency response experiments and time-domesure. Also definét., asH.1, D asD; andBHo. £ {F € H..,
data. For the first one, we will consider the set'df samples of the ||F|l < 1}.
frequency response of the system measured with additive bounde@he class of models usually considerdd. (p, ') corresponds to
norseyk = hp + 7;A k=0,---,N; — 1, collected for notational exponentially stable systems (finite or infinite-dimensional). From a
simplicity |n a vectory? € CNf Here, h is a vector with its practical viewpoint, these systems have a stability margifpef 1),
componentshk equal toH (e’**), k =0,---,N; — 1. The additive a peak response to complex exponential input&ofand satisfy the
measurement noisg’ is assumed to belong to a certain noise setime domain bound
described below._ _ _ _ (k)| < Kp~*. ?)

The time-domain data considered is the set of the fisttime
response samples to a known but otherwise arbitrary input, aitBe above-defined sets will be used to characterize the nonparametric
corrupted by additive noiset, = (Uh),, + 7%, n=0,---,N, — 1. part of the modelHx, (z).

We define We seek the worst case identification of the combined paramet-
ric and nonparametric models using both the time and frequency

u(0) 0 0 experiments. The models in oar priori class will have a mixed

Ua u(1) w(@) e 0 parametric/non parametric structure, i.&,= H, + H,,. To this
: KR 0 end we define the sets of systems
w(Ny —1) -+ u(l) u(0) S (Hoo(p, K),p>1,K < 20}

as the Toeplitz matrix corresponding to the input sequence. Again, for the nonparametric part an® for the parametric component
notational simplicity, the measurements will be collected in a vectdf,(z). The latter is the class of affine models defined as
y' € R™. A T ,

To define thea priori noise classes, it is useful to introduce the P={p G{:).pe R Ppi € [, bil} @)
concept ofLMI regions[6]. These are regions of the complex planeywhere the componenig (=) of the vectorG(z) are known linearly
which are the feasibility domain of a given LMI. Such a class ghdependent functions. In Section lll, in order to compute parametric
regions is fairly general, as it can be shown [6] that its closure is tiegror bounds, we will also require these functions to satisfy the
set of all convex regions of the complex plane. separation condition

In this case, the LMI regions are useful to model _noise sets span{gi(z)} NS = {0}. (4)
because they provide a simple and exact way to take into account
multiple point frequency response experiments, i.e., the experimeftys condition is in fact an “identifiability” requirement and guar-
which producey” . In this situation, the “confidence region” for the@ntees a unique parametric/nonparametric decomposition for each
true system response is the intersection of the individual confiderfRi@MentH, (=) + Hxp (z) of the a priori set. To see this, note that if
regions [11]. Therefore, if the latter can be defined by means of &(?) = A1(2) + Bi(2) = A2(z) + B2(2), 4i € S.B; € P, then
LMI, the same is also true for the region corresponding to all tHed: — A2)/2 belongs both taspan{g:(z)} andS, in contradiction
experiments. Furthermore, this intersection region can be descritéh (4)- If this decomposition is not unique, then there are multiple
by the combination of all individual LMI's, i.e., the intersection ofParameter choices for each model in thepriori set, and as a
LMI regions is also an LMI region. consequence no “true” parameter values. Therefore, the parametric

In the time domain case, the noise is real-valued, and theref@@d nonparametric components will not converge separately, although
convex sets are in fact just intervals. However, adopting an Lmibe full model might converge to the real plant.
defined set can prove advantageous if the independency assumptigiynother motivation for the above separation condition between the
on noise samples turns out to be conservative. For example, itP@rametric and nonparametric components is as follows. There is a
possible to impose convex correlation constraints between sampfdgar advantage to having a parametric component when it cannot be
In this case, the noise set is no longer the Cartesian product of fgtly described with a nonparametric model. In that case, a global

individual noise intervals. nonparametric description would be unnecessarily conservative [8].
In view of the preceding remarks, we define aupriori noise sets On the other hand, in the case where the parametric portion can
Ny, N as the feasibility regions of a set of LMI's be included in the nonparametric one, there is no special reason to
describe it parametrically. For all the previous arguments, we consider
Ny = {nf € CNf,Lf(nf) >0} the case where the parametric and nonparametric components are

N2t e RN L' () > 0} clearly separated. This type of model description includes many

practical situations, e.g., flexible structures. In the latter case, the
where Lf (5f) and L*(»") are hermitian and symmetric matricesparametric/nonparametric separation is in terms of the system natural
respectively, and depend affinely on their arguments. In order fi@quencies. The lower frequencies have a parametric description,
compute error bounds, we also assume thegeiori noise classes while the higher frequencies can be modeled nonparametrically.
Ny, N; to be bounded. Note that thé.(¢) noise sets usually —Therefore, thea priori information and thea posteriori experi-

considered [3], [18] are just special cases of the above. mental input data are
Se'tl'se introduce thea priori system class, first define the following T = {H(2) = Hy(2) + Hop(2) | Hy € P, Hop € S)

' Ne={nec™ L7(n") >0}

N, = I, t N to t R
Heo(p, ) & {H € Heo,p | sup |H(z)| < K} Ni= Ul €R™, L Y(’l ) >0}
€D, yf — {h+7[f € CN[}
with v' = {(Uh+ ' € RV).
Hoo,p = {H(:) analytic inD,, sup |H(z)| < 30} Both the consistency and identification procedures are considered;
Py therefore, the problem to be solved is as follows.




366 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 2, FEBRUARY 1999

Problem 1: Given the experimentsy?, y*) and thea priori sets B. Consistency

(T, Ny, Ne), determine: We will see now that the problem of determining consistency of the
(1) if the a priori anda posterioriinformation are consistent, i.e., a posteriorianda priori information reduces to establishing whether
the consistency set or not there exists a modél € 7 that interpolates the frequency
(v B) Y experimental data within the noise bounds
Tiy'.yh)2dmeT| Y, ~VENL 5 - : .
VY= el _rh e, ©) h=y =0/, 0 €N (©)
is nonempty; and has an impulse response that satisfies the following constraints:
(2) /a n?mltnal model which belongs to the consistency set Uh=y' -y, JEN, (10)
T(y'.y").
The abovea priori and a posteriori information allows a less where the noiseless outplith is the convolution of the input vector
conservative identification than in the cases where only time aor= [u(0) u(1) --- u(N: —1)]” and the systenH(z).

frequency experiments are provided or when no knowledge of theThe main result of this section shows that consistency can be estab-
parametric part of the model is used. Another interpretation can lighed by solving a finite-dimensional convex optimization problem.
made in terms of the “smaller” size of the consistency set, due To establish this result we formulate the equivalent condition for
the fact that there are more experimental data and structupgibri  consistency. This condition, based upon the relationship between
information. both admissible experimental noiseg € Ay and#: € A, has

the form of a linearly constrained generalized interpolation problem.
In Theorems 2 and 3 we show that this generalized problem can be

. . , — . recast in terms of an LMI optimization.
Nevanlinna—Pick-based identification algorithms address the casgom (5), it is clear that the priori anda posterioriinformation

where the experimental data available is purely frequency domgjp consistent if and only if there exists a functifine 7 such that

[3], while Caratl®odory—Fegt-based identification deals only with ) ; ; ;

time-domain data [5]. In this section we introduce a generalized h=y' -7, n’ €Ny (11)
interpolation framework and use it to solve Problem 1, obtaining a Uh=y" -, 7t e N (12)
robust identification algorithm that combines both sources of data.

To this effect, we divided Problem 1 into two subproblems: 1) The next theorem provides necessary and sufficient conditions for
consistency and 2) identification. The first should determine t#@e existence of a functiofl € H(p, K') which interpolatedixed
existence of a candidate modB! € 7 which may have produced frequency domain experimental data while, at the same time, satisfies
both the time- and frequency-domain experimental data. Clearly, tfisime-domain constraint. _ _

is a prerequisite to the second stage, the identification step, consistingt heorem 1: Given N frequency-domain data point#f (z;) =

of the computation of the nominal model itself and a bound on thgi» ¢ = 0,---,Ny — 1, and N time-domain data points (%),
identification error. k=0,---,N; — 1, there existsH € H(p, ) that interpolates

the frequency domain data and such th&tz) = h(0) + h(1)z +
h(2)2% 4+ -+ 4+ (N = 1)zM~! 4 ... if and only if

IIl. MAIN RESULTS

A. Generalized Interpolation Framework

In this section we briefly present a generalized interpolation resulty; h) 2 Q- K%VV;QWf Mx
H : . . . - H(W7 ) v\[* —2 1 * D—2 > 0
developed in [1] and applied ., control in [20]. This lemma will MXx R — = F RF
be used later to solve the consistency problem. h 13)
~ Lemma 1: There exists a transfer functiof’(z) € BH where .
(BH~) such that Mx = SoR ™" = 2 WiSoR* Fi (14)
> Res.ee F(2)C- (21 — A)™' = Cs (6) R=diag[l p p* --- 7Y (15)
2, €D /)2
0= {7} » Bi =Ly (16)
if and only if there is a unique positive (semi)definite solution of the Pr T A Ei- ]y
discrete-time Lyapunov equation Sy = [(Z{_—]l)*]ijq i=1,---.Nyp, j=1.---.N, (17)
M=A"MA+C.C_ - CLC, ™ Wy =diag[wo -+ wy, ] (18)
R0) h(1) --- R(N,—1)
where A, C_ and C are constant complex matrices of appropriate 0  Rh(0) --- h(N,—2)
dimensions. IfM > 0 then the solution¥'(z) is nonunique and the Fi = . (29)
set of solutions can be parameterized in term§)6f), an arbitrary . : .
element of BH.., as follows: 0 0 - N0
T (2)Q(2) + Tha(z) Proqf:. See [18]. . . o
F(z)= == » (8) Combining the previous result (that considers only noiseless data
T51(2)Q(z) + Tha(z) . . . .
points) with (11), (12), and the assumed parametric structure yields
whereT;;(z) are computed fromd, Cy, C_, and M. the following necessary and sufficient condition for consistency.
Proof: See [1] and [20]. O Theorem 2: Define
~ Note that the matriceSfl and C- _provide t_he structure of the g1(0) 42(0) gn, (0)
interpolation problem_ whileC;+ provides the |nter_polat|o_n values. g (1) g2(1) g, (1)
It has been shown in [1] that both the Nevanlinna—Pick and the P = . (20)

Caratl€odory—Fegr problems are special cases of this theorem, o : : g
corresponding to an appropriate choice of the matri¢emnd C'_. Gi(Ne—1) go(Ne—1) -+ gn (Ne—1)
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and (29)—(31). For example, one could minimize the “size” of the noise
G1(z0) G2(z20) e Gy (20) set, subjected to the consistency restrictions, or maximize the smallest

G1(z1) Go(z1) G, (z1) eigenvalue of the generalized Pick matrix, over the feasibility set,

Py = i (21) to avoid the ill-conditioning of the singular case. Alternatively, a

: : . : minimization overX (a bound on the norm of the nonparametric
Gi(zn,—1) Galen,—1) -+ G, (2v,-1) component) could be performed. From a control perspective, the latter

Then, thea priori and a posteriori information are consistent if OPtion seems specially useful.

and only if there exist three vectors:
C. Identification

z; Z;j ZS Once consistency is established, the second step toward solving the

p=|. | W= . , h= : (22) problem stated in Section Il consists of generating a nominal model

: : : in the consistency sef (y7, y"). The identification algorithm that
DN, WN,-1 I, -1 we propose is based on the parameterization of all solutions of the
such that generalized Nevanlinna—Pick interpolation problem [1] presented in
Lemma 1. For simplicity we consider the case where the matkix

Mpr(w.h) >0 (23) s strictly positive definite and therefore the solution is nonunique.

(v/ — Pip—w) € Ny (24) Details for the degenerate case where there exists a unique solution
(y' — UPp — Uh) € Ny (25) can be found in [1]. The algorithm can be summarized as follows.

1) Find feasible data vectogs, w, h for the consistency problem
Note that the components of andh are elements of the matrices (23)-(25) by solving the LMI feasibility problem given by

Wy and F:, respectively, and; (k) the impulse response ¢f;(z). (29)—(31). Note that there is no need of any kind of optimality
Proof: SinceH = H, + H,,, we have thath = P;p + w in the search for the feasible vectors. Instead, any tgpk, h

andh = P.p + h, where P;, P, are defined above. Now, by the in the admissible set will suffice.

previous theoremf,,,, is in S if and only if (23) holds. Finally, we  2) Compute the generalized Pick matfiX; in (13) (which should

can substitutér, h in (11) and (12) to obtain (24) and (25). O be positive definite), corresponding to the vectors computed in

From Theorem 2 it follows that the consistency problem can be Step 1.
reduced to solving a feasibility problem in terms of the parameter3) Use Lemma 1 to compute a model from the consistency set
vector p and the time and frequency domain vectérsw. In the 7. Recall that all the models i (i.e., all the solutions to
next theorem we show that this feasibility problem is convex and can the generalized interpolation problem) can be parameterized as
be recast in terms of LMI's. Therefore, it can be efficiently solved, a linear fractional transformation (LFT) of a free parameter
using for instance interior-point methods [16], [2]. Q(z) € BH as follows:

Theorem 3: The parametric/nonparametric consistency problem

with mixed time/frequency-domain data is equivalent to a LMI H{(z) :F”[L(Z);Q(Z)] ! (32)
feasibility problem. L(z) = TioT3y T = ThaTop Ton | (33)
Proof: The matrixA{;; can be written as follows: Ty —T5; To
, ] 1 oy, In particular, if the free parameté} (=) is chosen as a constant, then
Mp = Mo = 75 X" Mo X (26)  the nonparametric model order is(le)ss than or equa¥ tor M.
, Q SoR™? Remark 1: Note that7'(z) depends on the choice of vectas h.
Mo = {R_QSS R™? } (27) Thus, there are additional degrees of freedom available in the problem
Wr 0 [choices ofw, h andQ(z)] that could be used to optimize additional
X = { 0 }—J- (28)  performance criteria (e.g., model order).

Positiveness of the matrik/o is equivalent to consistency in the casgy Analysis of the Identification Error
where both frequency and time domain data are zero,u@w.e= 0,
i=0,---,Ny—landh; =0,5 =0,---,N,— 1. Clearly, in """ . ; O . .
this case the solution is not unique (we have as solutions the trivh _||cat|on error. Since this bound is given in terms of tagius and

H(=) = 0 and the Blaschke product). From Lemma 1 it follows tha lameterof information [11], [3] they are valid foall interpolatory
M, > 0, and thus, using Schur complements, we have algorithms taking as inputs the availakdepriori and a posteriori
' ' ' information (see [18] for a lower bound).

My X An important point that needs to be emphasized at this stage lies
Mp>0 = z2|{0, &+ 5o 29) P point that nee p g
r {f)& M, (29) in the fact that the identification error bounds are dependent on the
assumeda priori information. That is, there will be different error

Since the admissible noise classgé;, \) are defined by means bounds according tavhatis considered to ba priori. For example,

of LMI's, the consistency constraints (24) and (25) can be rewrittet cons_ldgrlng a ﬂxt?d para_tnr’]letrEC componﬁnt Irt] IS ppss[[l:r)]le tg ck;grng(]je
as the following LMI's in the variablep, w, and h: e a priori assumptions without necessarily changing the identifie

model, and keeping consistency in the process. In this case, the
L'(y' = Pjp—w) >0 (30) problem setup is nearly the same as the nonparametric case, and
L'(y' = UPp - Uh) > 0. (31 therefore the error bounds can be computed, for example, using the
results in [18]. On the other hand, if we keep tnpriori information
Thus, the consistency problem is equivalent to finding a feasilbd&ucture of the parametric-nonparametric approach, the following
solution to the set of LMI's (29), (30) and (31). O weaker bounds can be proved.
An interesting question that appears at this point is related withSince the identified model is in s&f(y”,y"), its distance to the
the particular choice of a feasible solution for the LMI equation€hebyshev center of this set is within the diameter of information.

In this section we derive an upper bound for the worst case iden-

Clearly this is an LMI inX.
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As a consequence the algorithm is optimal up to a factor of twee have, from (39) and the global optimality propertyff (=), that

as compared with central strongly optimal procedures. For the satpéi)| < wus, [h1(i)] < v;s.

reasons, it is also convergent, and therefore the modeling error tendShe bounds o andh, can therefore be used to give an estimate
to zero as the information is completed. Next we determine an upmerthe radius of information

bound on the radius of information and prove it in the spirit of [3].

Lemma 2: Assume thea priori noise classesVy, \; to be Rz < IT ()l (42)
loo(€f), €oo(€). Also assume that the separation condition (4) holds. No M K
Then the radius of informatio®Rz can be bounded above by <Y willgi)llse + D vi + P (43)
Nyp M I =t =0
Rz <Y pillgillee + 3 v+ ey (34 , -
=1 i=0 P It is necessary to emphasize that the presented bounds (as most of

the ones appearing in the literature) arpriori bounds, that is, they

do not depend on the experimental data. The computational require-
ments for obtaining them are minimal, and its main application is in
proving algorithm convergence. Since these bounds can be conserva-

whereM = N, + Ny — N, — 1 andp,,v; are a function of tha
priori information only.
Proof: Consider anyl’ € 7(0,0) and partition it as follows:

T=DP()+H(2) (35) tive, the practical application of the identification procedures usually
P(z) requires alternative methods for computing uncertainty bounds [10].
—_—~—

N, w In particular, it is possible to obtain better (for example, frequency
T — ngk(Z)-l—Zhl(k)zk YH(2) - Hi(2) (36) depgndent) bounds by splvmg convex optimization problems and
et = making use of the experimental data.

— To conclude this section, we briefly present a few comments
Hi(2) on the computational complexity of the proposed procedure. The

whereP(z) and H(>) are the parametric and nonparametric compgesulting convex feasibility problem (29)~(31) has a number of

nents of7’, andH, (=) is the globally optimal approximation df (»)  decision variables equal to the number of time and frequency samples

[9], which satisfies| H (z) — H (2)||o < Kp~**+Y Consider now (plus the number of unknown parameters). In other words, the “size”

the first two terms of the expansiop.andh, satisfy of the LMI's to be solved grows linearly with the amount of data.
rt Furthermore, our particular problem has a lot of additional structure,
V Lf) } = 77/} that can be potentially exploited for greater efficiency. However, the
! '_7, . available solvers do not allow (yet) the use of this extra information.
Uh 1 U ) 0 Y Additional computational considerations have been presented in [18].
20 20 Tz (37)
s_ | P 1 pe 52 . LM

V= ! . _1 ! 1, IV. EXAMPLE
9 M In this section we present an application of the proposed iden-
L N = TR PR tification procedure. The “experimental” data proceeds from the

wheren' € Ni, 77 € (.(€), and wheree £ ¢, + Kp~(M+D), stable component (no rigid-body modes) of the Euler—Bernoulli

The idea of the proof is to derive bounds fprh, from those of Model of a flexible beam with viscous damping. For simplicity,
7. 1:, assuming the nonsingularktef 1. To do this, partitiori’ ~*  We considered only frequency data, bilinearly transformed from the

conformally with (37) as original continuous-time samples. Only 13 frequency points were
., i evaluated, for equispaced frequencies between OzanBictitious
v = an "}2}, (38) complex noise, bounded in magnitude by 0.03, was added to the
Var Vaz samples.
Therefore We assumed a parametric component having the following affine

p= Vll"]t + anf structure:

, . (39)
hi = Vain' + Vazy'

PiLzZ+p2
22 +0.04z + 1.05

wheren' € (o (&), 7' € £.(€). This description can be employedwherep, and p» are the uncertain parameters. The resonant poles
together with (2) to provide tighter bounds for the parameter vectgf (=) were chosen according to the information available on the
and the first coefficients, using for instance linear programming. dtitical frequencies and damping factors of the plant. The value of
is also possible to derive easier, but more conservative bounds. helised wasp = 1.25. The optimization criterion chosen was to

G(z) = (44)

(A4): be theith row of matrix 4. Then, defining minimize the value of%, subject to the consistency restrictions. This
i 2OVl + 11 (Viz)illie (40) can also be formulate_d as a convex program and can be interpreted
A tpe—i S(imM—1) . as an attempt to obtain the smallest possible uncertainty bound.
vi = min[Kp~" (1-p ). (‘/21)(i+1)Hl€ In Fig. 1 an identified model for the purely nonparametric iden-
+ H(V‘ZZ)UH)Hﬂ (41) tification procedure in [18] is shown. The optimal value I6f was
K = 113.6. As noted above, in this approach the highly resonant

1A necessary condition fol” to be nonsingular is that the;(z), i = g
1,---,N, be linearly independent. Even in this case, and when (4) holdd0!€s force very small values pfand/or large values ok, in order
it is possible to have a singuldr. This is related with the fact that the to satisfy the consistency constraints. This, in turn, causes larger error
experimentloes not provide enough information to compute an error boundounds, as well as less smooth interpolation functions. This issue
for the assumed parametric structure. That is, although (4) holds, certain f'nige‘important in order to apply a subsequent model reduction stage.

dimensional restriction of it does not. As an example of this, consider the c o . . .
of taking only time samples up to timeand where the parametric functions:ﬁ&e’ however, that the oscillating characteristics of the identified

have nonzero values only for times greater than1. The problem is solved Model are also a consequence of the choice of the free parameter
simply by taking more (time or frequency) samples. Q(z) = 0. It is theoretically possible to find @(z) (dynamic) such
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Fig. 1. Nonparametric identification results. The solid line is the physica# ]
system (with noise), and the dotted line the nonparametric identified modqho]
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Fig. 2. Mixed parametric/nonparametric identification results. The solid line
is the physical system (with noise), the dash-dotted line is the parametf'ﬁ]
model, and the dotted line is the full identified model.
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