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Abstract

This paper addresses the problem of segmenting a com-

bination of linear subspaces and quadratic surfaces from

sample data points corrupted by (not necessarily small)

noise. Our main result shows that this problem can be

reduced to minimizing the rank of a matrix whose entries

are affine in the optimization variables, subject to a convex

constraint imposing that these variables are the moments

of an (unknown) probability distribution function with fi-

nite support. Exploiting the linear matrix inequality based

characterization of the moments problem and appealing to

well known convex relaxations of rank leads to an overall

semi-definite optimization problem. We apply our method

to problems such as simultaneous 2D motion segmentation

and motion segmentation from two perspective views and il-

lustrate that our formulation substantially reduces the noise

sensitivity of existing approaches.

1. Introduction and Motivation

Many problems of practical interest can be reduced to

identifying a combination of an unknown number of sub-

spaces and quadratic surfaces from sample points. Exam-

ples include among others image clustering/classification,

segmentation of video sequences, motion segmentation un-

der affine and perspective projections, and identification of

piecewise affine systems [20, 10, 15, 8, 11]. In the ideal

case of noiseless data, the problem can be elegantly solved

using an algebraic approach, Generalized Principal Com-

ponents Analysis (GPCA) [20], that only entails finding the

null space of a matrix constructed from the data. In the case

where the data is corrupted by noise, pursuing this approach

requires first estimating the null space of a matrix whose en-

tries depend polynomially on the noise, a non–trivial prob-

lem. If the noise is small, an approximate solution to this

problem is given by the subspace associated with the small-

est singular value of the matrix [20]. Recently, an improved

method has been proposed [12] based on using a lineariza-
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Figure 1. An image pair with 3 relocated objects with noisy corre-

spondences superimposed.

tion analysis to reduce the problem to minimizing the Samp-

son distance from the data points to the zero set of a fam-

ily of polynomials associated with the algebraic surfaces.

In principle this approach leads to a constrained non-linear

optimization problem. However, an approximate solution

can be obtained by solving a generalized eigenvalue prob-

lem and improved using gradient descent methods. While

this approach can successfully handle moderate noise lev-

els, its performance degrades substantially as the noise level

increases, as illustrated next.

Consider the image pair shown in Fig. 1, taken from [19],

where each point coordinate has been corrupted by uniform

random noise. The goal here is to estimate the motion and

assign each point to a rigid object. As shown in [20] (see

also Section 4) this problem can be reduced to that of as-

signing points to (an unknown number of) subspaces, and

hence solved using GPCA. Figures 2 (a) and (b) show a

typical outcome when applying the original GPCA method

and its robust version (RGPCA) [12], and summarizes the

results of 20 random runs with ±10 pixels noise level. As

expected, while robust GPCA outperforms GPCA, it still

has a relatively large misclassification rate.

Contributions of the paper:

This paper is motivated by the example above. Our goal

is to develop a computationally tractable algorithm for seg-

menting a mixture of subspaces and quadratic surfaces ca-

pable of handling not necessarily small amounts of noise

with a-priori unknown statistical properties. Specifically,

the main contributions of the paper are:

• Theoretical: Our main theoretical contribution shows

that the problem of estimating a multivariate polyno-
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Figure 2. Sample segmentation results and mean misclassification rates. (a): GPCA segmentation (mean misclassification rate: 31.1%).

(b): RGPCA segmentation (mean misclassification rate 14.9%). (c): Proposed algorithm (mean misclassification rate 3.7%). The image

size is 600 × 800 and the noise level is ±10 pixels.

mial Q(x), with a-priori bounded order, from noisy

measurements of its zero set can be reduced to a con-

strained rank minimization problem where all the ma-

trices involved are affine in the decision variables and

the constraints are convex. The significance of this re-

sult is that it allows for eliminating the polynomial de-

pendency on the (unknown) noise terms that renders

the problem of estimating Q (or equivalently the null

space of the Veronese matrix in GPCA) difficult, at the

price of adding additional (but convex) constraints.

• Algorithmic: The theoretical results outlined above

allow for recasting the problem of segmenting a mix-

ture of subspaces and quadratic surfaces into a con-

strained rank minimization problem. Although in prin-

ciple rank minimization problems are NP hard, this is

a very active research area in optimization, and in the

past few years a number of efficient convex relaxations

have been proposed. Since all matrices involved are

affine in the decision variables, the resulting overall

problem is convex and can be efficiently solved, lead-

ing to a tractable segmentation algorithm. As we illus-

trate in the paper, this algorithm performs well, even in

the presence of substantial noise. An example of this

situation is shown in Figure 2 (c).

2. Preliminaries

2.1. Notation

M � 0 matrix M is positive semidefinite.

Pn
D set of nth degree multivariate polynomi-

als in D variables. n and D may be omit-

ted when clear from the context.

νn(x) Veronese map of degree n:

νn

(

x1 . . . xD

) .
=

[

xn
1 xn−1

1 x2 . . . xn
D

]T

(i.e. all possible monomials of order n in

D variables, in lexicographical order.)

2.2. Statement of the Problem

Let A
.
= S1 ∪ S2 ∪ . . . Sn denote an arrangement

of subspaces Sk embedded in an ambient space of di-

mension D. To this arrangement of subspaces one can

associate a set Vn
A of homogeneous multivariate polyno-

mials Qj(x) of degree n that has A as its zero set, e.g.

Vn
A

.
= {Qj(x) ∈ Pn : Qj(x) = 0 ⇐⇒ x ∈ A}. Follow-

ing [12], in the sequel we will refer to the set Vn
A as the set

of vanishing polynomials of the arrangement A. Note that

each polynomial Qj(x) can be written as Qj = νn(x)T cj ,

where the vector cj ∈ R
m, m =

(

n+D−1
D−1

)

, contains the co-

efficients of the vanishing polynomial in appropriate order.

It follows that given Np noiseless samples x1, . . . ,xNp
∈

A, the vectors cj span the null space N of the matrix

V(x) =
[

νn(x1) νn(x2) . . . νn(xNp
)
]T

. Thus these

vectors (and hence a basis for Vn
A) can be found via a simple

singular value decomposition of V(x). On the other hand,

in the case of noisy samples xi = x̂i + ηi the matrix V de-

pends polynomially on the noise ηi. Thus, when ‖η‖ is not

small, the procedure outlined above no longer works, even

when replacing the null space N of V with the subspace

associated with its smallest singular values.

Our goal is to develop a computationally tractable algo-

rithm (and the supporting theory) that allows for estimat-

ing both the set of vanishing polynomials and the subspaces

from samples corrupted by (not necessarily small) noise.

Specifically, we address the following problem:

Problem 1. [Polynomial estimation and subspace segmen-

tation] Given a (sufficiently dense) set of noisy samples

xi = x̂i + ηi of points x̂i drawn from an arrangement of

subspaces A, and a–priori bounds on the number of sub-

spaces, n, and the norm of noise ‖ηi‖2 ≤ ǫ:

1.- Estimate a basis for Vn
A, the set of vanishing polyno-

mials of A of degree up to n.

2.- Estimate a subspace S⊥
k normal to each subspace Sk.
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3.- For each noisy sample xi find a subspace Sk, a point

x̂i ∈ Sk and an admissible noise ηi, ‖ηi‖ ≤ ǫ such

that xi = x̂i + ηi.

Our main result establishes that the problem above can

be reduced to a constrained rank minimization problem

where all the matrices involved are affine in the optimiza-

tion variables. Once this result is established, tractable algo-

rithms can be obtained by appealing to recently introduced

convex relaxations of rank minimization problems.

2.3. The Problem of Moments

The key step in establishing our main result is to trans-

form the problem from an optimization over noise se-

quences to an optimization over probability measures sup-

ported in the ǫ-ball. To this effect, we will use several clas-

sical results establishing the necessary and sufficient condi-

tions for a given sequence to be the moments of a probabil-

ity distribution. For completeness, these results are briefly

quoted below. Details are given for instance in [4].

Let K be a closed subset of R
D and let α be a multi–

index (i.e. α ∈ N
D) representing the powers of a mono-

mial in D variables. Given a sequence of scalars {mα}, the

K-moment problem is to determine whether there exists a

probability measure µ supported on K such that it has each

mα as its α
th moment. That is:

mα = Eµ(xα) =

∫

K

xαµ(dx) (1)

where xα = xα1
1 xα2

2 · · ·xαD

D . In particular, in the sequel

we are interested in probability measures that are supported

on balls of radius ǫ centered at the origin. Next, we recall

a theorem from [13] that provides necessary and sufficient

conditions for the existence of such a measure.

Theorem 1. Let p =
∑

α
cαxα ∈ P denote a generic

(multivariate) polynomial. Given a sequence m
.
= {mα},

there exists a linear functional E : P → R such that

E(p) =
∑

α

cαmα (2)

and {mα} are the moments of a distribution supported on

‖x‖2 ≤ ǫ, if and only if the following two conditions hold

for all p ∈ P:

E(p2) ≥ 0 (3)

E((ǫ2 − (x2
1 + . . . + x2

D))p2) ≥ 0 (4)

Remark 1. The conditions given in the above theorem con-

sist of infinite semidefinite quadratic forms which can be

converted into (infinite) linear matrix inequalities (LMIs) in

the moment variables {mα}.

Next, we briefly discuss how to build a matrix represen-

tation of a given sequence m that contains all the moments

up to order 2δ. Although the order of the subsequence is im-

material, for the sake of clarity of presentation, we arrange

the moments according to a graded reverse lexicographic

order (grevlex) of the corresponding monomials so that we

have 0 = α
(1) < . . . < α

(Mδ), where Mδ
.
=

(

δ + D

D

)

is the number of moments in R
D up to order δ. Then, the

moment conditions take the form:

L(δ)(m) � 0

K(δ)(ǫ,m) � 0
(5)

where

L(δ)(i, j) = mα(i)+α(j) for all i, j ≤ Mδ

K(δ)(i, j) = (ǫ2mα(i)+α(j) − mα(i)+α(j)+(2,0,...,0)−
. . . − mα(i)+α(j)+(0,...,0,2))for all i, j ≤ Mδ−1

It can be shown [9] that the linear matrix inequalities in

equation (5) are necessary conditions for the existence of

a measure µ supported in the ǫ-ball that has the sequence m

as its moments. Moreover, as δ ↑ ∞, (5) becomes equiva-

lent to conditions (3)–(4) in Theorem 1; hence it is sufficient

as well. Thus, it is possible to get progressively better ap-

proximations to the infinite dimensional conditions (3)–(4)

with finite dimensional LMIs by increasing the size of the

moment matrices (i.e. by increasing δ) [9]. It is also worth

noting that if as δ increases, the rank of the moment ma-

trices stops increasing, the so-called flat extension property

([4]) is satisfied. In this case, the finite dimensional condi-

tions (5) corresponding to this value of δ are necessary and

sufficient for the existence of a measure supported in the ǫ

ball.

Example 1. This simple example illustrates the structure of

moment matrices when D = 2, δ = 2:

L =

















1 m(1,0) m(0,1) m(2,0) m(1,1) m(0,2)

m(1,0) m(2,0) m(1,1) m(3,0) m(2,1) m(1,2)

m(0,1) m(1,1) m(0,2) m(2,1) m(1,2) m(0,3)

m(2,0) m(3,0) m(2,1) m(4,0) m(3,1) m(2,2)

m(1,1) m(2,1) m(1,2) m(3,1) m(2,2) m(1,3)

m(0,2) m(1,2) m(0,3) m(2,2) m(1,3) m(0,4)

















(6)

K = ǫ2L(1 : 3, 1 : 3) −





m(2,0) m(3,0) m(2,1)

m(3,0) m(4,0) m(3,1)

m(2,1) m(3,1) m(2,2)





−





m(0,2) m(1,2) m(0,2)

m(1,2) m(2,2) m(1,3)

m(0,3) m(1,3) m(0,4)





(7)
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3. Main Results

In this section we present the main theoretical result of

the paper that allows for recasting Problem 1 into a con-

strained rank minimization form that can be further relaxed

to a convex semi-definite optimization problem.

Theorem 2. Let {Qj(x)} denote the set of polynomials of

an arrangement of subspacesA and denote by nq its dimen-

sion. Consider a set of measurements corrupted by norm-

bounded noise

xi = x̂i + ηi, i = 1, 2 . . . , Np (8)

where x̂i ∈ A and ‖ηi||2 ≤ ǫ. Then:

1. If nq > 1, there exists an admissible noise sequence

ηi and Np points x̂i satisfying (8) and such that

Qj(x̂i) = 0 if and only if there exist Np sequences

mi
.
= {mα} such that the following conditions hold:

rank
{

M(x,m1, . . . ,mNp
)
}

= h − nq (9)

Li(mi) � 0, i = 1, . . . , Np (10)

Ki(ǫ,mi) � 0, i = 1, . . . , Np (11)

rank(Li(mi)) = 1, i = 1, . . . , Np (12)

where h =
(

n+D−1
D−1

)

; M
.
= E(V)1 and Li and Ki are

the moment matrices, defined in (5), associated with ηi

(i.e. the noise affecting the ith sample point).

2. If nq = 1, e.g. when all the subspaces Sk have dimen-

sion D − 1, then the rank constraint (12) is no longer

required (e.g only (9)-(11) need to be enforced.)

Proof. Given in the Appendix

3.1. A Convex Relaxation

Although there are a few methods to solve rank con-

strained semidefinite programs (see for instance [14]), these

are usually computationally intensive and do not have con-

vergence guarantees. For this reason, we proceed by re-

laxing the conditions in order to obtain a convex program

that approximates the original problem and that can be ef-

ficiently solved with off–the–shelf solvers. To this end, we

first consider the following problem:

minimizemi
rank

{

M(x,m1, . . . ,mNp
)
}

subject to L
⌈n

2 ⌉
i (mi) � 0 i = 1, . . . , Np

K
⌈n

2 ⌉
i (ǫ,mi) � i = 1, . . . , Np

(13)

where we truncate the moment matrices such that they only

contain the moments up to order n (n+1 if n is odd) which

1Here the expectation operator E acts elementwise on V(x) = V(x̂+
η). That is, M is constructed by replacing all the monomials in the noise

terms η in V(x) with the corresponding moments.

is the maximum order of the noise monomials appearing in

the embedded data matrix V.

Equation (13) is an affine matrix rank minimization

problem subject to convex constraints. Although rank min-

imization is an NP–Hard problem, efficient convex relax-

ations are available. In particular, good approximate solu-

tions can be obtained by using a log–det heuristic [5] that re-

laxes rank minimization to a sequence of convex problems2.

Inspired by the adaptive step size defined for weighted ℓ1

minimization in [3], the following problem is solved at each

iteration:

minm1:Np ,Y,Z trace(W
(k)
y Y) + trace(W

(k)
z Z)

subject to

[

Y M(m1:Np
)

M(m1:Np
)T Z

]

� 0

L
⌈ n

2 ⌉
i (mi) � 0, K

⌈n
2 ⌉

i (mi) � 0 i = 1, . . . , Np

(14)

where W
(k+1)
y = (Y(k) + λkI)

−1, W
(k+1)
z = (Z(k) +

λkI)
−1 are weights with Y(k),Z(k) being the arguments of

the optimal solution in the kth iteration; λk, the regulariza-

tion parameter, is set to the (h − nq + 1)th largest singular

value of current optimal M in iteration k; and W
(0)
y , W

(0)
z

are initialized with identity matrices3. Note that the ma-

trices M, L and K are affine in the moment variables mi

as defined in Theorem 2, and Y and Z are symmetric pos-

itive definite auxiliary variables. Hence, (14) is a convex

semidefinite program.

Remark 2. Although when nq > 1, the relaxation is less

tight since we drop the rank–constraints on the moment

matrices, in practice the moment matrices found by solv-

ing (14) are close to rank 1. Hence approximating them

with rank 1 matrices using a singular value decomposition

(SVD) gives satisfactory results (see the supplementary ma-

terial).

After solving (14), it is possible to extract an admissible

noise sequence from the moment matrix L as described in

[7]. In particular, when Li has rank 1, one can retrieve the

noise from the elements of the first singular vector of Li

corresponding to first order moments. Once an admissible

noise sequence is obtained, we denoise the data and pro-

ceed with segmentation using polynomial differentiation as

in [20].

3.2. Extension to Quadratic Surfaces

In this section we briefly present a straightforward exten-

sion of our moments-based approach to the segmentation of

2Although there are very recent faster algorithms for rank minimization

(e.g. [2]), they currently cannot handle semidefinite constraints.
3The first iteration solves the nuclear norm heuristic. Then each iter-

ation aims to reduce the rank further through the weighting scheme. In

our experiments, the convergence is typically achieved within the first 10
iterations.

3212



a mixture of quadratic surfaces discussed in [15]. In partic-

ular, we are interested in the class of problems that arises

in the context of motion segmentation from two perspective

views, given the point correspondences [15, 21, 16]. The

main idea is that point correspondences of a single rigid

body satisfy the epipolar constraint xT
1 Fx2 = 0 4 where

F ∈ R
3×3 is the fundamental matrix and xj = (xj , yj, 1)T

for j = 1, 2, are the corresponding points in two views in

homogeneous coordinates. In the case of n rigid objects, all

point correspondences satisfy

n
∏

i=1

xT
1 Fjx2 = 0. (15)

Let z = (x1, y1, x2, y2)
T be a joint vector of correspond-

ing pairs and define the perspective embedding of degree

2n, π2n(z) : R
4 → R

m, m =
(

2+n
n

)2
as

π2n(z)
.
=









x
α

(1)
1

1 y
α

(1)
2

1 x
α

(1)
3

2 y
α

(1)
4

2
...

x
α

(m)
1

1 y
α

(m)
2

1 x
α

(m)
3

2 y
α

(m)
4

2









where the exponents of the monomials satisfy α
(k)
1 +α

(k)
2 ≤

n, α
(k)
3 + α

(k)
4 ≤ n for all k = 1, . . . , m.

As in section 2.2, we can associate with Eq. (15) a

polynomial Qj(z) = cT
j π2n(z) where cj is the coef-

ficient vector. It follows that, given Np noiseless cor-

responding pairs z1, . . . , zNp
, the vectors cj span the

null space N of the embedded data matrix P(z) =
[

π2n(z1) π2n(z2) . . . π2n(zNp
)
]T

. In the noisy case,

P(z) depends polynomially on the noise η. However, as

before, we can resort to moments–based rank minimization

of E(P) to find a noise sequence η∗ that renders P rank

deficient and obtain its null space (and hence Qj). Once

the data is denoised using η∗, we proceed as in [15]. First,

we form the mutual contraction subspaces between differ-

ent pairs (zk, zl) from the derivatives and hessians of poly-

nomials Qj . Applying spectral clustering to the similarity

matrix built from the subspace angles between mutual con-

traction subspaces leads then to the desired segmentation.

4. Experiments

In this section we illustrate the ability of the proposed

method to deal with relatively large noise using both syn-

thetic and real data. The data we use here is taken from the

literature and thus publicly available.5

4As shown in [1], this equation can be written as a quadratic form in

the joint image space.
5A reference implementation is provided at http://www.

coe.neu.edu/∼necmiye/cvpr10.htm

4.1. Synthetic Data

First, we use synthetic data to investigate the perfor-

mance of the moments–based method for different number

of subspaces, different subspace dimensions and different

noise levels. For each set of examples, we generated 20 ran-

dom instances of the problem data with data points lying on

a subspace arrangement corrupted by random noise in the

direction of subspace normals with uniform random mag-

nitude in [0.8ǫ, ǫ]. All data points were sampled within the

unit hypercube of the ambient space, so that the noise level,

ǫ, corresponds roughly to the percent noise level. The seg-

mentation was performed using the convex relaxation de-

scribed in section 3.1, implemented in Matlab using CVX

toolbox [6], and performance was evaluated in terms of the

average, over all runs, of the worst case fitting error,

errf = max
i∈[1,Np]

min
k∈[1,n]

bT
k xi

where bk’s are the subspace normals found by each algo-

rithm. The results are summarized in Table 1, showing that

in all cases the moments-based method outperforms both

GPCA and RGPCA.

Figure 3 shows a typical noisy data set and the denoised

version obtained by substituting the noise estimates found

via moments. As illustrated there, it is possible to align the

noisy data points on subspaces before the clustering stage.

Hence applying GPCA clustering to these almost noiseless

data points avoids the difficulties entailed in using polyno-

mial differentiation in the presence of noise.

Figure 3. Example using synthetic data laying on two planes (in

R
3). Here the red stars and blue plus signs indicate the original

(noisy) and the denoised data points, respectively.

4.2. 2D motion estimation and segmentation

Next, we consider the problem of simultaneous multiple

2-D motion estimation and clustering from two images. Let
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D dk N ǫ Moments errf GPCA errf RGPCA errf
4 [3, 3] [50, 50] 0.15 0.250 (0.183) 0.488 (0.477) 0.253 (0.234)
3 [2, 2] [50, 50] 0.10 0.101 (0.100) 0.393 (0.334) 0.192 (0.134)
3 [2, 2] [50, 50] 0.15 0.154 (0.151) 0.488 (0.443) 0.289 (0.225)
3 [2, 2] [50, 50] 0.20 0.227 (0.205) 0.543 (0.539) 0.370 (0.329)
3 [2, 2, 2] [40, 40, 40] 0.15 0.259 (0.206) 0.499 (0.477) 0.421 (0.398)

Table 1. Synthetic Data Results. D and dk denote the dimension of the ambient space and subspaces, respectively. N shows the number

of samples per subspace. ǫ denotes the true noise level. The last three columns show the mean and median (in parenthesis) fitting errors.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Fitting Errors wrt Subspaces found

 

 

moment

gpca

rgpca

true

Figure 4. Fitting errors for GPCA, RGPCA and moments-based

methods for the example in Fig. 3.

(x
(n)
i ,y

(n)
i ) be the coordinates of the nth feature point in

the ith image. The coordinates of this point across frames

are related through

[

x
(n)
1

y
(n)
1

]

= Rj

[

x
(n)
2

y
(n)
2

]

+ Tj

where (Rj ,Tj) are the rotation and translation matrices of

the motion of the jth object. Rearranging shows that the

vectors, f (n) = [x
(n)
1 ,y

(n)
1 ,x

(n)
2 ,y

(n)
2 , 1]T corresponding

to points belonging to the same object j lay on a 3 dimen-

sional subspace in R
5. If multiple objects with different

motions are present, each lays in a different subspace and

thus, in the noiseless case, can be segmented using GPCA

[20].

The image pair shown in Fig. 1 is taken from [19].

We manually marked the feature correspondences and then

added uniform random noise to each feature point coor-

dinate in both images. We formed the vectors f (n), and

projected them to R
4 using a 5 × 4 matrix with orthonor-

mal columns. Note that such a projection preserves the

subspace clusters with probability 1. Specifically, we per-

formed an SVD of the matrix F = [f (1), . . . , f (N)] =
UDVT ) and projected the data using the first 4 columns

of U (i.e.X = UT
1:4F). Finally, we applied our method,

GPCA and RGPCA to cluster these 4-D vectors in X. The

results, along with a typical segmentation, are summarized

in Fig. 2, showing that the moments–based algorithm yields

a substantially lower misclassification rate.

4.3. Two view perspective motion segmentation

In this section, we demonstrate the performance of our

method in the problem of motion segmentation from two

perspective views and compare against hybrid quadratic

surface analysis (HQSA) [15], using both synthetic and real

data.

First, we artificially generated two teapots and projected

95 points from each teapot surface to the image plane using

a perspective camera model. Then we moved both teapots

to different locations and generated a second image pro-

ceeding in the same way. The two views used are shown

in Fig. 5. Then, we ran 20 random trials by adding iid

zero mean Gaussian noise with variance 0.15 to each im-

age point in both images. The mean misclassification error

for moments-based method is around 2% whereas the mean

misclassification error for HQSA is 23%.

Next we consider two real examples. Figure 6 shows

two piles of boxes that are moved in two different direc-

tions. This example is taken from [17]. We used the first

and ninth frames of the sequence as our two perspective

views. The missing tracks were ignored. In the result-

ing segmentation HQSA misclassifies 29 points whereas

the moments-based approach misclassifies only 10 points.

Since our model takes into account only additive noise and

this is not the only source of error, the final classification

is not perfect. However, the moments-based approach still

outperforms HQSA. For the next example, we used as per-

spective views the first and last frames of the “truck2”’ se-

quence from the Hopkins 155 dataset [18]. In this case,

the misclassification rate for the moments-based approach

is 9.06% (it only misclassifies the left rear wheel as back-

ground). On the other hand, HQSA has a misclassification

rate of 42.90%, clustering half of the points on the truck as

background.

5. Concluding Remarks

In this paper, we propose a new method for segmenta-

tion of multiple algebraic surfaces from noisy sample data

points. Although particular attention was given to linear and

quadratic surfaces, our method easily extends to surfaces
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(a) (b) (c)

Figure 6. (a)-(b) First and second images with moments-based segmentation superimposed, 10 misclassified points. (c) Segmentation with

the method in [15], 29 misclassified points.

(a) (b) (c)

Figure 7. (a)-(b) First and second images with moments-based segmentation superimposed ( 9.06% misclassification rate). (c) Segmenta-

tion with the method in [15] (42.90% misclassification rate).

Sequence Moments-based HQSA

teapot 2.1% 23.42%
boxes 4.05% 11.74%
truck2 9.06% 42.90%

Table 2. Misclassification rates for perspective motion segmenta-

tion examples.
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Figure 5. Two perspective images of points on teapot surfaces.

generated by higher order polynomials. The main moti-

vation for the approach discussed in this paper is the so-

called generalized principal component analysis (GPCA)

proposed by Vidal et al., which addresses the segmentation

problem for the case of noise free sample data points. Build-

ing on this, the problem of segmentation in the presence of

noisy data is reformulated as the problem of finding a point

in a set defined by linear matrix inequalities and rank con-

straints on matrices affine in the decision variables. Convex

relaxations of rank constraints were then used to obtain a

tractable convex optimization problem. The effectiveness of

the proposed method is illustrated by several examples, in-

cluding simultaneous 2D motion segmentation and motion

segmentation from two perspective views. The results ob-

tained show that our formulation substantially reduces the

noise sensitivity of GPCA.

Effort is now being put in improving the computational

performance of this approach. Also, as further research, it

would be of interest to study how to extend the proposed

approach to non-algebraic surfaces.
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A. Proof of Theorem 2

First, if there exits a noise sequence η
∗
i such that

Qj(xi − η
∗
i ) = νn(xi − η

∗
i )

T cj = 0 for all i, j,

then, the moments mi of the atomic probability measures

µi with

Probµi
(ηi = η

∗
i ) = 1, Probµi

(ηi 6= η
∗
i ) = 0.

trivially satisfy (9) through (12) and the vectors cj span the

null space of the matrix M(x,m1, . . . ,mNp
).

To prove the converse, lets first look at part 1. We start by

noting that rank(Li) = 1 is equivalent to the existence of an

unique atomic measure µi with one atom whose moments

are equal to mi (see [4]) and, hence, there exist η
∗
i such that

Probµi
(ηi = η

∗
i ) = 1, Probµi

(ηi 6= η
∗
i ) = 0.

Therefore, for this measure, one has

V(x − η
∗) = M(x,m1, . . . ,mNp

).

Note that (11) implies that ‖η∗
i ‖2 ≤ ǫ. Given this, let cj be

linearly independent vectors which span the null space of

the matrix V(x − η
∗). To conclude this part of the proof,

define Qj(xi) = νn(xi)
T cj and x̂i

.
= xi − η

∗
i . From the

reasoning above it follows that

Qj(x̂i) = νn(x̂i)
T cj = νn(xi − η

∗
i )

T cj = 0 for all i, j.

We now turn our attention to part 2. Since condition (12)

might not be satisfied, the measures µi compatible with the

moment sequences mi are not necessarily atomic measures.

However, equation (9) implies that N , the null space of

the matrix M(x,m1, . . . ,mNp
), has dimension one. Let

c span N , i.e.,

M(x,m1, . . . ,mNp
)c = 0.

Linearity of expectation implies that

Eµi
[νn(xi − ηi)

T c] = 0.

Therefore, there exist η
+
i and η

−
i within the noise bounds

such that

νn(xi − η
+
i )T c ≥ 0 and νn(xi − η

−
i )T c ≤ 0.

Since νn(xi − ηi)
T c is a polynomial and, hence, a contin-

uous function of ηi, there exists a η
∗
i such that

νn(xi − η
∗
i )

T c = 0.

The proof is concluded by defining the unique (up to a mul-

tiplying constant) vanishing polynomial Q(x̂i) = νn(x̂i)
T c

which, given the reasoning above, satisfies

Q(x̂i) = νn(x̂i)
T c = νn(xi − η

∗
i )

T c = 0 for all i.

Remark 3. Note that, without the rank constraint (12), a

finite order approximation in (10) and (11) only leads to

necessary conditions for mi to be moments of a probability

distribution. Hence, implementing the approach in part 2

with these truncated matrices only provides an approxima-

tion of the true Q(·). However, the approximation converges

to the true solution as the moment approximation order in-

creases.
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