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A Parametric Extension of Mixed
Time/Frequency Robust Identification

Pablo A. Parrilo, Ricardo S. Sánchez Pẽna, and Mario Sznaier

Abstract—A parametric extension to the time/frequency robust identifi-
cation framework is presented. The results can be applied to stable linear
time-invariant systems on which time and/or frequency experiments have
been performed. The parametric portion of the model should be affine
in the unknown parameters, which includes practical applications such
as flexible structures. The consistency problem is cast as a constrained
finite-dimensional convex optimization problem that can be formulated
as a linear matrix inequality. The proposed procedure provides an
interpolatory identification algorithm, convergent and optimal up to a
factor of two (with respect to central algorithms).

Index Terms—Analytic interpolation, interpolatory algorithms, linear
matrix inequalities, parametric identification, robust identification.

I. INTRODUCTION

During the past few years a large research effort has been devoted
to the problem of developing deterministic identification procedures
that, starting from experimental data and ana priori class of models,
generate a nominal model and bounds on the identification errors.
These models and bounds can then be combined with standard
robust control synthesis methods (such asH1; `1; or �-synthesis) to
obtain robust closed-loop systems. This problem, termed the robust
identification problem, was originally posed in [11] and has since
attracted considerable attention.

The case where the available experimental data is generated
by frequency-domain experiments leads toH1-based identification
procedures [3], [7], [11], [19]. When the experimental data available
originates from time-domain experiments,`1 identification is used
(see [14] and references therein). These two types of experimental
data represent the response of the same system to different kinds of
inputs. In the perfect information case (infinite number of samples,
no noise) they are clearly equivalent. However, in practical cases
(partial information contaminated by noise) using both kinds of data
usually provides extra information.

Recent papers [5], [25] proposed interpolatory algorithms that
use data obtained from time domain experiments to generate a
nominal model together with anH1 bound on the identification
error. Furthermore, a new robust identification framework that takes
into accountboth time and frequency domain experiments, has been
introduced in [21] and generalized in [18].

All of the above results address nonparametric identification of
models with a worst case global bound. In many cases, part of
the model has a clear parametric structure, and disregarding this
information may lead to conservative results. This is usually the
case of mechanical flexible structures, which have a well-defined
parametric model for the lower frequency modes and an unknown
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R. S. Śanchez Pẽna is with the Departmento de Electrónica, Univ. de
Buenos Aires, Buenos Aires, Argentina and the National Commission of Space
Activities (CONAE), Argentina.

M. Sznaier is with the Department of Electrical Engineering, Pennsylvania
State University, University Park, PA USA.

Publisher Item Identifier S 0018-9286(99)01311-2.

higher frequency behavior which naturally leads to a nonparametric
identification [8].

This new result extends the time/frequency identification procedure
in [18], [21] and uses interpolation algorithms in [3], to the case
of parametric/nonparametric model structures, based on a similar
framework. The parametric portion of the model should beaffine
in the unknown parameters. This includes cases of practical interest
as mechanical flexible structures, as well as models which can be
concisely described in terms of a set of Laguerre or Kautz functions
or, more generally, any other basis ofH2 [12]. In the case of flexible
structures, the lower frequency modes can be computed from the
peaks measured from the approximate frequency response.

In general, the parametric information does not appear explicitly
in the a priori knowledge(K; �) usually considered. Therefore, it
is important to include it, if available, so that less conservative
a priori estimates of(K; �) for the nonparametric portion can be
derived. This is the case of large peaks in the frequency response
of a flexible structure which should be “covered” by large values
of K [8]. This is a consequence of the fact that the usuala priori
information characterizes only the smoothness and magnitude of the
whole class of models but cannot distinguish among other properties
(e.g., low-frequency model structure). Instead, thea priori parametric
knowledge provides more “structured” information.

The fact that from our procedure we obtain a consistency set
allows different descriptions of the uncertainty. For instance, we can
compute a global bound which covers the whole set and includes
both the parametric and nonparametric uncertainty. This can also
be interpreted as having “exact” nominal parameters and a global
bound due to the uncertainty of the nonparametric portion. Unless we
have extra information, both interpretations are indistinguishable. The
approach of computing a global uncertainty bound is practical when
considering robust controller design methods (H1; `1; �-synthesis).
Nevertheless, different bounds on the parameters and nonparametric
portion can be computed as well, although there are no specific
optimal synthesis algorithms in this case.

The paper is organized as follows. In Section II we introduce
a robust identification framework using both time and frequency
experiments and some background material. Section III contains the
main theoretical results. We show that the problems of establishing
consistency of the experimental data and thea priori information
and of determining a nominal model can be recast into a finite-
dimensional linear matrix inequality (LMI) optimization form, which
generates a model that interpolates the frequency domain data points
and is consistent with the time-domain experiments. Finally, in
Section IV we illustrate the advantages of these results with a simple
example.

II. ROBUST IDENTIFICATION FRAMEWORK

The class of systems considered are discrete-time, causal, linear,
and stable ones. We denote them asH(z) = Hd(

1

z
), with z 2 C, and

Hd(z) being the usualz-transform. Therefore, causal stable systems
H(z) will be analytic inside the unit circle, with time and frequency
representations related by

H(z) =

1

k=0

h(k)zk: (1)

For simplicity, we consider single-input/single-output (SISO) mod-
els, although all results can be applied to multi-input/multi-output
(MIMO) systems, following [4].
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The a posteriori experimental data can be obtained from two
different sources: frequency response experiments and time-domain
data. For the first one, we will consider the set ofNf samples of the
frequency response of the system measured with additive bounded
noiseyfk = ĥk + �fk ; k = 0; � � � ; Nf � 1, collected for notational
simplicity in a vectoryf 2 CN . Here, ĥ is a vector with its
componentŝhk equal toH(e|
 ); k = 0; � � � ; Nf � 1. The additive
measurement noise�f is assumed to belong to a certain noise set,
described below.

The time-domain data considered is the set of the firstNt time
response samples to a known but otherwise arbitrary input, also
corrupted by additive noise:ytn = (Uh)n + �tn; n = 0; � � � ; Nt � 1.
We define

U

u(0) 0 � � � 0
u(1) u(0) � � � 0

...
. . .

. . . 0
u(Nt � 1) � � � u(1) u(0)

as the Toeplitz matrix corresponding to the input sequence. Again, for
notational simplicity, the measurements will be collected in a vector
yt 2 RN .

To define thea priori noise classes, it is useful to introduce the
concept ofLMI regions [6]. These are regions of the complex plane,
which are the feasibility domain of a given LMI. Such a class of
regions is fairly general, as it can be shown [6] that its closure is the
set of all convex regions of the complex plane.

In this case, the LMI regions are useful to model noise sets
because they provide a simple and exact way to take into account
multiple point frequency response experiments, i.e., the experiments
which produceyf . In this situation, the “confidence region” for the
true system response is the intersection of the individual confidence
regions [11]. Therefore, if the latter can be defined by means of an
LMI, the same is also true for the region corresponding to all the
experiments. Furthermore, this intersection region can be described
by the combination of all individual LMI’s, i.e., the intersection of
LMI regions is also an LMI region.

In the time domain case, the noise is real-valued, and therefore
convex sets are in fact just intervals. However, adopting an LMI-
defined set can prove advantageous if the independency assumption
on noise samples turns out to be conservative. For example, it is
possible to impose convex correlation constraints between samples.
In this case, the noise set is no longer the Cartesian product of the
individual noise intervals.

In view of the preceding remarks, we define oura priori noise sets
Nf ; Nt as the feasibility regions of a set of LMI’s

Nf f�f 2 CN ; Lf(�f) > 0g

Nt f�t 2 RN ; Lt(�t) > 0g

whereLf(�f) and Lt(�t) are hermitian and symmetric matrices,
respectively, and depend affinely on their arguments. In order to
compute error bounds, we also assume thesea priori noise classes
Nf ;Nt to be bounded. Note that thè1(�) noise sets usually
considered [3], [18] are just special cases of the above.

To introduce thea priori system class, first define the following
sets:

H1(�;K) H 2 H1;� sup
z2D

jH(z)j < K

with

H1;� H(z) analytic inD� sup
z2D

jH(z)j <1

whereD� is the open diskfz; jzj < �g andD� is its corresponding
closure. Also defineH1 asH1;1; D asD1 andBH1 fF 2 H1;
kFk1 � 1g.

The class of models usually consideredH1(�;K) corresponds to
exponentially stable systems (finite or infinite-dimensional). From a
practical viewpoint, these systems have a stability margin of(��1),
a peak response to complex exponential inputs ofK, and satisfy the
time domain bound

jh(k)j � K��k: (2)

The above-defined sets will be used to characterize the nonparametric
part of the modelHnp(z).

We seek the worst case identification of the combined paramet-
ric and nonparametric models using both the time and frequency
experiments. The models in oura priori class will have a mixed
parametric/non parametric structure, i.e.,H = Hp + Hnp. To this
end we define the sets of systems

S fH1(�;K); � > 1;K <1g

for the nonparametric part andP for the parametric component
Hp(z). The latter is the class of affine models defined as

P fpTG(z);p 2 RN ; pi 2 [ai; bi]g (3)

where the componentsgi(z) of the vectorG(z) are known linearly
independent functions. In Section III, in order to compute parametric
error bounds, we will also require these functions to satisfy the
separation condition

spanfgi(z)g \ S = f0g: (4)

This condition is in fact an “identifiability” requirement and guar-
antees a unique parametric/nonparametric decomposition for each
elementHp(z)+Hnp(z) of the a priori set. To see this, note that if
H(z) = A1(z) + B1(z) = A2(z) + B2(z); Ai 2 S; Bi 2 P, then
(A1 � A2)=2 belongs both tospanfgi(z)g andS, in contradiction
with (4). If this decomposition is not unique, then there are multiple
parameter choices for each model in thea priori set, and as a
consequence no “true” parameter values. Therefore, the parametric
and nonparametric components will not converge separately, although
the full model might converge to the real plant.

Another motivation for the above separation condition between the
parametric and nonparametric components is as follows. There is a
clear advantage to having a parametric component when it cannot be
tightly described with a nonparametric model. In that case, a global
nonparametric description would be unnecessarily conservative [8].
On the other hand, in the case where the parametric portion can
be included in the nonparametric one, there is no special reason to
describe it parametrically. For all the previous arguments, we consider
the case where the parametric and nonparametric components are
clearly separated. This type of model description includes many
practical situations, e.g., flexible structures. In the latter case, the
parametric/nonparametric separation is in terms of the system natural
frequencies. The lower frequencies have a parametric description,
while the higher frequencies can be modeled nonparametrically.

Therefore, thea priori information and thea posteriori experi-
mental input data are

T = fH(z) = Hp(z) +Hnp(z) j Hp 2 P; Hnp 2 Sg

Nf = f�f 2 CN ; Lf(�f) > 0g

Nt = f�t 2 RN ; Lt(�t) > 0g

y
f = fĥ+ �f 2 CN g

y
t = fUh+ �t 2 RN g:

Both the consistency and identification procedures are considered;
therefore, the problem to be solved is as follows.
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Problem 1: Given the experiments(yf ;yt) and thea priori sets
(T ;Nf ;Nt), determine:

(1) if the a priori anda posteriori information are consistent, i.e.,
the consistency set

T (yf ;yt) H 2 T
(yf � ĥ) 2 Nf

(yt � Uh) 2 Nt
(5)

is nonempty;
(2) a nominal model which belongs to the consistency set

T (yf ;yt).

The abovea priori and a posteriori information allows a less
conservative identification than in the cases where only time or
frequency experiments are provided or when no knowledge of the
parametric part of the model is used. Another interpretation can be
made in terms of the “smaller” size of the consistency set, due to
the fact that there are more experimental data and structureda priori
information.

III. M AIN RESULTS

Nevanlinna–Pick-based identification algorithms address the case
where the experimental data available is purely frequency domain
[3], while Carathéodory–Fej´er-based identification deals only with
time-domain data [5]. In this section we introduce a generalized
interpolation framework and use it to solve Problem 1, obtaining a
robust identification algorithm that combines both sources of data.
To this effect, we divided Problem 1 into two subproblems: 1)
consistency and 2) identification. The first should determine the
existence of a candidate modelH 2 T which may have produced
both the time- and frequency-domain experimental data. Clearly, this
is a prerequisite to the second stage, the identification step, consisting
of the computation of the nominal model itself and a bound on the
identification error.

A. Generalized Interpolation Framework

In this section we briefly present a generalized interpolation result
developed in [1] and applied toH1 control in [20]. This lemma will
be used later to solve the consistency problem.

Lemma 1: There exists a transfer functionF (z) 2 BH1

(BH1) such that

z 2D

Resz=z F (z)C�(zI �A)�1 = C+ (6)

if and only if there is a unique positive (semi)definite solution of the
discrete-time Lyapunov equation

M = A
�
MA + C

�
�C� � C

�
+C+ (7)

whereA;C� andC+ are constant complex matrices of appropriate
dimensions. IfM > 0 then the solutionF (z) is nonunique and the
set of solutions can be parameterized in terms ofQ(z), an arbitrary
element ofBH1, as follows:

F (z) =
T11(z)Q(z) + T12(z)

T21(z)Q(z) + T22(z)
(8)

whereTij(z) are computed fromA; C+; C�; andM .
Proof: See [1] and [20].

Note that the matricesA and C� provide the structure of the
interpolation problem whileC+ provides the interpolation values.
It has been shown in [1] that both the Nevanlinna–Pick and the
Carathéodory–Fej´er problems are special cases of this theorem,
corresponding to an appropriate choice of the matricesA andC�.

B. Consistency

We will see now that the problem of determining consistency of the
a posteriorianda priori information reduces to establishing whether
or not there exists a modelH 2 T that interpolates the frequency
experimental data within the noise bounds

ĥ = y
f
� �

f
; �

f
2 Nf (9)

and has an impulse response that satisfies the following constraints:

Uh = y
t
� �

t
; �

t
2 Nt (10)

where the noiseless outputUh is the convolution of the input vector
u = [u(0) u(1) � � � u(Nt � 1)]T and the systemH(z).

The main result of this section shows that consistency can be estab-
lished by solving a finite-dimensional convex optimization problem.
To establish this result we formulate the equivalent condition for
consistency. This condition, based upon the relationship between
both admissible experimental noises�f 2 Nf and �t 2 Nt, has
the form of a linearly constrained generalized interpolation problem.
In Theorems 2 and 3 we show that this generalized problem can be
recast in terms of an LMI optimization.

From (5), it is clear that thea priori anda posteriori information
are consistent if and only if there exists a functionH 2 T such that

ĥ = y
f
� �

f
; �

f
2 Nf (11)

Uh = y
t
� �

t
; �

t
2 Nt: (12)

The next theorem provides necessary and sufficient conditions for
the existence of a functionH 2 H1(�;K) which interpolatesfixed
frequency domain experimental data while, at the same time, satisfies
a time-domain constraint.

Theorem 1: Given Nf frequency-domain data points,H(zi) =
wi; i = 0; � � � ; Nf � 1; and Nt time-domain data pointsh(k);
k = 0; � � � ; Nt � 1, there existsH 2 H1(�;K) that interpolates
the frequency domain data and such thatH(z) = h(0) + h(1)z +
h(2)z2 + � � � + h(Nt � 1)zN �1 + � � � if and only if

MR(w;h)
Q� 1

K
W�

fQWf MX

M�
X R�2 � 1

K
F
�
t R

�2
Ft

> 0

(13)
where

MX = S0R
�2
�

1

K2
W
�
fS0R

�2
Ft (14)

R = diag[1 � �
2

� � � �
N �1] (15)

Q =
�2

�2 � z�i�1zj�1 ij

; i; j = 1; � � � ; Nf (16)

S0 = z
j�1
i�1

�

ij
; i = 1; � � � ; Nf ; j = 1; � � � ; Nt (17)

Wf = diag w0 � � � wN �1 (18)

Ft =

h(0) h(1) � � � h(Nt � 1)
0 h(0) � � � h(Nt � 2)
...

...
. . .

...
0 0 � � � h(0)

: (19)

Proof: See [18].
Combining the previous result (that considers only noiseless data

points) with (11), (12), and the assumed parametric structure yields
the following necessary and sufficient condition for consistency.

Theorem 2: Define

Pt =

g1(0) g2(0) � � � gN (0)
g1(1) g2(1) � � � gN (1)

...
...

. . .
...

g1(Nt � 1) g2(Nt � 1) � � � gN (Nt � 1)

(20)
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and

Pf =

G1(z0) G2(z0) � � � GN (z0)
G1(z1) G2(z1) � � � GN (z1)

...
...

. . .
...

G1 zN �1 G2 zN �1 � � � GN zN �1

: (21)

Then, thea priori and a posteriori information are consistent if
and only if there exist three vectors:

p =

p1

p2
...

pN

; w =

w0

w1

...
wN �1

; h =

h0
h1
...

hN �1

(22)

such that

MR(w;h) > 0 (23)

(yf � Pfp�w) 2 Nf (24)

(yt � UPtp � Uh) 2 Nt: (25)

Note that the components ofw andh are elements of the matrices
Wf andFt; respectively, andgi(k) the impulse response ofGi(z).

Proof: SinceH = Hp + Hnp, we have that̂h = Pfp + w

and h = Ptp + h, wherePf ; Pt are defined above. Now, by the
previous theorem,Hnp is in S if and only if (23) holds. Finally, we
can substitutêh;h in (11) and (12) to obtain (24) and (25).

From Theorem 2 it follows that the consistency problem can be
reduced to solving a feasibility problem in terms of the parameter
vector p and the time and frequency domain vectorsh;w. In the
next theorem we show that this feasibility problem is convex and can
be recast in terms of LMI’s. Therefore, it can be efficiently solved,
using for instance interior-point methods [16], [2].

Theorem 3: The parametric/nonparametric consistency problem
with mixed time/frequency-domain data is equivalent to a LMI
feasibility problem.

Proof: The matrixMR can be written as follows:

MR =M0 �
1

K2
X
�

M0X (26)

M0 =
Q S0R

�2

R�2S�0 R�2
(27)

X =
Wf 0
0 Ft

: (28)

Positiveness of the matrixM0 is equivalent to consistency in the case
where both frequency and time domain data are zero, i.e.,wi = 0;
i = 0; � � � ; Nf � 1 and hj = 0; j = 0; � � � ; Nt � 1. Clearly, in
this case the solution is not unique (we have as solutions the trivial
H(z) = 0 and the Blaschke product). From Lemma 1 it follows that
M0 > 0, and thus, using Schur complements, we have

MR > 0 () Z
M�1

0
1

K
X

1

K
X� M0

> 0: (29)

Clearly this is an LMI inX.
Since the admissible noise classes(Nf ;Nt) are defined by means

of LMI’s, the consistency constraints (24) and (25) can be rewritten
as the following LMI’s in the variablesp;w; andh:

L
f(yf � Pfp�w) > 0 (30)

L
t(yt � UPtp � Uh) > 0: (31)

Thus, the consistency problem is equivalent to finding a feasible
solution to the set of LMI’s (29), (30) and (31).

An interesting question that appears at this point is related with
the particular choice of a feasible solution for the LMI equations

(29)–(31). For example, one could minimize the “size” of the noise
set, subjected to the consistency restrictions, or maximize the smallest
eigenvalue of the generalized Pick matrix, over the feasibility set,
to avoid the ill-conditioning of the singular case. Alternatively, a
minimization overK (a bound on the norm of the nonparametric
component) could be performed. From a control perspective, the latter
option seems specially useful.

C. Identification

Once consistency is established, the second step toward solving the
problem stated in Section II consists of generating a nominal model
in the consistency setT (yf ;yt). The identification algorithm that
we propose is based on the parameterization of all solutions of the
generalized Nevanlinna–Pick interpolation problem [1] presented in
Lemma 1. For simplicity we consider the case where the matrixMR

is strictly positive definite and therefore the solution is nonunique.
Details for the degenerate case where there exists a unique solution
can be found in [1]. The algorithm can be summarized as follows.

1) Find feasible data vectorsp;w;h for the consistency problem
(23)–(25) by solving the LMI feasibility problem given by
(29)–(31). Note that there is no need of any kind of optimality
in the search for the feasible vectors. Instead, any triplep;w;h

in the admissible set will suffice.
2) Compute the generalized Pick matrixMR in (13) (which should

be positive definite), corresponding to the vectors computed in
Step 1.

3) Use Lemma 1 to compute a model from the consistency set
T . Recall that all the models inS (i.e., all the solutions to
the generalized interpolation problem) can be parameterized as
a linear fractional transformation (LFT) of a free parameter
Q(z) 2 �BH1 as follows:

H(z) = F`[L(z); Q(z)] (32)

L(z) =
T12T

�1
22 T11 � T12T

�1
22 T21

T�122 �T�122 T21
: (33)

In particular, if the free parameterQ(z) is chosen as a constant, then
the nonparametric model order is less than or equal toNf +Nt.

Remark 1: Note thatT (z) depends on the choice of vectorsw;h.
Thus, there are additional degrees of freedom available in the problem
[choices ofw;h andQ(z)] that could be used to optimize additional
performance criteria (e.g., model order).

D. Analysis of the Identification Error

In this section we derive an upper bound for the worst case iden-
tification error. Since this bound is given in terms of theradius and
diameterof information [11], [3] they are valid forall interpolatory
algorithms taking as inputs the availablea priori and a posteriori
information (see [18] for a lower bound).

An important point that needs to be emphasized at this stage lies
in the fact that the identification error bounds are dependent on the
assumeda priori information. That is, there will be different error
bounds according towhat is considered to bea priori. For example,
by considering a fixed parametric component it is possible to change
the a priori assumptions without necessarily changing the identified
model, and keeping consistency in the process. In this case, the
problem setup is nearly the same as the nonparametric case, and
therefore the error bounds can be computed, for example, using the
results in [18]. On the other hand, if we keep thea priori information
structure of the parametric-nonparametric approach, the following
weaker bounds can be proved.

Since the identified model is in setT (yf ;yt), its distance to the
Chebyshev center of this set is within the diameter of information.



368 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 2, FEBRUARY 1999

As a consequence the algorithm is optimal up to a factor of two
as compared with central strongly optimal procedures. For the same
reasons, it is also convergent, and therefore the modeling error tends
to zero as the information is completed. Next we determine an upper
bound on the radius of information and prove it in the spirit of [3].

Lemma 2: Assume thea priori noise classesNf ;Nt to be
`1(�f ); `1(�t). Also assume that the separation condition (4) holds.
Then the radius of informationRI can be bounded above by

RI �

N

i=1

�ikgi(z)k1 +

M

i=0

�i +
K

�M+1
(34)

whereM = Nt + Nf � Np � 1 and�i; �i are a function of thea
priori information only.

Proof: Consider anyT 2 T (0; 0) and partition it as follows:

T = P (z) +H(z) (35)

T =

P (z)

N

k=1

pkgk(z)+

M

k=0

h1(k)z
k

H (z)

+H(z)�H1(z) (36)

whereP (z) andH(z) are the parametric and nonparametric compo-
nents ofT , andH1(z) is the globally optimal approximation ofH(z)
[9], which satisfieskH(z)�H1(z)k1 � K��(M+1). Consider now
the first two terms of the expansion.p andh1 satisfy

V
p

h1
=

�t

�f

V =

UPt U 0
1 z0 z20 � � � zM0

Pf 1 z1 z21 � � � zM1
...

...
...

...
...

1 zN �1 z2N �1 � � � zMN �1

(37)

where �t 2 Nt; �
f 2 `1(��), and where�� �f + K��(M+1).

The idea of the proof is to derive bounds forp; h1 from those of
�f ; �t, assuming the nonsingularity1 of V . To do this, partitionV �1

conformally with (37) as

V
�1 =

V11 V12
V21 V22

: (38)

Therefore

p = V11�
t + V12�

f

h1 = V21�
t + V22�

f
(39)

where�t 2 `1(�t); �
f 2 `1(��). This description can be employed

together with (2) to provide tighter bounds for the parameter vector
and the first coefficients, using for instance linear programming. It
is also possible to derive easier, but more conservative bounds. Let
(A)i be theith row of matrixA. Then, defining

�i k(V11)ik1�
t + k(V12)ik1�� (40)

�i min K�
�i 1� �

2(i�M�1)
; (V21)(i+1) 1

�
t

+ (V22)(i+1) 1
�� (41)

1A necessary condition forV to be nonsingular is that thegi(z); i =
1; � � � ; Np be linearly independent. Even in this case, and when (4) holds,
it is possible to have a singularV . This is related with the fact that the
experimentdoes not provide enough information to compute an error bound,
for the assumed parametric structure. That is, although (4) holds, certain finite-
dimensional restriction of it does not. As an example of this, consider the case
of taking only time samples up to timek and where the parametric functions
have nonzero values only for times greater thank+1. The problem is solved
simply by taking more (time or frequency) samples.

we have, from (39) and the global optimality property ofH1(z), that
jp(i)j � �i; jh1(i)j � �i.

The bounds onp andh1 can therefore be used to give an estimate
of the radius of information

RI � kT (z)k1 (42)

�

N

i=1

�ikgi(z)k1 +

M

i=0

�i +
K

�M+1
: (43)

It is necessary to emphasize that the presented bounds (as most of
the ones appearing in the literature) area priori bounds, that is, they
do not depend on the experimental data. The computational require-
ments for obtaining them are minimal, and its main application is in
proving algorithm convergence. Since these bounds can be conserva-
tive, the practical application of the identification procedures usually
requires alternative methods for computing uncertainty bounds [10].
In particular, it is possible to obtain better (for example, frequency
dependent) bounds by solving convex optimization problems and
making use of the experimental data.

To conclude this section, we briefly present a few comments
on the computational complexity of the proposed procedure. The
resulting convex feasibility problem (29)–(31) has a number of
decision variables equal to the number of time and frequency samples
(plus the number of unknown parameters). In other words, the “size”
of the LMI’s to be solved grows linearly with the amount of data.
Furthermore, our particular problem has a lot of additional structure,
that can be potentially exploited for greater efficiency. However, the
available solvers do not allow (yet) the use of this extra information.
Additional computational considerations have been presented in [18].

IV. EXAMPLE

In this section we present an application of the proposed iden-
tification procedure. The “experimental” data proceeds from the
stable component (no rigid-body modes) of the Euler–Bernoulli
model of a flexible beam with viscous damping. For simplicity,
we considered only frequency data, bilinearly transformed from the
original continuous-time samples. Only 13 frequency points were
evaluated, for equispaced frequencies between 0 and�. Fictitious
complex noise, bounded in magnitude by 0.03, was added to the
samples.

We assumed a parametric component having the following affine
structure:

G(z) =
p1z + p2

z2 + 0:04z + 1:05
(44)

wherep1 and p2 are the uncertain parameters. The resonant poles
of G(z) were chosen according to the information available on the
critical frequencies and damping factors of the plant. The value of
� used was� = 1:25. The optimization criterion chosen was to
minimize the value ofK, subject to the consistency restrictions. This
can also be formulated as a convex program and can be interpreted
as an attempt to obtain the smallest possible uncertainty bound.

In Fig. 1 an identified model for the purely nonparametric iden-
tification procedure in [18] is shown. The optimal value ofK was
K = 113:6. As noted above, in this approach the highly resonant
poles force very small values of� and/or large values ofK, in order
to satisfy the consistency constraints. This, in turn, causes larger error
bounds, as well as less smooth interpolation functions. This issue
is important in order to apply a subsequent model reduction stage.
Note, however, that the oscillating characteristics of the identified
model are also a consequence of the choice of the free parameter
Q(z) = 0. It is theoretically possible to find aQ(z) (dynamic) such
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Fig. 1. Nonparametric identification results. The solid line is the physical
system (with noise), and the dotted line the nonparametric identified model.

Fig. 2. Mixed parametric/nonparametric identification results. The solid line
is the physical system (with noise), the dash-dotted line is the parametric
model, and the dotted line is the full identified model.

that a smoother model results. However, there seems to be no easy
procedure to achieve this. Further, this procedure would not change
the error bound.

Instead, when the approach developed in this paper is employed,
the complex dynamics of the parametric component can be “de-
coupled” from the nonparametric one. Fig. 2 shows the identified
parametric component, as well as the full model. The optimal value
of K (only for the nonparametric part) isK = 0:35. Note that the
parametric component isnot able to explain, by itself, the whole
dynamic behavior. Its objective is to model just one particular mode,
rather than the entire transfer function. Note also that the identified
nominal model is almost coincident with the experiment, providing
a much better fit.
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