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A Parametric Extension of Mixed Time/Frequency Robust Identification 

Pablo A. Parrilo* Ricardo S. Shchez Peiiat Mario Sznaiert 

Abstract 
A parametric extension to  the timelfrequency robust 

identification framework is presented. The result can be 
applied to plants which have a clear parametric and non 
parametric separation, on which time and/or frequency 
experiments have been performed. The parametric por- 
tion of the model should be &ne in the unknown param- 
eters, which includes practical applications such as flexi- 
ble structures. The consistency problem is cast as a con- 
strained finite-dimensional convex optimization problem 
that can be formulated as a Linear Matrix Inequality. The 
proposed procedure provides a convergent, interpolatory 
identification algorithm. 

1. Introduction 
During the past few yea.rs a large research effort has 

been devoted to the problem of developing determinis- 
tic identification procedures that, starting from experi- 
mental data and an a priori class of models, generate a 
nominal model and bounds on the identification errors. 
These models and bounds can then be combined with 
standard robust control synthesis methods (such as R,, 

OK p-synthesis) to obtain robust closed-loop systems. 
This problem is usually known as the Robust Identifica- 
tion problem (see [6] for a survey). 

Recent papers proposed interpolatory algorithms that 
use frequency domain data ([4]) or time domain experi- 
ments ([3, 111) to generate a nominal model together with 
an 31, bound on the identification error. Furthermore] 
a new robust identification framework that takes into ac- 
count both time and frequency domain experiments, has 
been introduced in [9] and generalized in [8]. Thus, the 
problem where “good” frequency response fitting (small 
RM error norm) leads to “poor” fitting in the time-domain 
is prevented. 

All of the above results address non parametric identi- 
fication of models with a worst case global bound. In many 
cases, part of the model has a clear parametric structure, 
therefore disregarding this information may lead to con- 
servative results. This is usually the case of mechanical 
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flexible structures, which have a well defined parametric 
model for the lower frequency modes and an unknown 
higher frequency behavior which naturally leads to a non 
parametric identification ( [ 5 ] ) .  

This new result extends the time/frequency identifi- 
cation procedure in [9, 81 to the case of parametric/non 
parametric model structures, based on a similar frame- 
work. The parametric portion of the model should be 
affine in the parameters. This includes cases of practical 
interest as flexible mechanical structures, as well as mod- 
els which can be concisely described in terms of a set of 
Laguerre or Kautz functions or, more generally, any other 
basis of R2. 

The paper is organized as follows. In Section I1 we in- 
troduce a robust identification framework using both time 
and frequency experiments and some background mate- 
rial, including a generalized Nevanlinna-Pick theory ([l]) , 
that contains as special cases, the classical Carathbodory- 
Fej6r and Nevanlinna-Pick problems. Section I11 contains 
the main theoretical results. Here we show that the prob- 
lems of’ establishing consistency of the experimental data 
and the a priori information and of determining a nom- 
inal model can be recast into a finite-dimensional Linear 
Matrix Inequality (LMI) optimization form. Most of the 
proofs have been left out for space considerations. They 
can be found in [7]. In Section IV we illustrate the advan- 
tages of these results with a simple example. 

2. Robust Identification Framework 
The class of systems considered are discrete time, 

causal, linear and stable ones. We denote them as 
H ( z )  = H d ( i ) ,  with z E C l  and Hd(z)  being the usual 
z-transform. Therefore, causal stable systems H ( x )  will 
be analytic inside the unit circle, with time and frequency 
representations related by: 

M 

H ( z )  = C h ( k ) z k  
k=O 

For simplicity we consider SISO models, although all re- 
sults can be applied to MIMO systems, following [3]. 

The a posteriori experimental data can be obtained 
from two different sources: frequency response experi- 
ments and time domain data. For the first one, we 
will consider the set of N f  samples of the frequency re- 
sponse of the system measured with additive bounded 
noise y; = f ~ h  + q{ k = 0, .  . . , N f  - 1, collected for nota- 
tional simplicity in a vector yf E C N f ,  Here, h is a vector 
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with its components equal to H(eJ"k),  le = 0, .  . . , N f  - 1. 
The additive measurement noise q f  is assumed to belong 
to a certain noise set, which is described below. 

The time domain data considered is the set of the 
first Nt time response samples to a known but otherwise 
arbitrary input, also corrupted by additive noise: 9; = 
(Uh),  + q;, n = 0,.  . . ,Nt  - 1. 

r um 0 ... 0 1  

1 U(& - 1) ... u(1) u(0) ] 
is the Toeplitz matrix corresponding to the input se- 
quence. Again, for notational simplicity, these measure- 
ments will be collected in a vector yt E R". 

We will define our a priori class of noise in terms of lin- 
ear matrix inequalities (LMIs). Such description is fairly 
general. In the present case, the LMI regions are useful to 
model convex noise sets because they provide a simple and 
exact way to take into account multiple point frequency 
response experiments. 

In the time domain case, the noise is real-valued, and 
therefore convex sets are in fact just intervals. However, 
adopting an LMI-defined set can prove advantageous, for 
example, if the independence assumption on noise samples 
turns out to be conservative. In this case, the noise set 
is no longer the Cartesian product of the individual noise 
intervals. 

In view of the preceding remarks, we define our a pri- 
o r i  noise sets N f ,  Nt as the feasibility regions of a set of 
LMIs. 

Nf e {qflLf(vf) = Lof + [Liqi + (Li)*& > 0) 
Nf-1 

k=O 
Nt-1 

k=O 

where Aff E cc1 N f ,  Nt E RNt , L: are given real symmetric 
matrices, and Lof, L i  are hermitian and real square, re- 
spectively. We assume these a priori noise classes Nf , N't 
to be bounded. 

Note that the &,(e) noise sets usually considered ([4, 
81) are just special cases of the above. 

To introduce the a priori system class, define the fol- 
lowing set: 

H ( z )  analytic in D,, I sup (H(z)I  < K 
Z E V ,  

where ID, is the open disk {z , IzI < p }  and Dp is its 
corresponding closure. Also define iF1, as ?t,,l, D as DI 
and i%%,b { F  E X,, llFll, 5 1). 

The class of models usually considered X, (p ,  K )  cor- 
responds to exponentially stable systems (finite or infinite 
dimensional). From a practical viewpoint, these systems 
have a stability margin of ( p  - 1), a peak response to com- 
plex exponential inputs of K ,  and satisfy the following 
time domain bound: 

IW4l I KpKk (2) 

The above classes cover the nonparametric part of the 
model G,, (2). 

We seek the worst case identification of the com- 
bined parametric and non parametric models using both 
the time and frequency experiments, i.e. G,(z) + 
Gnp(z). To this end we define the sets of systems S = 
{ Z , ( p , K ) ,  p > 1, K < 00) for the non parametric part 
and P for the parametric component G,(z). 

The latter is the class of affine parametric models de- 
fined as follows: 

A 

P e { p T ~ ( z > ,  p E R ~ P ,  pi E [ai ,bi] ,  ~ ( z )  satisfies (3)) 

where the components g;(z) of vector G(z )  are known lin- 
early independent functions, which satisfy the separation 
condition : 

sPan{gi(z)) n S = (0) (3) 
This condition guarantees a unique parametric/non 

parametric decomposition for each element G,(z) +G,, ( z )  
of the a priori set. If this decomposition is not unique, 
then there are multiple parameter choices for each model 
in the a priori set. Therefore the parametric and nonpara- 
metric components will not converge separately, although 
the full model might converge to the real plant. 

The underlying motivation for the above "clear sepa- 
ration" condition between the parametric and nonpara- 
metric components is as follows. There is a clear ad- 
vantage of having a parametric component when it can- 
not be tightly described with a nonparametric model. In 
that case, a global nonparametric description would be 
unnecessarily conservative ( [ 5 ] ) .  On the other hand, in 
the case where the parametric portion can be included 
in the nonparametric one, there is no special reason to 
describe it parametrically. For all the previous argu- 
ments, we consider the case where the parametric and 
nonparametric components are clearly separated. This 
type of model description includes many practical situ- 
ations, e.g. flexible structures. In the latter case, the 
parametric/nonparametric separation is in terms of the 
system natural frequencies. The lower frequencies have a 
parametric description, while the higher frequencies can 
be modeled nonparametrically. 

Therefore, the a priori information and the a posteri- 
ori experimental input data are: 

7 = { H ( z )  = Gp(z)  + Gnp(z)  I Gp E P ,  Gap E S )  
Nf  = {qf E C N f  , L f ( ~ f )  > 0) 
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Nt = {$ E R” , Lt(qt) > 0) 

y f  = { h + Q f  E G N f }  

yt = { U h + $  ERNt} 

The above a priori and a posteriori information al- 
lows a less conservative identification than in the cases 
where only time or frequency experiments are provided or 
when no knowledge of the parametric part of the model is 
used. Another interpretation can be made in terms of the 
“smaller” size of the consistency set, due to the fact that 
there are more experimental data and structured a priori 
information. 

2.1. Generalized Interpolation Frame- 

In this section we briefly present a generalized inter- 
polation framework developed in [ 11. This framework will 
be used in Section I11 to solve the consistency problem. 

work 

Theorem 1 There exists a transfer funct ion F ( z )  E 
B’H, (EX,) such that: 

Res,,,,F(z)C-(zI - A)-l = C+ (4) 
Z,EV 

i f  and only i f  the following discrete time Lyapunov equa- 
tion has a unique positive (semi) definite solution. 

where A,  C- and C+ are constant complex matrices of ap- 
propriate dimensions. If M > 0 then the solution F ( z )  is 
non-unique and the set of solutions can be parameterized 
in terms of a linear fractional transformation of Q(z ) ,  an 
arbitrary element of EXm. 

Note that the matrices A and C- provide the structure 
of the interpolation problem while C+ provides the in- 
terpolation values. It can be shown ([l]) that both the 
Nevanlinna-Pick and the Carathbodory-FejBr problems are 
special cases of this theorem, corresponding to an appro- 
priate choice of the matrices A and C-, 

3. Main Results 
Nevanlinna-Pick based identification algorithms ad- 

dress the case where the experimental data available is 
purely frequency domain ([4]), while CarathCodory-FejCr 
based identification deals only with time domain data 
([3]). In this section we exploit the generalized interpo- 
lation framework introduced in the previous section to 
solve Problem 1, obtaining a robust identification algo- 
rithm that combines both sources of data. To this effect, 
we divided Problem 1 into two subproblems: i) consis- 
tency and ii) identification. The first should determine 
the existence of a candidate model H E 7 which may 

have produced both, the time and frequency domain ex- 
perimental data. Clearly, this is a prerequisite to the sec- 
ond stage, the identification step, consisting of the com- 
putation of the nominal model itself and a bound on the 
identification error. 

3.1. Consistency 
We will see now that the problem of determining con- 

sistency of the a posteriori and a priori information re- 
duces to establishing whether or not there exists a model 
H E 7 that interpolates the frequency experimental data 
within the noise bounds: 

h = y f  - ~ f ,  , ~ f   EN^ (6) 

and has an impulse response that satisfies the following 
constraints: 

where the noiseless output Uh is the convolution of the 
input vector U* = [ u(0) u(1) ... u ( N t -  1) ] and 
the system H ( z ) .  

The main result of this section shows that consistency 
can be established by solving a finite-dimensional convex 
optimization problem. In Theorems 2 and 3 we will show 
that this generalized problem can be recast in terms of an 
LMI optimization. 

The next theorem provides necessary and sufficient 
conditions for the existence of a function H E 3-1, ( p ,  K )  
which interpolates fixed frequency domain experimental 
data while, at the same time, satisfies a time-domain con- 
straint. 

Theorem 2 Given N f  frequency-domain data points, 
H ( z i )  = wi, i = 0,.  . . , N f  - 1, lzil < p and Nt time- 
domain data points h ( k ) ,  IC = 0 ,..., Nt - 1, there ex- 
ists H E ‘Hm(p, K )  that interpolates the frequency domain 
data and such that H ( z )  = h(0) + h(1)z + h(2)z2 + . . . + 
h(Nt - 1 ) ~ ~ t - l  + . . . if and only if 

where 

M x  S O R - ~  - -W?SOR-~F~ 1 
K2 

R = diag[ 1 p p 2  . . .pNt-l  ] 

so = 
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W f  = diag [ WO . . . wivf-1 ] (13) 
h(0) h(1) ... h(Nt - 1) 

0 h(0) ... h(Nt -2) 

0 0 ... 

e .  

Combining the previous result (that considers only 
noiseless data points) with the assumed parametric struc- 
ture, we obtain the following necessary and sufficient con- 
dition for consistency: 

Lemma1 Define 

Pt = [g j ( i  - 1)]ij , i = 1 , .  . . , N t , j  = 1,. . . ,Np (15) 

and 

Pf = [ G j ( ~ i - i ) ] i j  , i = 1,. . . , N f , j  = 1, .  . . ,Np  (16) 

Then, the a priori and a posteriori information are 
consistent if and only i f  there exists three vectors: 

p _ [  PI p2 

... 
P& 

such that 

Note that the components of w and h are elements of the 
matrices Wf and Ft respectively, and gi(lc) the impulse 
response of Gi(z).  

From Lemma 1 it follows that the consistency problem 
can be reduced to  solving a feasibility problem in terms 
of the parameter vector p and the time and frequency do- 
main vectors h, w. The next Theorem shows that this 
feasibility problem is a convex problem that can be re- 
cast in terms of LMIs and thus efficiently solved, using for 
instance interior-point methods [2]. 

Theorem 3 The parametric/nonparametric consistency 
problem with mixed time/frequency-domain data is equiv- 
alent to  a LMI feasibility problem. 

An interesting question that appears at this point is 
related with the particular choice of a feasible solution for 
the LMI equations. For example, one could minimize the 
“size” of the noise set, under to the consistency restric- 
tions. Or, maximize the smallest eigenvalue of the gen- 
eralized Pick matrix, over the feasibility set, to avoid the 
ill-conditioning of the singular case. Alternatively, a min- 
imization over K (a bound on the norm of the nonpara- 
metric component) could be performed. From a control 
perspective, this latter option seems specially useful. 

~ 
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3.2. Identification 
Once consistency is established, the second step to- 

wards solving the problem stated in Section I1 consists 
of generating a nominal model in the consistency set 
T(yf, y’). The identification algorithm that we propose 
is based on the parameterization of all solutions of the 
generalized Nevanlinna-Pick interpolation problem [l] pre- 
sented in Theorem 1. For simplicity we consider the case 
where the matrix MR is strictly positive definite and there- 
fore the solution is non-unique. Details for the degenerate 
case where there exists a unique solution can be found in 
[l]. The algorithm can be summarized as follows 

1.- Find feasible data vectors p, w, h for the consistency 
problem (18)-(20) by solving the LMI feasibility prob- 
lem. 

2.- Compute the generalized Pick matrix MR in (8) 
(which should be positive definite), corresponding to 
the vectors computed in step 1.-. 

3.- Use Theorem 1 to compute a model from the con- 
sistency set 7. Recall that all the models in S 
(i.e. all the solutions to the generalized interpo- 
lation problem) can be parameterized as a Linear 
Fractional Transformation (LFT) of a free parame- 
ter &(z )  E BX,. In particular, if the free parameter 
&(z) is chosen as a constant, then the nonparametric 
model order is less than or equal to  N f  + Nt. 

Remark 1 Note that T ( z )  depends on  the choice of vec- 
tors w, h. Thus, there are additional degrees of freedom 
available in the problem [choices of w, h and Q(z))  that 
could be used to  optimize additional performance criteria 
[e.g. model order). 

3.3. Identification Error 
In [7] an upper bound for the worst-case identification 

error for the present problem is derived. Since this bound 
is given in terms of the radius and diameter of information 
[6], they are valid for all interpolatory algorithms taking as 
inputs the available a priori and a posteriori information 
(see lower bound in [8]). 

An important point that needs to be emphasized at 
this stage lies on the fact that the identification error 
bounds are dependent on the assumed a priori informa- 
tion. That is, there will be different error bounds accord- 
ing to what is considered to be a priori . For example, 
by considering a fixed parametric component it is possi- 
ble to change the a priori assumptions without necessarily 
changing the identified model, and keeping consistency in 
the process. In this case, the problem setup is nearly the 
same as the nonparametric case, and therefore the error 
bounds can be computed, for example, using the results 
in [8]. On the other hand, if we keep the a priori informa- 
tion structure of the parametric-nonparametric approach, 
weaker bounds can be obtained ([7]). 
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Figure 1: Nonparametric identification results. The full 
line is the physical system (with noise), and the dotted 
line the nonparametric identified model. 

4. Example 
In this section we present an application of the 

proposed identification procedure. The “experimental” 
data proceeds from the stable component (no rigid-body 
modes) of the Euler-Bernoulli model of a flexible bcam 
with viscous damping. For simplicity, we considered only 
frequency data, bilinearly-transformed from the original 
continuous-time samples. 

We assumed a parametric component having the fol- 
lowing (affine) structure: 

PlX + P2 

z 2  + 0.042 + 1.05 
G(x) = 

where pl and p2 are the uncertain parameters. The res- 
onant poles of G ( z )  were chosen according to the infor- 
mation available on the critical frequencies and damping 
factors of the plant. The optimization criterion chosen 
was to minimize the value of K ,  subject to the consis- 
tency restrictions. 

In Figure 1 an identified model for the nonparametric 
identification procedure is shown. As noted above, in this 
approach the highly resonant poles force very small val- 
ues of p and/or large values of K ,  in order to satisfy the 
consistency constraints. This, in turn, causes larger er- 
ror bounds, as well as less smooth interpolation functions. 
This issue is important in order to apply a subsequent 
model reduction stage. 

Instead, when the approach developed in this note is 
employed, the complex dynamics of the parametric com- 
ponent can be “decoupled” from the nonparametric one. 
Figure 2 shows the identified parametric component, as 
well as the full model. Note that the parametric compo- 
nent is not able to explain, by itself, the whole dynamic be- 
havior. Its objective is to model just one particular mode, 
rather than the entire transfer function. Note also that 
the identified nominal model is almost coincident with the 
experiment, providing a much better fit. 
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Figure 2: Mixed parametric/nonparametric identification 
results. The full line is the physical system (with noise), 
the dash-dotted line is the parametric model, and the dot- 
ted line is the full identified model. 
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