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Abstract— This paper addresses the problem of robust iden-
tification of a class of discrete-time affine hybrid systems,
switched affine models, in a set membership framework. Given
a finite collection of noisy input/output data and a bound on
the number of subsystems, the objective is to identify a suitable
set of affine models along with a switching sequence that can
explain the available experimental information. Our method
builds upon an algebraic procedure proposed by Vidal et al.

for noise free measurements. In the presence of norm bounded
noise, this algebraic procedure leads to a very challenging
nonconvex polynomial optimization problem. Our main result
shows that this problem can be reduced to minimizing the
rank of a matrix whose entries are affine in the optimization
variables, subject to a convex constraint imposing that these
variables are the moments of an (unknown) probability distri-
bution function with finite support. Appealing to well known
convex relaxations of rank leads to an overall semi-definite
optimization problem that can be efficiently solved. These
results are illustrated with two examples showing substantially
improved identification performance in the presence of noise.

I. INTRODUCTION AND MOTIVATION

In the past few years, considerable attention has been

devoted to the problem of identifying hybrid systems, leading

to several methods (see the excellent tutorial paper [9] for a

summary of the main issues and recent developments). While

successful in many situations, a common feature of these

methods is the computational complexity entailed in dealing

with noise: in this case algebraic procedures [13], [7] lead

to challenging nonlinear/nonconvex optimization problems,

while optimization methods lead to generically NP–hard

problems, either necessitating the use of relaxations [1] or

restricted to small size problems [10]. A sparsification–based

convex relaxation was proposed in [8]. While this approach

works well most of the time, it is not hard to construct

counterexamples where it fails, due to its greedy nature, to

find the minimum number of subsystems.

Motivated by these difficulties, in this paper we propose

a convex optimization–based approach to the problem of

identifying hybrid systems from noisy input/ouput data and

some minimal a–priori information (bounds on the order

and number of subsystems, and on the norm of the noise).

The starting point is the algebraic procedure due to Vidal

et al. [13], [7]. In the case of noiseless measurements,

the (unknown) parameters of each subsystem are recovered

from the null space of a matrix V(r) constructed from the
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input/output data r via a nonlinear embedding (the Veronese

map). In the case of noisy data, the entries of this matrix

depend polynomially on the unknown noise terms. Thus,

finding a model in the consistency set (e.g. a model that

interpolates the data within the noise level) is equivalent

to finding an admissible noise sequence η that renders the

matrix V(r) rank deficient, and a vector c in its null space.

However, this is not trivial, given the polynomial dependence

noted above. The main result of this paper shows that

the problem of jointly finding η and c is equivalent to

minimizing the rank of a matrix whose entries are affine

in the optimization variables, subject to a convex constraint

imposing that these variables are the moments of a suitable

probability distribution function. This result is achieved by

using first an idea similar to that of [6] relating polynomial

optimization and the problem of moments, to eliminate the

polynomial dependence on the optimization variables, albeit

at the price of introducing infinitely many constraints. The

structure of the problem can then be exploited to decouple

it into several finite dimensional smaller ones, each involv-

ing only the moments of a one–dimensional distribution.

Combining these ideas with a convex relaxation, similar

to the log-det heuristic of [4], that aims at dropping the

rank of V by one and estimating a vector in its nullspace,

allows for recasting the original problem into a semidefinite

optimization form that can be solved efficiently.

The paper is organized as follows. Section II presents some

background results related to polynomial optimization. In

section III, we formally state the problem under consider-

ation and review the original algebraic method of [13] for

noiseless systems. The main results are presented in section

IV. Section V illustrates these results with two examples, one

academic and one practical. Finally, section VI concludes the

paper with some remarks and directions for future research.

II. PRELIMINARIES

For ease of reference, we summarize next the notation

used in the paper and recall some results required to recast

the identification problem into a convex optimization form.

A. Notation

x,M a vector in R
n (matrix in R

n×m)

‖x‖∞ ∞-norm of the vector x ∈ R
n

‖x‖∞
.
= sup

i

|xi|
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Tr{M} trace of the matrix M

I identity matrix

M º N the matrix M − N is positive

semidefinite.

νs : R
n → R

m where m =

(

s + n − 1
s

)

.

Veronese map of degree s:

νs([x1, . . . , xn]T ) = [. . . , ξs, . . .]T

where ξs .
= xs1

1 xs2
2 . . . xsn

n ,
∑

si =
s, e.g. all possible monomials of

order s, in lexicographical order.

B. The Problem of Moments

Given a sequence of scalars {mi}
n
i=1, the problem of

moments is to determine whether there exist a probability

measure that has {mi} as its first n moments (see references

[11], [5], [3] for a historical review and details of the

problem). In particular, in the sequel we are interested in

probability measures that are supported on bounded sym-

metric intervals of the real line. In this case, the following

theorem provides necessary and sufficient conditions for the

existence of such a measure.

Theorem 1: Given a sequence {mi : i = 1, 2, . . . , n},

there exists a probability measure supported on [−ǫ, ǫ] such

that

mi = Eµ(xi) =

∫ ǫ

−ǫ

xiµ(dx)

if and only if

• when n = 2k + 1 (odd case), the following holds

ǫM(0, 2k) º M(1, 2k + 1) (1)

M(1, 2k + 1) º −ǫM(0, 2k) (2)

• when n = 2k (even case), the following holds

M(0, 2k) º 0 (3)

ǫ2M(0, 2k − 2) º M(2, 2k) (4)

where M(i, i + 2j) is the (j + 1) by (j + 1) Hankel matrix

formed from the moments, that is:

M(i, i + 2j)
.
=











mi mi+1 . . . mi+j

mi+1 . .
.

. .
.

mi+j+1

... . .
.

. .
. ...

mi+j . . . . . . mi+2j











, (5)

and where m0 = 1.

Proof: Direct application of Theorem III.2.3 and The-

orem III.2.4 in [5].

C. Polynomial Optimization via Moments

This section reviews some results from [6] that relate

polynomial optimization to the problem of moments. Specif-

ically, consider the problem of minimizing a real valued

polynomial:

p∗K := min
x∈K

p(x) (P1)

where K ⊂ R
N is a compact set defined by polynomial

inequalities. This problem is usually non-convex, hence hard

to solve. Next, we consider a related problem:

p̃∗K := min
µ∈P(K)

∫

p(x)µ(dx) := min
µ∈P(K)

Eµ [p(x)] (P2)

where P(K) is the space of finite Borel probability measures

on K. Although (P2) is an infinite dimensional problem, it

is, in contrast to (P1), convex. The next result, taken from

[6], establishes the relation between the two problems:

Theorem 2: Problems (P1) and (P2) are equivalent; that

is:

• p̃∗K = p∗K .

• If x∗ is a global minimizer of (P1), then µ∗ = δx∗ is a

global minimizer of (P2).

• For every optimal solution µ∗ of (P2), p(x) = p∗K , µ∗

almost everywhere.

Proof: See Proposition 2.1 in [6].

One direct consequence of this theorem is that when

combined with Theorem 1, it is possible to convert the

infinite dimensional problem (P2) in measures (or equiva-

lently, the polynomial optimization problem (P1)) to a finite

dimensional Linear Matrix Inequalities (LMI) optimization

problem in the moments, as long as the probability measures

are supported on compact intervals.

III. SET MEMBERSHIP IDENTIFICATION OF HYBRID

LINEAR ARX MODELS

In this paper we consider the problem of set membership

identification of single input single output, switched autore-

gressive exogenous (SARX) linear models of the form:

yt =

na
∑

i=1

ai(σt)yt−i +

nc
∑

i=1

ci(σt)ut−i + ηt (6)

where u, y and η denote the input, output and noise,

respectively, and where σt ∈ {1, . . . , s} is the discrete state

or mode of the system. Different values of σt correspond to s

different hybrid submodels. Our goal is to, given input/output

data over the interval [t0, T ], find a model of the form (6) that

interpolates this experimental data within a given noise level

‖ηt‖∞ ≤ ǫ. Clearly, as stated this problem admits infinitely

many solutions. For instance, one can always find a trivial

hybrid model with T − t0 + 1 submodels or one model with

a large order that perfectly fits the data. This situation can

be avoided by adding additional constraints or performance

criteria to the problem. For instance, in [8], the problem was

regularized by finding a solution with minimum number of

switches. In this paper, we are interested in finding a solution

where s, the number of subsystems, is given a priori1.

Practical situations where this problem is relevant arise for

instance in segmentation problems in computer vision and

medical image processing, where it is desired to segment an

image or video clip into a given number of (not necessarily

1Note that by performing a line search one can then find a solution with
the minimum number of subsystems, a problem solved in [1] via a greedy
algorithm based on randomization and thermal relaxations.
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contiguous) regions, for instance corresponding to healthy

versus diseased tissue, or a fixed number of activities. Thus,

the problem of interest here can formally be stated as follows:

Problem 1: Given input/output data over the interval

[1, T ], a bound on the ℓ∞ norm of the noise (i.e. ‖η‖∞ ≤ ǫ),

and the number of submodels s, find a hybrid linear model

of the form (6) that is consistent with the a priori information

and experimental data.

In the noise free case (i.e. ηt = 0 ∀t), the problem above

can be elegantly solved using an algebraic procedure, Gener-

alized Principal Component Analysis (GPCA), proposed by

Vidal et al. [13], [7]. Note that in this case an equivalent

representation of (6) is:

b(σt)
T
rt = 0 (7)

where rt = [−yt, yt−1, . . . , yt−na
, ut−1, . . . , ut−nc

]T and

b(σt) = [1, a1(σt), . . . , ana
(σt), c1(σt), . . . , cnc

(σt)]
T , de-

note the regressor and (unknown) coefficients vectors at time

t, respectively.

The idea behind the algebraic method is based on a

polynomial constraint, the so-called hybrid decoupling con-

straint, that decouples the identification of model parameters

from the identification of the discrete state and switching

sequence. That is, (7) holds for some σt iff

ps(r) =
s

∏

i=1

(bi
T
rt) = cs

T νs(rt) = 0 (8)

holds for all t independent of which of the s submodels is

active at time t. In the above equality, bi ∈ R
na+nc+1 is the

parameter vector corresponding to the ith submodel, rt is the

known regressor vector at time t, and νs(.) is the Veronese

map of degree s. Collecting all data into a matrix form leads

to:

Vscs
.
=







νs(rt0)
T

...

νs(rT )T






cs = 0 (9)

Hence, one can solve for a vector cs in the nullspace of Vs.

Finally, bi, the parameters of the models can be computed

from cs via polynomial differentiation (see the Appendix).

IV. MAIN RESULTS

In the presence of noise, the approach outlined above

breaks down, since conditions (8) and (9) no longer hold.

Indeed, the noisy equivalent of (8) is given by:

ps(r, η) =
s

∏

i=1

(bi
T
r̃t) = cs

T νs(r̃t) = 0 (10)

where r̃t = [−yt + ηt, yt−1, . . . , yt−na
, ut−1, . . . , ut−nc

]T .

Proceeding as in the noiseless case, a “noisy” data matrix

Vs(r, η) can be built. However, finding the coefficients of

each subsystem entails now finding both an admissible noise

sequence ηo and a vector c
o in the nullspace of Vs(r, η

o)
such that

Vs(r, η
o)co = 0 (11)

Since Vs is a polynomial function of the unknown noise

terms η(t), this approach leads to a computationally very

challenging nonlinear, nonconvex optimization problem.

However, as we show in the sequel, by exploiting the method

of the moments, (11) can be recast into a constrained rank

minimization form which in turn can be relaxed to an

efficient convex optimization.

A. A moments based convex relaxation

Consider the following rank minimization problem:

minimizeηt
rankVs(rt, ηt)

subject to ‖ηt‖∞ ≤ ǫ
(12)

Clearly, Problem 1 is solvable if and only if (12) admits a

rank deficient solution. Indeed, in the case where the order of

each subsystem is precisely (na, nc) and Vs has generically

full column rank (e.g. enough data points have been collected

from each subsystem), then there exists a noise sequence ηo
t

such that the right null space of Vs(rt, η
o
t ) has dimension 1.

When some of the subsystems have order lower than (na, nc)
or the number of subsystems is overestimated, the dimension

of the nullspace of Vs is higher than 1 (see [7] for details). In

that sense, minimizing the rank of Vs amounts to searching

for the simplest model that explains the data.

Since in this paper we are interested in finding just one

model consistent with the a-priori information (bounds on

the ‖ηt‖∞, the number of subsystems and their order), we

will simply search for rank deficient solutions to (12). As we

show next, this problem admits a computationally tractable

relaxation.

Exploiting Theorem 1 and using the facts that (i) ηt and

ηt̄ are independent for t 6= t̄, and (ii) ηt only appears in the

tth row of Vs, leads to the following moments optimization

problem:

minimizem(t) rank Ṽs(rt,m
(t))

subject to (1) − (2) ∀m(t) if s is odd
(3) − (4) ∀m(t) if s is even

(13)

where m
(t) = [m

(t)
1 , . . . ,m

(t)
s ] is the moment sequence

corresponding to ηt and Ṽs(rt,m
(t)) is a matrix linear in the

moments, obtained by replacing each kth degree monomial

ηk
t in Vs(rt, ηt) with the corresponding kth order moment

m
(t)
k .

Example 1: For instance when s = 2 and (na, nc) =
(1, 1), then rt = [−yt, yt−1, ut−1]

T and the rows of

Vs(rt, ηt) depend on r and η as follows:

ν2(rt, ηt)
T =

















y2
t − 2ytηt + η2

t

−ytyt−1 + yt−1ηt

−ytut−1 + ut−1ηt

y2
t−1

yt−1ut−1

u2
t−1

















T

. (14)
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The corresponding row of Ṽs(rt,m
(t)) is given by:

Eµ

[

ν2(rt, ηt)
T
]

=



















y2
t − 2ytm

(t)
1 + m

(t)
2

−ytyt−1 + yt−1m
(t)
1

−ytut−1 + ut−1m
(t)
1

y2
t−1

yt−1ut−1

u2
t−1



















T

(15)

Thus, Ṽs(rt,m
(t)) is affine in the unknown moments.

Note that Theorem 2 cannot be directly applied to show the

equivalence of (12) and (13) since rank is not a polynomial

function. Nevertheless, as we show next, a result similar to

Theorem 2 can be obtained:

Theorem 3: There exists a rank deficient solution to prob-

lem (12) if and only if there exists a rank deficient solution

to problem (13). Moreover, if c belongs to the nullspace

of the solution of (13) then there exists a noise value η∗

with ‖η∗‖∞ ≤ ǫ such that c belongs to the nullspace of

Vs(rt, η
∗).

Proof: Assume that the minimum rank r1 in (12) is

achieved by some sequence η∗
t . Then Ṽs(rt,m

∗(t)) with

m
∗(t) = [η∗

t , (η∗
t )2, . . . , (η∗

t )s] (i.e. all distributions have

point support) has rank r1 and m
∗(t) satisfies the LMI

constraints. Hence the minimum rank obtained by solving

(13) is less than or equal to the minimum rank obtained by

solving (12).

Consider now an optimal solution m
∗(t) of (13). Note that,

from Theorem 1, this guarantees the existence of T measures

µ∗(t), each supported on [−ǫ, ǫ]. Let c be in the nullspace of

Ṽs(rt,m
∗(t)) (i.e. Ṽs(rt,m

∗(t))c = 0). Thus, for each row

of Vs, Eµ∗(t) [νs(rt, ηt)] c = Eµ∗(t) [νs(rt, ηt)c] = 0. By

noting that νs(rt, ηt)c is a polynomial function of ηt (hence

continuous) and µ∗(t) is supported on [−ǫ, ǫ], we can invoke

the mean value theorem for integration to conclude that there

exist η∗
t ∈ [−ǫ, ǫ] for all t such that νs(rt, η

∗
t )c = 0.

Thus, whenever the nullspace of the solution of (12) is

non-trivial, so is that of (13), which proves the theorem.

Although rank minimization is an NP–Hard problem,

efficient convex relaxations are available. In particular, good

approximate solutions can be obtained by using a log–det

heuristic [4] that relaxes rank minimization to a sequence of

convex problems. Furthermore, since from a set membership

point of view it suffices to find a rank deficient solution,

we propose a modification of log–det heuristic that aims

at dropping the rank by one. The algorithm, which is

inspired by the adaptive step size defined for weighted ℓ1
minimization in [2], is summarized next:

Algorithm 1: Drop Rank

X ∈ R
m×n and assuming wlog m ≤ n, initialize:

k = 0

W
(0)
y = Im×m

W
(0)
z = In×n

REPEAT

Solve

minX(k),Y(k),Z(k) Tr

[

W
(k)
y Y

(k) 0

0 W
(k)
z Z

(k)

]

subject to

[

Y
(k)

X
(k)

X
T (k)

Z
(k)

]

º 0

X
(k) ∈ C

Decompose X
(k) = UDV

T using SVD.

Set ǫ = D(m,m).

Set W
(k+1)
y = (Y(k) + ǫI)−1.

Set W
(k+1)
z = (Z(k) + ǫI)−1.

Set k = k + 1.

UNTIL (a convergence criterion is reached)

RETURN X
(k)

Above, for the sake of notational simplicity, we used X =
Ṽs(rt,m

(t)); and X
(k) ∈ C stands for convex constraints,

that is, m
(t) lies on a convex set C defined by LMIs in (13).

Assuming a rank deficient Ṽs(rt,m
(t)) is found, a vector

c in its nullspace can be found by simply performing a singu-

lar value decomposition. From Theorem 3, it follows that c is

also in the nullspace of Vs(rt, ηt) (i.e. Vs(rt, ηt)(c) = 0).

Hence, for each row, we have νs(rt, η
∗
t )c = 0 which is a

polynomial equation in one variable. One can solve for the

noise values by finding the roots of this polynomial that lie

in [−ǫ, ǫ] (which is guaranteed to exist again by Theorem

3). Once the noise values are estimated, the problem can

be converted to the noise free case by plugging the noise

estimates into Vs(rt, ηt) and the system parameters can be

computed using the procedure described in the Appendix.

Remark 1: When the number of the submodels s is un-

known, it is possible to search for minimum number of

submodels that explains the data. This can be accomplished

with a simple iteration on s; starting with s = 1 and

increasing s up until a rank deficient solution to the problem

(13) is found.

V. ILLUSTRATIVE EXAMPLES

In this section we use both an academic and a practical ex-

ample to illustrate the effectiveness of the proposed method.

A. Academic Example

Consider a hybrid system that switches among the follow-

ing three ARX subsystems

yt = 0.2yt−1 + 0.24yt−2 + 2ut−1 + ηt (Submodel 1)

yt = −1.4yt−1 − 0.53yt−2 + ut−1 + ηt (Submodel 2)

yt = 1.7yt−1 − 0.72yt−2 + 0.5ut−1 + ηt (Submodel 3)

modeled as

yt = p1(σt)yt−1 + p2(σt)yt−2 + p3(σt)ut−1 + ηt. (16)

where σt ∈ {1, 2, 3} depending on which model is active

at time t. Experimental data was obtained by running a

simulation for T = 96 time steps with ‖η‖∞ = 0.25 where

σt = 1 for t = [1, 32], σt = 2 for t = [33, 64] and σt = 3 for

t = [65, 96]. The parameter values used for the simulation
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are shown in Table I together with the results obtained by

our robust moments–based method and the original algebraic

method of [13]. Figures 1 and 2 show the clustering of data

into different submodels. As seen there, the proposed method

outperforms the method in [13]. Figure 3 shows the absolute

error given the identified model. The error values are quite

large for the method in [13] whereas they mostly satisfy the

prior bound of ‖η‖∞ = 0.25 for the new method. Indeed, in

the latter case, the error exceeds the bound only at a single

time instant. This is due to the convex relaxation used to

solve the rank–minimization problem.

True Moments Based GPCA

Submodel 1
p1 0.2000 0.1964 0.2248
p2 0.2400 0.2332 0.3764
p3 2.0000 1.9287 2.5907

Submodel 2
p1 -1.4000 -1.2959 -0.4491
p2 -0.5300 -0.4469 0.9188
p3 1.0000 1.0315 1.5262

Submodel 3
p1 1.7000 1.6505 1.7213
p2 -0.7200 -0.6713 -0.7103
p3 0.5000 0.5007 1.2194

TABLE I

ESTIMATED AND TRUE VALUES OF PARAMETERS

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

GPCA Clustering− σ(t)

Fig. 1. Clustering via GPCA.

B. A Practical Example: Human activity segmentation

Next, we illustrate an application of the proposed method

in a computer vision problem: human activity analysis.

The input data, illustrated in Fig. 4, consists of 55 frames

extracted from a video sequence of a person walking and

bending in front of the camera. The goal here is to segment

the two activities: walking and bending. In order to recast the

problem into the identification of a piecewise affine system,

we first used simple background subtraction to estimate the

location of the center of mass of the person in each frame.

The horizontal2 position of the center of mass was then

2It may seem more natural to use the vertical position. However, this lead
to 3 segments, corresponding to no vertical motion, downward and upward
motion, while there are only two different activities involved.

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Moment Clustering− σ(t)

Fig. 2. Clustering via moments–based method.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Absolute Error |η
t
|

 

 

GPCA

Moment

ε level

Fig. 3. Comparison of fitting errors for the moments–based and GPCA
identification.

modeled as the output of a first order SAR system:

xt = a(σt)xt−1 + f(σt) + ηt (17)

where a(σt) and f(σt) are unknown parameters. We set

‖ηt‖∞ = 3, e.g. ±3 pixels error in the position estimates.

Figure 6 shows that the proposed method is capable of

segmenting the two activities, correctly labeling the activity

at the initial and final portions of the video as the same. The

single misclassification in the last frame of the sequence is

due to an inaccurate estimate of the centroid of the person

as she starts to leave the camera’s field of view. On the

other hand, the classification with the original GPCA is less

accurate as can be seen from Fig. 5.

frame 8 frame 23 frame 33 frame 50

Fig. 4. Sample frames from the video.
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0 10 20 30 40 50 60
1

1.2

1.4

1.6

1.8

2
GPCA Clustering

Fig. 5. Activity segmentation via GPCA.

0 10 20 30 40 50 60
1

1.5

2
Moment Clustering

Fig. 6. Activity segmentation via moments–based method.

VI. CONCLUSIONS

This paper considered the problem of identifying switched

linear systems from input/output data and minimal a pri-

ori assumptions (bounds on the order and number of the

subsystems, and on the magnitude of the noise). While this

problem is known to be generically NP–hard, we showed that

efficient convex relaxations can be obtained by recasting it

into a moments optimization form. The effectiveness of this

relaxation and its robustness to noise was illustrated using

both an academic example and a non-trivial segmentation

problems arising in computer vision. Research currently

under way seeks to extend these results to the case of multi–

output models, with the main difficulty here being the current

lack of finite–dimensional characterizations of the moments

of multivariate probability distribution functions.
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APPENDIX

A. Recovering the parameters of the model

Here we recall, for ease of reference, the polynomial

differentiation based procedure proposed in [13] to recover

the parameters of the model once cs is computed. The

derivative of ps(r) at a point r is given by

Dps(r) =
δps(r)

δr
=

s
∑

i=1

∏

j 6=i

(bj
T
r)bi (18)

Since bi
T
r = 0 when r is generated by the ith submodel

(i.e. σt(r) = i), it follows from (18) that the parameter vector

is given by:

bi =
Dps(r)

eT Dps(r)

∣

∣

∣

∣

σt(r)=i

(19)

where e
T = [1, 0, . . . , 0].

Since, in general, the association of data points with

submodels σt(r) is unknown, one can use the following

heuristic function, suggested in [12], to choose one point

from each submodel {rti
}

s

i=1:

rti−1
= argmin

rt:Dps(rt) 6=0

|ps(rt)|
‖Dps(rt)‖

+ δ
∣

∣

∣
(bi

T
rt) · · · (bs

T
rt)

∣

∣

∣
+ δ

(20)

where δ > 0 is a small number to avoid division by zero.

Finally, given the parameter vectors {bi}
s

i=1, the mode

signal can be computed as follows:

σt = argmin
i=1,...,s

(bi
T
rt)

2. (21)
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