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Abstract— Identification of switched linear systems has re-
ceived considerable attention during the past few years. Since
the problem is generically NP-Hard, the majority of existing
algorithms are based on heuristics or relaxations. Therefore,
it is crucial to check the validity of the identified models
against additional experimental data. This paper addresses
the problem of model (in)validation for multi-input multi-
output switched affine autoregressive exogenous systems with
unknown switches. Our main result provides necessary and
sufficient conditions for a given model to be (in)validated by
the experimental data. In principle, checking these conditions
requires solving a sequence of convex optimization problems
involving increasingly large matrices. However, as we show in
the paper, if in the process of solving these problems either a
positive solution is found or the so-called flat extension property
holds, then the process terminates with a certificate that either
the model has been invalidated or that the experimental data
is indeed consistent with the model and a–priori information.
By using duality, the proposed approach exploits the inherently
sparse structure of the optimization problem to substantially
reduce its computational complexity. The effectiveness of the
proposed method is illustrated using both academic examples
and a non-trivial problem arising in computer vision: activity
monitoring.

I. INTRODUCTION AND MOTIVATION

Hybrid systems, dynamical systems where continuous and

discrete states interact, are ubiquitous in many different

contexts (e.g. biological systems, systems incorporating log-

ical and continuous elements, manufacturing, automotive,

etc.). In addition, these systems can be used to approximate

nonlinear dynamics. Thus, during the past few years, a

considerable research effort has been devoted to the problem

of identifying hybrid systems, leading to several methods

(see the excellent tutorial paper [13] for a summary of the

main issues and recent developments in the field). Since the

identification problem is generically NP-Hard, the majority

of existing identification algorithms are based on heuristics

or relaxations ([6], [1], [12], [11], [5]). Hence, a crucial step

before using the resulting models, is to check their validity

against additional experimental data. Model (in)validation

of Linear Time Invariant (LTI) systems has been exten-

sively addressed in the past two decades and both time

and frequency domain results are available in the literature

(see for instance [15], [3], [17] and references therein). A

related line of research is model (in)validation of Linear
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Parameter Varying (LPV) systems ([20], [2]) where it is

assumed that parameter values are measurable during the

experiment and used as part of a posteriori data during the

(in)validation step. Finally, (in)validation of continuous-time

nonlinear models was addressed in [16] using sum of squares

methods and barrier functions. However, to the best of our

knowledge, similar results for discrete-time switched linear

systems with unknown switches has not been considered,

with the main difficulty here being the combination of noisy

measurements and an unknown mode signal.

The main result of this paper is a necessary and suffi-

cient condition for a multi-input multi-output switched affine

autoregressive exogenous model to be (in)validated by the

experimental data. Specifically, given a nominal model and

experimental input/output data, we provide certificates for the

existence/nonexistence of a switching sequence such that the

resulting output sequence interpolates the given experimental

data within a given noise bound. The starting point to obtain

such certificates is to recast the (in)validation problem as

one of checking whether a semialgebraic set is empty. By

using a combination of recent results on moments-based

sparse polynomial optimization and duality we show that

emptiness of this set is equivalent to strict positivity of

the solution of a related, convex optimization problem. In

principle, checking this condition requires solving a sequence

of convex optimization problems involving increasingly large

matrices. However, as we show in the paper, if in the

process of solving these problems either a positive solution

is found or the rank of certain matrices formed using the

solution to the dual problem ceases to increase (the so-called

flat extension property), then the process terminates with

either an invalidation or a consistency certificate. A salient

feature of the proposed approach is its ability to exploit the

inherently sparse structure of the optimization problem to

substantially reduce its computational complexity.

In the second portion of the paper, these results are

illustrated both with academic examples and a non-trivial

problem arising in computer vision: activity monitoring.

Typically, a visual surveillance system captures high volume

data streams from multiple cameras. However, interesting

(e.g. abnormal) activities are rare. Thus, it is important to be

able to automatically eliminate the “normal” behavior and

trigger an appropriate response when something potentially

interesting or “abnormal” occurs. As we show in Section V-

B, this problem can be recast into a piecewise–affine model

invalidation form and solved using the framework developed

in this paper.
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II. PRELIMINARIES

For ease of reference, in this section we summarize the

notation used in the paper and recall some results on sparse

polynomial optimization that play a key role in establishing

the main result of this paper.

A. Notation and Definitions

x,M a vector in Rn (matrix in Rn×m)

‖x‖
∞

ℓ∞-norm of the vector x ∈ Rn

‖x‖∞
.
= sup

i

|xi|

R[x1, . . . , xn] the ring of polynomials in n vari-

ables over R. When n is clear from

context, R[x] is used.

Nn positive integers up to n, i.e.

Nn
.
= {1, . . . , n}

∧ (∨) logical AND (OR)

< M,N > trace(MT N)
M � N the matrix M − N is positive

semidefinite.
Definition 1: A polynomial p ∈ R[x] is said to be a sum

of squares polynomial (SOS), if it can be written as p =
∑m

j=1 u2
j for some u1, . . . , um ∈ R[x].

Definition 2: A set K ⊂ Rn is said to be semialgebraic

if its defined by a finite number of polynomial equations and

inequalities

B. The problem of moments and polynomial optimization.

In this paper, we will reduce the (in)validation problem to

a polynomial optimization over a semialgebraic set, that is,

a problem of the form:

p∗K := min
x∈K

p(x) (P1)

where K ⊂ Rn is a compact semialgebraic set defined by

d polynomial inequalities of the form gk(x) ≥ 0, k =
1, . . . , d. In the sequel, we briefly summarize some results

relating polynomial optimization to the problem of moments

that will be used to recast problem (P1) (and hence model

invalidation) into a (possibly infinite-dimensional) convex

optimization form (see [7], [8], [9] for more details).

1) The problem of moments: Let K be a compact subset

of Rn. Given a multisequence of scalars {mα}, indexed by a

multi-index α ∈ Nn, the K-moment problem is to determine

whether there exist a probability measure µ supported on K

that has {mα} as its α
th moments. That is:

mα = Eµ(xα)
.
=

∫

K

xαµ(dx) (1)

where xα = xα1
1 xα2

2 · · ·xαn
n (for a historical review and

details of the problem, see [4], [18] and references therein).

As shown in [7], [4], the existence of such a measure can be

characterized by positive semidefiniteness of some infinite

matrices, the so-called moment M(mα) and localization

matrices L(gkmα) where gk(x) ≥ 0 are the polynomials

defining K.

Next, we briefly discuss how to build truncated versions

of M and L of a given sequence m
.
= {mα} that contains

all the moments up to order 2N . Although the order of

the subsequence is immaterial, for the sake of clarity of

presentation, we arrange the moments according to a graded

reverse lexicographic order (grevlex) of the corresponding

monomials so that we have 0 = α
(1) < . . . < α

(SN ), where

SN
.
=

(

N + n

n

)

is the number of moments in Rn up to

order N . The truncated version of M is defined as follows:

MN (m)(i, j) = mα(i)+α(j) for all i, j ≤ SN . (2)

Let gk(x) =
∑

β gk,β(l)xβ(l)

be one of the defining poly-

nomials of K with coefficients gk,β(l) and degree δk, then

the corresponding truncated localization matrix is defined as:

LN (gkm)(i, j) =
∑

β gk,β(l)mβ(l)+α(i)+α(j)

for all i, j ≤ S
N−

⌊

δk
2

⌋
(3)

2) Moments-based polynomial optimization: In this sec-

tion, we recall some results from [7] that establish a con-

nection between polynomial optimization and the problem

of moments. In general, problem (P1) is non-convex, hence

hard to solve. Instead, we consider a related problem:

p̃∗K := min
µ∈P(K)

∫

p(x)µ(dx) := min
µ∈P(K)

Eµ [p(x)] (P2)

where P(K) is the space of finite Borel signed measures on

K. Although (P2) is an infinite dimensional problem, it is,

in contrast to (P1), convex. The next result, taken from [7],

establishes the relation between the two problems:

Theorem 1: Problems (P1) and (P2) are equivalent; that

is:

• p̃∗K = p∗K .

• If x∗ is a global minimizer of (P1), then µ∗ = δx∗ is a

global minimizer of (P2).

• For every optimal solution µ∗ of (P2), p(x) = p∗K , µ∗

almost everywhere.

One direct consequence of this theorem is that the problem

of finding p∗K in problem (P1) can be reduced to a sequence

of Linear Matrix Inequalities (LMI) optimization problems

in the moments of the unknown distribution by using (2) and

(3) to define the constraint set. To this effect, define

p∗N = minm

∑

α pαmα

s.t.

MN (m) � 0,

LN (gkm) � 0, k = 1, . . . , d,

(4)

Theorem 2: As N → ∞, p∗N ↑ p∗K .

3) Exploiting the sparse structure: The next property will

play a key role in reducing the computational complexity of

problem (P1) by exploiting its structure.

Definition 3: Let K ∈ Rn be a semialgebraic set defined

by d polynomials gk. Let Ik ⊂ {1, . . . , n} be the set of

indices of variables such that each gk contains variables from

some Ik and assume that the objective function p can be
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partitioned as p = p1 + . . .+pl where each pj contains only

variables from some Ik. If there exists a reordering Ik′ of Ik

such that for every k′ = 1, . . . , d − 1:

Ik′+1 ∩
k′

⋃

j=1

Ij ⊆ Is for some s ≤ k′ (5)

then the running intersection property is satisfied.

For the case of generic polynomials and constraints, solv-

ing problem (P1) using the method of moments requires

considering moments and localization matrices containing

O(n2N ) variables. On the other hand, if the running in-

tersection property holds, it can be shown [8], [21] that it

is possible to define d sets of smaller sized matrices each

containing only variables in Ik (i.e. number of variables is

O(κ2N ), where κ is the maximum cardinality of Ik). In

many practical applications, including the one considered in

this paper, κ ≪ n. Hence, exploiting the sparse structure

substantially reduces the number of variables in the opti-

mization (and hence the computational complexity), while

still providing convergent relaxations.

III. (IN)VALIDATING MIMO SARX MODELS

In this section we formally state the problem under con-

sideration and show that it can be reduced to a polynomial

optimization over a semialgebraic set. In turn, this allows

for exploiting the results briefly discussed in section II-B to

obtain computationally tractable (in)validation certificates.

A. Problem Statement

In this paper, we consider multi-input, multi-output

(MIMO) switched affine autoregressive exogenous (SARX)

models of the form:

yt =
∑na

k=1 Ak(σt)yt−k

+
∑nc

k=1 Ck(σt)ut−k + f(σt)
ỹt = yt + ηt

(6)

where ut ∈ Rnu is the input, ỹt ∈ Rny is the mea-

sured output corrupted by the noise ηt ∈ Rny , and

σt ∈ Ns is the discrete mode signal indicating which

of the s submodels is active at time t. We do not make

any dwell-time assumptions, hence the mode signal σt

can switch arbitrarily among the s submodels Gi, each of

which is associated with the set of its coefficient matrices

{A1(i), . . . ,Ana
(i),C1(i), . . . ,Cnc

(i), f(i)}.

The model (in)validation problem for the setup described

above and shown in Figure 1 can be formally stated as

follows:

Problem 1: Given a nominal hybrid model of the form

(6) together with its s submodels G1, . . . , Gs, an a pri-

ori bound ǫ on noise, and experimental data {ut, ỹt}
T
t=t0

,

determine whether or not the a priori information and the a

posteriori experimental data are consistent, i.e. whether the

consistency set

T (η, σ) = {||ηt||∞ ≤ ǫ, σt ∈ Ns

subject to (6) ∀t ∈ [t0, T ]}

is nonempty.

Since T (η, σ) contains all possible noise and mode signal

sequences that can explain the observed data, clearly estab-

lishing that T (η, σ) = ∅ is equivalent to invalidating the

model.

-u

?

σt

Gσt
- h+ - ỹ

6
η

Fig. 1. Problem Setup. The coefficient matrices of the submodels Gi and
a bound on the noise are known a priori. The experimental data consists
of input/output measurements, u and ỹ. The mode signal σt and noise
sequence η are unknown.

B. A Convex Certificate for (In)validating MIMO SARX

Models

Next, we present the main result of the paper, showing

that a necessary and sufficient condition for the model to

be invalidated by the experimental data is strict positivity

of the solution to a related convex optimization problem.

We begin by constructing a semialgebraic set T ′(η) and

showing its equivalence, in a sense to become clear later,

to the consistency set T (η, σ). To this effect, assume that

the ith submodel is active at time t. Rearranging the terms

in Eq. (6) yields:

A1(i)(ỹt−1 − ηt−1) + . . . + Ana
(i)(ỹt−na

− ηt−na
)

−(ỹt − ηt) + C1(i)ut−1 + . . . + Cnc
(i)ut−nc

+ f(i) = 0
(7)

which consists of ny linear equations in na + 1 unknown

noise vectors ηt:t−na
. Denote the equation corresponding to

jth output by h
(j)
t,i (ηt:t−na

). Then Eq. (7) is equivalent to

[h
(1)
t,i (ηt:t−na

) = 0] ∧ . . . ∧ [h
(ny)
t,i (ηt:t−na

) = 0] (8)

or algebraically

gt,i(ηt:t−na
)

.
=

ny
∑

j=1

[

h
(j)
t,i (ηt:t−na

)
]2

= 0. (9)

Note that since the mode signal σt is unmeasurable, the

actual subsystem Gi that is active at any given time t is not

known. However, in order for the set of submodels given

as part of a priori information not to be invalidated by

the experimental data, Eq. (9) should hold true for some

i ∈ {1, . . . , s}1. This condition can be expressed as

[gt,1(ηt:t−na
) = 0] ∨ . . . ∨ [gt,s(ηt:t−na

) = 0] (10)

1This idea is similar to the hybrid decoupling constraint proposed in [10]
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or algebraically

pt(ηt:t−na
)

.
=

s
∏

i=1

gt,i(ηt:t−na
) = 0. (11)

Next we use the equalities above to define a semialgebraic

set and establish its relationship with the consistency set T :

Proposition 1: Let

T ′(η)
.
=

{

η | ft,j(η
(j)
t ) ≥ 0 ∀t ∈ [0, T ], j ∈ Nny

and

pt(ηt:t−na
) = 0 ∀t ∈ [na, T ]

}

.

where

ft,j(η
(j)
t )

.
= ǫ2 −

[

η
(j)
t

]2

Then, T (η, σ) is empty if and only if T ′(η) is empty.

Proof: Follows from the construction of T ′(η) and the

fact that |η
(j)
t | ≤ ǫ ⇐⇒ ft,j(η

(j)
t ) ≥ 0

At this point, one can use the Positivstellenstaz and derive

sum of squares certificates for the emptiness of T ′(η), as

proposed in [14]. However, as we show next, adopting a

dual approach based on the theory of moments allows for

exploiting the inherently sparse structure of the problem.

In order to pursue this approach, start by considering the

following optimization problem:

o∗ = minη

∑T

t=na
pt(ηt:t−na

)
s.t.

ft,j(η
(j)
t ) ≥ 0 ∀t ∈ [0, T ], j ∈ Nny

.
(12)

Note that o∗ ≥ 0, since the objective function in (12) is a

sum of squares polynomial2. Further, if T ′(η) is non-empty,

then there exist a noise sequence η
∗ for which (12) attains

its minimum o∗ = 0. Equivalently, o∗ > 0 ⇐⇒ T ′(η) = ∅.

Proposition 2: Problem (12) above satisfies the running

intersection property.

Proof: Consider the T − na + 1 subsets Ik of the

variables η0:T where each Ik contains only the variables

ηk:k+na
. One can associate each ft,j with I0 for t ≤ na

and with It−na
for t > na. The collection Ikj formed by

repeating each Ik, ny times, satisfies (5) hence the running

intersection property in Definition 3 holds.

Next, we use results from the theory of moments to

obtain a convex problem where the objective and constraints

have affine (rather than polynomial) dependence on the data

and exploits sparsity. Consider the related moments-based

optimization:

d∗N = minm

∑T

t=na
lt(mt−na:t)

s.t.
MN (mt−na:t) � 0 ∀t ∈ [na, T ]
LN (ft,jmt−na:t) � 0 ∀t ∈ [na + 1, T ], j ∈ Nny

LN (ft,jm0:na
) � 0 ∀t ∈ [0, na], j ∈ Nny

(13)

where each lt is the linear functional of moments defined

as lt(mt−na:t)
.
= E

{

pt(ηt:t−na
)
}

, E denotes expectation

2since it is formed by multiplication and addition of SOS polynomials in
(9), and the cone of SOS polynomials is closed under these operations.

and where MN and LN are the moments and localization

matrices associated with a truncated moments sequence

containing terms up to order 2N with N ≥ s. Clearly

d∗N ≥ 0, since the objective function in (12) is a sum

of squares polynomial, and, from Theorem 2, d∗N ↑ o∗ as

N → ∞. These observations lead to the following necessary

and sufficient conditions for (in)validation:

Proposition 3: The following statements are equivalent:

(i) The consistency set T ′(η) is empty

(ii) There exists some finite No such that d∗No
> 0

(iii) The solution r∗ to the following optimization problem

is strictly greater than zero:

r∗ = minm

∑T

t=na
lt(mt−na:t)

s.t.
Ms(mt−na:t) � 0 ∀t ∈ [na, T ]
rank [Ms(mt−na:t)] = 1 ∀t ∈ [na, T ]
Ls(ft,jmt−na:t) � 0 ∀t ∈ [na + 1, T ], j ∈ Nny

Ls(ft,jm0:na
) � 0 ∀t ∈ [0, na], j ∈ Nny

(14)

where each of the T − na + 1 moments sequences

mt−na:t, t ∈ [na, T ], contains moments up to order

2s (i.e. two times number of submodels).

Proof: (i)⇔(ii) Recall that T ′(η) = ∅ ⇐⇒ o∗ > 0.

Since d∗N ↑ o∗ as N → ∞, if o∗ > 0, there exist No such

that d∗No
> 0. On the other hand, if d∗No

> 0 then o∗ > 0
since d∗No

< o∗. Hence, T ′(η) is empty.

(i)⇔(iii) To prove this equivalence, we show that r∗ in

(14) is equal to o∗ in (12). Assume η∗ is an optimizer of

(12), then the moments of the distribution µ∗ with point

support at η∗ is feasible for (14) with the same objective

value which implies r∗ ≤ o∗. On the other hand, if m∗ is

a minimizer of (14), the rank condition implies that there is

a corresponding measure µ∗ with point support, say at η∗.

Since this value of η∗ is a feasible point of (12), o∗ ≤ r∗.

Therefore, r∗ = o∗ from which we conclude that r∗ > 0 is

equivalent to (i).

Note that by forming a single block diagonal matrix

containing all LMI constraints in (13), it can be transformed

into the standard dual form of semidefinite programs. That

is:
d∗N = infm bT m + co

s.t.
∑

α∈I
Aαmα � C

(15)

where I is the set of the multi-indexes of all moments that

occur in (13) except the zeroth moment m0 = 1 which is

used to form the constant terms C and co.

Remark 1: It is important to highlight the complexity

reduction achieved by employing the running intersection

property while forming the optimization problem (13). The

conventional moment relaxation of order N in [7] would

require O((Tny +ny)2N ) variables with a moment matrix of

size

(

N + Tny + ny

Tny + ny

)

. On the other hand, (13) involves

only O((nany + ny)2N ) variables with T − na + 1 moment

matrices of size

(

N + nany + ny

nany + ny

)

where, in general, the
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length of the experimental data T is substantially larger than

the order of the regressor na (i.e. na ≪ T ).

IV. NUMERICAL CONSIDERATIONS

From Proposition 3 it follows that (in)validation/validation

certificates can be obtained, for instance, by solving a se-

quence of problems with increasing N until either a solution

with d∗ > 0 is found (in which case the data invalidates

the model) or condition (iii) fails, in which case the data

record is consistent with the model and a-priori information.

However, a potential numerical difficulty here stems from the

fact that in practice d∗ = 0 is never reached since there is no

closed form solution to the problem and numerical solvers

terminate when the duality gap drops below a certain level.

Thus, from a practical standpoint, more useful conditions can

be obtained by examining the primal problem, which can be

written as

p∗N = maxX < C,X > +co

s.t.
< Aα,X >= bα ∀α ∈ I
X � 0

(16)

where, without loss of generality, X can be chosen to have

the same block-diagonal structure that Aαs and C. Note

that, from duality, p∗N ≤ d∗N , and hence p∗N > 0 provides

an invalidation certificate. In fact if problem (16) is feasible,

strong duality holds [8]. Thus p∗N > 0 is strictly equivalent

to d∗N > 0, leading to the following result:

Proposition 4: The consistency set T ′(η) is empty if and

only if p∗No
> 0 for some finite No.

Proof: Follows directly from strong duality and Propo-

sition 3.

Let d̃N and p̃N be the numerical solutions to problems

(13) and (16) respectively, obtained using a standard SDP

solver. As noted before, in practice, one always has d̃N > 0.

Thus it can be hard to ascertain whether conditions (ii) or

(iii) in Proposition 3 fail. On the other hand, p̃ > 0 is an

invalidation certificate.

Remark 2: A certificate that the existing data record is

consistent with the model and a priori assumptions can

be obtained by resorting to a variation of the so-called

flat extension property for sparse polynomial optimiza-

tion stated in [8]. In particular, if for some N , p̃ ≤ 0
and the dual solution satisfies rank

[

MN (m∗
0:na

)
]

= 1;

rank
[

MN (m∗
t−na:t−1)

]

= 1 and rank
[

MN (m∗
t−na:t)

]

=
rank

[

MN−2(m
∗
t−na:t)

]

∀t ∈ [na, T ] where m∗ denotes an

optimal solution of (13), then this certifies that o∗ = d∗N = 0;

hence T ′(η) is not empty.

Remark 3: It is also worth pointing out that all of the

results above (including the running intersection property)

hold true in the presence of bounded parametric model

uncertainty. For instance, if ai(k, l) is an entry in one of the

coefficient matrices of the ith submodel, it is possible to use

ai(k, l) + δi(k, l) with |δi(k, l)| ≤ δ∗ in the a priori model.

This only requires additional variables in the optimization

problem.

V. ILLUSTRATIVE EXAMPLES

In this section we illustrate the effectiveness of the pro-

posed method both using academic examples and a computer

vision application. In all cases, we used the moments relax-

ation corresponding to N = s and the resulting SDP problem

was solved using SEDUMI [19].

A. Academic Examples

We consider the ARX submodels:

yt = 0.2yt−1 + 0.24yt−2 + 2ut−1 (G1)

yt = −1.4yt−1 − 0.53yt−2 + ut−1 (G2)

yt = 1.7yt−1 − 0.72yt−2 + 0.5ut−1 (G3)

and the measurement equation:

ỹt = yt + ηt. (17)

We ran different sets of simulations investigating different

sources of model mismatch. In all cases, we collected

input/output data {ut, ỹt} for t ∈ [0, 96] and tried to

(in)validate the a priori model. In all experiments, when

we used data inconsistent with the a priori information, p̃∗

turned out to be positive. Hence, we correctly invalidated the

model in each of such cases. On the other hand, whenever the

a priori information was consistent with a posteriori data,

we had p̃∗ < 0.

Example 1: (Submodel mismatch) For the first set of

experiments, we generated input/output data using different

subsets of {G1, G2, G3} with a random switching sequence

σt and with uniform random noise ||ηt|| ≤ 0.5. The noise

used in the experiments was within the a priori noise bound.

We used both correct and incorrect a priori submodel sets.

Hence, the model should be invalid when a submodel that

is not contained in the a priori submodel set is used in the

actual experiment. The results are summarized in Table I.

A priori Actual Result

G1, G2, G3 G1, G2, G3 not invalidated

G1, G2, G3 G1, G2 not invalidated

G1, G2 G1, G2, G3 invalidated

G1, G2 G2 not invalidated

G1, G2, G3 G1 not invalidated

G1, G2 G2, G3 invalidated

TABLE I

INVALIDATION RESULTS FOR EXAMPLE 1. THE VALUES OF p̃ WERE

RESPECTIVELY −3.8441e − 008, −8.2932e − 009, 0.8585,

−5.4026e − 008, −1.5490e − 007 AND 0.7566.

Example 2: (Noise bound mismatch) For this example,

we generated input/output data using different subsets of

{G1, G2, G3} with a random switching sequence σt and with

uniform random noise ||ηt|| ≤ ǫ. The a priori submodel set

and the actual submodel set used in the experiment were

the same. The source of invalidation was the actual noise

level exceeding the a priori bound. The results of this set

of experiments are summarized in Table II.

Example 3: (Submodel perturbation) For this set of ex-

periments, we generated input/output data by perturbing
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Submodels A priori ǫ Actual ǫ Result

G1, G2, G3 0.5 1 invalidated

G1, G2, G3 0.8 1 invalidated

G1, G2, G3 1.2 1 not invalidated

G1, G2 0.5 1 invalidated

G1, G2 0.8 1 invalidated

G1, G2 1.2 1 not invalidated

TABLE II

INVALIDATION RESULTS FOR EXAMPLE 2. THE VALUES OF p̃ WERE

RESPECTIVELY 0.0724, 0.0035, −5.1810e − 007, 0.0737, 0.0034 AND

−1.4930e − 007.

the coefficients of a priori submodels {G1, G2, G3}, and

again using a random switching sequence σt and uniformly

sampled random noise ||ηt|| ≤ 0.5. We denote the submodel

whose coefficient values are perturbed by e percent of their

original values as Gi + ∆e. This case is more challenging

than the one considered in Example 1 since the dynamics

are similar. Nevertheless, we could invalidate in each of our

trials. The results for this example are summarized in Table

III.

A priori Actual Result

G1, G2, G3 G1 + ∆5, G2 + ∆5, G3 + ∆5 invalidated

G1, G2, G3 G1 + ∆2, G2 + ∆2, G3 + ∆2 invalidated

G1, G2, G3 G1 + ∆1, G2 + ∆1, G3 + ∆1 invalidated

G1, G2 G1 + ∆5, G2 + ∆5 invalidated

G1, G2 G1 + ∆2, G2 + ∆2 invalidated

G1, G2 G1 + ∆1, G2 + ∆1 invalidated

G1, G2 G1 + ∆2 invalidated

TABLE III

INVALIDATION RESULTS FOR EXAMPLE 3. THE VALUES OF p̃ WERE

,RESPECTIVELY, 0.8963, 0.0997, 0.0080, 0.0308, 2.8638e − 004,

2.9069e − 006 AND 6.2061e − 006.

B. A Practical Example: Activity Monitoring

In this section we illustrate the application of the pro-

posed model invalidation framework to a non-trivial problem

arising in computer vision: activity monitoring. Here we

start with a set of dynamic models associated with “normal”

behavior. If a person passing in front of the camera exhibits a

combination of the normal activities (i.e. his/her behavior can

be modeled with a hybrid system that has the normal activity

dynamics as submodels), then the activity is considered not

interesting. On the other hand, if he/she does something

different than what has been encoded in the initial set of

normal dynamics, this is an indication of an interesting event.

In such cases the model should be invalidated.

We used a training video of walk shown in Fig. 2 to

identify an autoregressive model for the dynamics of the

center of mass of a person walking. By minimizing the ℓ∞
norm of process noise via linear programming, we obtained

the following model for “walk”:
(

xt

yt

)

=

(

0.4747 0.0628
−0.3424 1.2250

) (

xt−1

yt−1

)

+

(

0.5230 −0.1144
0.3574 −0.2513

) (

xt−2

yt−2

) (A1)

where (xt, yt) is the normalized coordinate of the center

of the person in the tth frame. Another activity that we

considered normal is “waiting” which can simply be modeled

as:
(

xt

yt

)

=

(

1 0
0 1

) (

xt−1

yt−1

)

. (A2)

We normalized the image coordinate system so that (x, y) ∈
[0, 1]× [0, 1] and set the measurement noise level to ||ηt|| ≤
0.04. This bound together with the submodels (A1) and (A2)

for “normal” activities constitute the a priori information.

As for test purposes, we used three different video se-

quences. Background subtraction was used to locate the

person; and the center of mass was estimated and tracked

using the silhouettes. Then the center of mass trajectories

were used for model (in)validation. In the first sequence, the

person walks, waits and walks again; so the overall activity is

normal. In the second sequence, the person runs for which

our method found the certificate for invalidity by finding

p̃ > 0. In the third sequence, the person walks and then

starts jumping. Again, our method flagged this abnormal

activity by verifying the invalidity of the model. Sample

frames from the sequences are shown in Fig. 3 and the

results are summarized in Table IV. The primal optimal

objective values, p̃, are also reported in Table IV. Since image

coordinates are scaled to [0, 1]×[0, 1] in this example, higher

order polynomials of values within this range results in low

values of p̃. However, note that the positive range of p̃ is

just a matter of scaling. It is the sign of p̃ that is important.

The positivity of p̃ (as well as the existence of any primal

feasible point with positive objective value) is a certificate

for the invalidity of the model.

A priori Actual Result

walk, wait walk, wait not invalidated

walk, wait run invalidated

walk, wait walk, jump invalidated

TABLE IV

INVALIDATION RESULTS FOR ACTIVITY MONITORING. THE VALUES OF p̃

WERE, RESPECTIVELY, −2.3303e − 008, 2.3707e − 005, AND

5.0293e − 007.

VI. CONCLUSIONS

In this paper we considered the model (in)validation

problem for switched ARX systems with unknown switches.

Given a nominal model, a bound on the measurement

noise and experimental input output data, we provided a

necessary and sufficient condition that certifies the exis-

tence/nonexistence of admissible noise and switching se-

quences such that the resulting output sequence interpolates

the given experimental data within the noise bound. In prin-

ciple, computing these certificates entails solving a sequence

of convex optimization problems involving increasingly large

matrices. However, as we show here, if in the process of

solving these problems either a positive solution is found or

the so-called flat extension property holds, then the process
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frame4 frame15 frame26 frame38 frame49

Fig. 2. Training sequence used in identification of the submodel (A1) for walking.

frame5 frame20 frame30 frame45 frame63

frame2 frame7 frame14 frame19 frame24

frame4 frame16 frame28 frame40 frame55

Fig. 3. Top: Walk, wait, walk sequence (not invalidated). Middle: Running sequence (invalidated). Bottom: Walk, jump sequence (invalidated).

terminates with a certificate that either the model has been

invalidated (first case) or that the experimental data is indeed

consistent with the model and a–priori information. By

using duality, the proposed approach exploits the inherently

sparse structure of the optimization problem to substantially

reduce its computational complexity. The effectiveness of

the proposed method was illustrated using both academic

examples and a non-trivial problem arising in computer

vision: activity monitoring. Research currently under way

seeks to extend these results to the (in)validation of hybrid

models in state space form.
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