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Abstract— This paper addresses the problem of robust iden-
tification of a class of discrete-time affine hybrid systems,
switched affine models, in a set membership framework. Given
a finite collection of noisy input/output data and some minimal
a priori information about the set of admissible plants, the
objective is to identify a suitable set of affine models along with a
switching sequence that can explain the available experimental
information, while optimizing a performance criteria (either
minimum number of switches or minimum number of plants).
Our main result shows that this problem can be reduced to
a sparsification form, where the goal is to maximize sparsity
of a given vector sequence. Although in principle this leads
to an NP-hard problem, as we show in the paper, efficient
convex relaxations can be obtained by exploiting recent results
on sparse signal recovery. These results are illustrated using two
non-trivial problems arising in computer vision applications:
video-shot and dynamic texture segmentation.

I. INTRODUCTION AND MOTIVATION

Hybrid systems –systems characterized by the interaction

of both continuous and discrete dynamics– have been the

subject of considerable attention during the past decade.

These systems arise naturally in many different contexts,

e.g. biological systems, systems incorporating logical and

continuous elements, manufacturing, etc, and in addition,

can be used to approximate nonlinear dynamics. As a result

of this research, an extensive body of results is now avail-

able addressing issues such as controllability/observability,

stability analysis and control synthesis. However, applying

these results requires using an explicit model of the system

under consideration. While in some cases these models can

be obtained from first principles, many practical applica-

tions require identifying the system from a combination

of experimental data and some a priori information. This

has prompted a substantial research effort devoted towards

developing a framework for input/output identification of

hybrid systems. As a result, several methods have been

proposed addressing different aspects of the problem (see

the excellent tutorial paper [19] for a summary of the main

issues and recent developments in the field). While successful

in many situations, a common feature of these methods

is the computational complexity entailed in dealing with

noisy measurements: in this case algebraic procedures [17]

lead to nonconvex optimization problems, while optimiza-

tion methods lead to generically NP–hard problems, either
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necessitating the use of relaxations [2] or restricted to small

size problems [21].

Motivated by the computational complexity noted above,

in the first portion of this paper we propose a new approach

to the problem of set membership identification of a class of

hybrid systems: switched affine models. Specifically, given

noisy input/output data and some minimal a priori in-

formation about the set of admissible plants, our goal is

to identify a suitable set of affine models along with a

switching sequence that can explain the available experi-

mental information, while optimizing a performance criteria

(either minimum number of plants or minimum number of

switches). The main result of the paper shows that this

problem can be reduced to a sparsification form, where the

goal is to minimize the number of non–zero elements of

a given vector sequence. Although in principle this leads

to an NP-hard problem, efficient convex relaxations can

be obtained by exploiting recent results on sparse signal

recovery based on ℓ1-norm minimization [6], [22].

In the second part of the paper we illustrate these result

using two non-trivial problems arising in computer vision

applications: segmentation of video sequences and of dy-

namic textures. As shown there, application of the proposed

techniques outperforms existing state-of-the-art techniques.

II. PRELIMINARIES

A. Notation and Definitions

For ease of reference, the notation used in the paper is

summarized below:
x a vector in R

N

‖x‖p p-norm in R
N

{x(t)}T
t=1,{x} a vector valued sequence of length T

where each x(t) ∈ R
N

‖{x}‖p ℓp norm of a vector valued sequence

‖{x}‖p
.
=

(

∑T
i=1 ‖x(i)‖p

p

)1/p

‖{x}‖0 ℓo-quasinorm
.
= number of non-zero

vectors in the sequence (i.e. cardina-

lity of the set {t|x(t) 6= 0, t ∈ [1, T ]})

In this paper we will consider switched autoregressive

exogenous (SARX) hybrid affine models of the form:

y(t) =

na
∑

i=1

ai(σt)y(t− i)+

nc
∑

i=1

ci(σt)u(t− i)+f(σt)+η(t)

(1)

where u, y and η denote the input, output and noise,

respectively, and where t ∈ [to, T ]. The discrete variable

σt ∈ {1, . . . , s}–the mode of the system– indicates which
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of the s submodels is active at time t. The time instants

where the value of σt changes are called discrete transitions

or switches. These switches partition the interval [t0, T ] into

a discrete hybrid time set [16], τ = {Ii}
k
i=0, such that σt is

constant within each subinterval Ii = [τi, τ
′
i ] and different

in consecutive intervals. In the sequel we denote by τi

and τ ′
i the beginning and ending times of the ith interval,

respectively. Clearly, τ satisfies:

• τ0 = t0
1 and τ ′

k = T ,

• τi ≤ τ ′
i = τi+1 − 1,

and the number of switches is equal to k.

An equivalent representation of (1) is:

y(t) = p(σt)
T r(t) + η(t) (2)

where r(t) = [y(t − 1), . . . , y(t − na), u(t −
1), . . . , u(t − nc), 1]T is the regressor vector and

p(σt) = [a1(σt), . . . , ana
(σt), c1(σt), . . . , cnc

(σt), f(σt)]
T

is the unknown coefficient vector at time t.

B. Background Results on Sparsification

In this section, we present some background results that

will be used to recast the identification problem into a

convex optimization form. We begin by recalling some

results related to the problem of sparse signal recovery [6],

[22]. This problem can be stated as: given some noisy linear

measurements y = Ax + η of a discrete signal x ∈ R
N

where A ∈ Rm×n, m ≪ n and a bound ǫ on the norm of

the noise η are known, find the sparsest signal x∗ consistent

with the measurements. In terms of the ℓ0 quasinorm, this

problem can be recast into the following optimization form:

min ‖x‖o subject to : ‖y − Ax‖ ≤ ǫ (3)

It is well known that the problem above is at least generically

NP–complete ([18], [1]). However, in the past few years a

family of relaxations have been developed based on replacing

‖x‖o in the optimization above by ‖x‖1. The idea behind

this relaxation is the fact that the ℓ1 norm is the convex

envelope of the ℓ0 norm, and thus, in a sense, minimizing the

former yields the best convex relaxation to the (non-convex)

problem of minimizing the latter. Moreover, as shown in [22],

under certain conditions the ℓ1 minimization indeed yields

the optimal ℓ0 solution.

In this paper we will pursue a similar approach.

However, we will work with sparsification problems in

the space of vector valued finite2 sequences S =
{

{g(t)}T
t=t0

| g(t) ∈ R
m

}

, rather than with vectors x ∈ R
N .

This change necessitates extending the theory behind the ℓ1-

norm relaxation to the space S. To this effect, begin by

noting that the number of non-zero elements (i.e. vectors)

in {g} ∈ S (i.e. ‖{g}‖0) is the same as in ‖ḡ‖0 where

ḡ = [‖g(to)‖ , . . . , ‖g(T )‖]T ∈ R
T−to+1. This suggest the

1Since it is not possible to deduce information for t < max(na, nc)
when the initial conditions are unknown, in the identification problem we
take t0 = max(na, nc).

2Since the experimental data consists of only finite samples, we consider
finite sequences. However, with appropriate modifications the discussions
in this section can easily be extended to deal with infinite sequences.

use of ‖ḡ‖1 =
∑

t ‖g(t)‖ as a convex objective function with

an appropriate choice of the norm ‖g(t)‖. In particular, we

will use ‖g(t)‖∞. The theoretical support for this intuitive

choice is provided next.

Lemma 1: The convex envelope of the ℓ0-norm of a vector

valued sequence on ‖{g}‖∞ ≤ 1 is given by

‖{g}‖0,env ,
∑

t

‖g(t)‖∞. (4)

Proof: See the appendix.

III. PROBLEM STATEMENT

In this paper we consider the problem of identifying

switched autoregressive exogenous (SARX) hybrid affine

models from experimental measurements corrupted by noise.

From a set-membership point of view, this problem can be

formally stated as follows:

Problem 1: [Consistency] Given input/output data over

the interval [t0, T ], and a bound ǫ on the ℓp norm of the noise

(i.e. ‖η‖ ≤ ǫ), find a hybrid affine model of the form (1) that

is consistent with the a priori information and experimental

data.

It is clear that this problem, though ensuring consistency,

is not well-posed and has infinitely many solutions. For

instance, one can always find a trivial hybrid model with

T − t0 + 1 submodels or one model with a large order that

perfectly fits the data. This situation can be partially avoided

by imposing upper bounds ny and nu on the order of each

of the terms on the right hand side of (1), e.g. na ≤ ny

and nc ≤ nu for some known ny, nu. Still, even in this

case the problem admits multiple solutions. More interesting

problems can be posed by using the existing degrees of

freedom to optimize suitable performance criteria.

One such criterion is to minimize the number of switches

(i.e. minimum k), subject to consistency. Practical situations

where this problem is relevant arise for instance in seg-

mentation problems in computer vision and medical image

processing, where it is desired to maximize the size of

regions (roughly equivalent to minimizing the number of

boundaries), and in fault-detection, in cases where it is de-

sired to minimize the number of false alarms. This criterion

may also be useful when the piecewise constant mode signal

σt is known to satisfy a dwell-time constraint (i.e. the time

between any consecutive switches is bounded below by a

dwell-time) or an average dwell-time constraint (i.e. the

number of switches in any given interval is bounded above

by its length normalized by an average dwell-time, plus a

chatter bound)3. The formal statement of the identification

problem with this criterion is as follows:

Problem 2: [Minimum Number of Switches] Given in-

put/output data over the interval [t0, T ], and bounds ǫ >

‖η‖p, nu ≥ nc and ny ≥ na on the ℓp norm of the noise and

the order of the regressors, respectively, find a hybrid affine

model of the form (1) that is consistent with the a priori

3These are the discrete-time counterparts of some sets of mode signals
defined in [12]. Detailed definitions of different sets of mode signals can
be found therein.
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information and that can explain the experimental data with

the minimum number of switches.

An alternative is to try to find the minimum number of

submodels (i.e. minimum s) capable of explaining the data

record. This criterion, used in [2], leads to the following

identification problem:

Problem 3: [Minimum Number of Submodels] Given

input/output data over the interval [t0, T ], and bounds

ǫ, ny, nu on the norm of the noise and regressor orders, find

a hybrid affine model of the form (1) with minimum number

of submodels that is consistent with the a priori information

and experimental data.

IV. MAIN RESULTS

In this section we show that both, Problems 2 and 3, can

be converted into an equivalent sparsification form where the

objective is to maximize the number of zero elements of a

suitably defined vector valued sequence. While in principle

maximizing sparsity is a generically non-convex, hard to

solve problem, recent developments in sparse signal recovery

reveal that efficient, computationally tractable relaxations can

be obtained by exploiting elements from convex analysis. To

this effect, we start by defining a time varying parameter

vector p(t) ∈ Rny+nu+1. Replacing p(σt) in (2) with

p(t), allows for recasting the consistency problem into the

following feasibility form:

find p(t)
s.t y(t) − r(t)T p(t) = η(t) ∀t

‖{η}‖∗ ≤ ǫ

(5)

where ‖.‖∗ denotes a suitable norm, specified according to

the problem under consideration, and where ǫ is an upper

bound on the noise level. Thus, restricting problems 2 and 3

to the feasible set of (5) guarantees consistency.

A. Identification with Minimum Number of Switches

In order to solve Problem 2, we consider the sequence of

first order differences of the time varying parameters p(t),
given by

g(t) = p(t) − p(t + 1) (6)

Clearly, since a non-zero element of this sequence corre-

sponds to a switch, the sequence should be sparse having

only k non-zero elements out of T − t0. Thus, with this

definition, Problem 2 is equivalent to the following (non–

convex) sparsification problem:

minp(t) ‖{p(t) − p(t − 1)}‖0

s.t y(t) − r(t)T p(t) = η(t) ∀t

‖{η}‖∗ ≤ ǫ

(7)

From Lemma 1, it follows that a convex relaxation can

be obtained replacing ‖.‖o by ‖.‖1. A better heuristic can be

obtained by adapting to this case the iterative weighted ℓ1
heuristic proposed in ([9], [15], [3]). This requires solving,

at each iteration, the following convex program:

minimizez,g,p

∑

t w
(k)
t zt

subject to ‖p(t) − p(t − 1)‖∞ ≤ zt ∀t

y(t) − r(t)T p(t) = η(t) ∀t

‖{η}‖∗ ≤ ǫ

(8)

where w
(k)
t = (z

(k)
t + δ)−1 and where z

(k)
t denotes the opti-

mal solution at the kth iteration, with z(0) = [1, 1, . . . , 1]T ,

and δ is a (small) regularization constant.

In the first iteration, this method solves the standard

ℓ1-norm relaxation. Then at each subsequent iteration, it

increases the weight w
(k)
t associated with the small z

(k)
t s,

thus pushing these elements further towards zero.

1) A Greedy algorithm for the ℓ∞ case: In the sequel

we propose a computationally simpler alternative for solving

Problem 2 in the case where the noise term is characterized in

terms of its ℓ∞ norm. This solution is motivated by existing

results in time series clustering showing that a greedy sliding

window algorithm [11] is optimal. As we show below, similar

ideas can be applied to problem 2, leading to an algorithm

that entails solving a sequence of smaller linear programs in

a greedy fashion.

Greedy Algorithm

k = 0
t0 = max(ny, nu)
τk = t0
FOR i = t0 : T

Solve the following feasibility problem in p:

F :
{

∣

∣y(t) − r(t)T p
∣

∣ ≤ ǫ ∀t ∈ [τk, i]
}

IF F is infeasible

Set Ik = [τk, i − 1], k = k + 1, and τk = i

END IF

END FOR

Set Ik = [τk, T ] and τ = {Ij}
k
j=0

RETURN τ and k

TABLE I

OPTIMAL GREEDY ALGORITHM FOR PROBLEM 2

Proposition 1: Let k∗ denote the number of switches in

an optimal solution to Problem 2 when the noise bound is

given in terms of its ℓ∞-norm. Then the value k returned by

the greedy algorithm outlined in Table I coincides with the

optimal k∗.

Proof: Assume τ∗ = {I ∗
i }

k∗

i=0 is the discrete hybrid

time set corresponding to an optimal solution with k∗

switches. Let τ = {Ii}
k
i=0 and k be the pair of values

returned by the greedy algorithm. In order to establish that

the proposition is true, it is enough to show that if τi ∈ I
∗
j

then τ ′
i ≥ τ ′

j
∗
. Then, an induction step shows that, τ ′

i ≥
τ ′
i
∗ ∀i ∈ {0, . . . , k∗} implying k ≤ k∗.

Since τ∗ is optimal (hence feasible), p∗(t) is constant

in each subinterval I
∗. In particular, there exists pj such

that for all t ∈ I
∗
j , p∗(t) = pj and

∣

∣y(t) − r(t)T pj

∣

∣ ≤ ǫ.

When τi ∈ I
∗
j , the same pj is a feasible solution of F in
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the (τ ′
j
∗
)th iteration of the greedy algorithm since τi ∈ I

∗
j

implies [τi, τ
′
j
∗
] ⊆ I

∗
j . Therefore, the algorithm will continue

to the next iteration without entering the if condition within

the for loop, which implies τ ′
i ≥ τ ′

j
∗
.

Next, we show by induction that for all i ≤ k, there exists

j ≥ i such that τ ′
i ≥ τ ′

j
∗
, hence τ ′

i ≥ τ ′
i
∗
:

• For i = 0: τ0 = τ∗
0 ∈ I

∗
0 ⇒ τ ′

0 ≥ τ ′
0
∗
.

• For i = m: Assume ∃j ≥ m s.t. τ ′
m ≥ τ ′

j
∗
.

• For i = m+1: From the previous line and properties of

hybrid time sets, we have that τm+1 = τ ′
m + 1 > τ ′

m ≥
τ ′
j
∗ ⇒ ∃l > j (or equivalently ∃l ≥ j + 1) s.t. τm+1 ∈

I
∗
l ⇒ τ ′

m+1 ≥ τ ′
l
∗ ≥ τ ′

j+1
∗
. Since j ≥ m implies

j + 1 ≥ m + 1, this proves the induction hypothesis.

Using the fact that T = τ ′
k = τ ′

k∗

∗
and the result of the

induction particularly at i = k leads to τ ′
k ≥ τ ′

k
∗ ⇒ τ ′

k∗

∗ ≥
τ ′
k
∗ ⇒ k∗ ≥ k.

Since by construction the result of the greedy algorithm

is feasible for problem 2 and k∗ is the minimum solution of

the problem, k∗ ≤ k. Therefore, k∗ = k.

Remark 1: Algorithm (8) requires solving m linear pro-

grams with (ny + nu + 2) × (T − t0 + 1) variables and

2(ny + nu + 2)× (T − t0 + 1) inequality constraints, where

m is the number of iterations required for convergence of

the weighted ℓ1-norm relaxation, typically around 5. On the

other hand, the greedy algorithm requires solving (T−t0+1)
linear programs with only (ny + nu + 1) variables and at

most 2(T − t0 + 1) inequality constraints (the worst case

scenario is when a single parameter value is feasible for the

entire [t0, T ] interval). Thus, in cases where both algorithms

are applicable (e.g. when the noise is characterized in terms

of its ℓ∞ norm), the greedy algorithm is preferable from a

computational complexity standpoint.

B. Identification with Minimum Number of Submodels

In this section, motivated by an idea used in [2], we present

an iterative procedure for solving Problem 3. The main idea

is to find one submodel at a time, along with the associated

parameter vector p̃, through the solution of a sparsification

problem. This is accomplished by finding a parameter vector

p̃ that makes
∣

∣y(t) − r(t)T p̃
∣

∣ ≤ ǫ feasible for as many time

instants t as possible. Equivalently, defining g̃(t) = p(t) −
p̃, the goal is to maximize sparsity of g̃(t) leading to the

following optimization problem:

minp(t),p̃ ‖{p(t) − p̃}‖0

s.t
∣

∣y(t) − r(t)T p(t)
∣

∣ ≤ ǫ ∀t
(9)

Then, we can eliminate the time instants t for which g̃(t)
is zero, and solve the same problem with the rest of the t’s

up until all data points are clustered. The number of times

(9) is solved gives an upper bound on the minimum number

of submodels s. Combining this idea with a refinement step

similar to the one proposed in [2] to re-estimate parameter

values and reassign, if needed, data points, leads to the

overall algorithm listed in Table II, where minimization of

‖.‖0 is (approximately) accomplished through the use of the

weighted ℓ1 norm minimization relaxation.

Algorithm for Minimum # of Submodels

t0 = max(ny, nu)
N1 = {t0, . . . , T}
l = 0
WHILE Nl+1 6= ∅

Let l = l + 1
Find p̃l by solving the re–weighted ℓ1 optimization:

minzt,p(t),p̃

∑

t w
(k)
t zt

subject to ‖p(t) − p̃‖∞ ≤ zt
∣

∣y(t) − r(t)T p(t)
∣

∣ ≤ ǫ

∀t ∈ Nl

where w
(k)
j = (z

(k)
j + δ)−1 are weights with

z
(k)
j the arguments of the optimal solution in

kth iteration and z(0) = [1, 1, . . . , 1]T ; and δ

is the regularization constant.

Let i = 1
WHILE i < l

Let Kil =
{

t ∈ Ni :
∣

∣y(t) − r(t)T p̃l

∣

∣ ≤ ǫ
}

IF #Kil > #Ki

Let p̃i = p̃l and l = i

END IF

Let i = i+1

END WHILE

Let Kl =
{

t ∈ Nl :
∣

∣y(t) − r(t)T p̃l

∣

∣ ≤ ǫ
}

Let Nl+1 = Nl \ Kl

END WHILE

RETURN s = l and Ki, i = 1, . . . , s

TABLE II

ALGORITHM FOR PROBLEM 3

Remark 2: While consistent numerical experience shows

that this algorithm works well in practice, counterexamples

are available where it overestimates the number of systems.

This is due to its greedy nature that tends to assign as many

points as possible to the parameters found earlier, possibly

resulting in the later need to use additional parameter values

in order to explain unassigned data points. At this point the

issues of existence of conditions under which the greedy

algorithm is indeed optimal and bounds on its worst case

performance are open research questions.

V. EXAMPLES

This section illustrates the proposed methods with some

academic examples and compares their performance against

the methods in [2] and [17].
In the first example, we considered input/output data gen-

erated by a hybrid system that switched among the following
two ARX submodels:

y(t) = 0.2y(t−1)+0.24y(t−2)+2u(t−1); t ∈ [1, 25]∪ [51, 75]

y(t) = −1.4y(t−1)−0.53y(t−2)+u(t−1); t ∈ [26, 50]∪[76, 100]

with ‖η‖∞ = 0.5. The goal here was to identify a model

that explained the experimental data record with the fewest

possible number of switches. Figure 1 compares the perfor-

mance of sparsification-based (both algorithm (7) and the
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greedy algorithm of Table I) against the algebraic method4.

As shown there, the sparsification based methods correctly

estimated the parameters and number of switches, while

GPCA failed to do so (due to noise). Additional examples

illustrating the use of sparsification to find the minimum

number of switches are given in section VI.

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

Parameter (a
1
(t)) Sequences for Min Switch Problem

a
1
(t

)

Sparsification−Based

True

Estimated

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

a
1
(t

)

Greedy

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

a
1
(t

)

GPCA

Fig. 1. True and estimated parameter sequences for parameter a1(σt) for
Example 1.

The next two examples consider the problem of estimating

the minimum number of systems. In the first case we used

data generated by the SARX model:

y(t) = a1(σt)y(t−1)+a2(σt)y(t−2)+c1(σt)u(t−1)+η(t)
(10)

with

σt =







1, t ∈ [1, 60]
2, t ∈ [61, 120]
3, t ∈ [121, 180]

where for all i ∈ {1, 2, 3}, c1(i) is a sample from a zero

mean unit variance normal distribution, a1(i) and a2(i) are

chosen such that the complex conjugate poles of the ith

submodel are distributed in 0.5 ≤ ‖z‖ ≤ 1 with uniform

random phase and magnitude, and η(t) is an iid noise term

uniformly distributed in [−0.5, 0.5].

We randomly generated 100 SARX models of the form

(10). For each model, we estimated the number of submodels

by solving Problem 3 with our method and the bounded-error

method; and by approximating the rank of an appropriate

matrix obtained from data as proposed in [24] for the alge-

braic method. The former two methods give upper bounds

of true value s = 3, whereas the latter estimate depends

on the threshold chosen to calculate the rank and could be

lower than the true value. Results on this experiment are

summarized in Figure 2 and Table III.

For the next example, we considered input/output data

generated by an SARX system of the form (10) with the

4The bounded error based method was not used here since it does not
attempt to minimize the number of switches.
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Sparsification

Bounded−error
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Fig. 2. Results of estimation of minimum number of submodels.

Absolute Error Sparsification Bounded-Error Algebraic

Mean 1.93 4.07 2.18
Standard deviation 1.65 1.58 1.25

TABLE III

ERROR STATISTICS OF MINIMUM NUMBER OF SUBMODEL ESTIMATION

WITH A NOISE LEVEL OF ǫ = 0.5.

same mode signal σt and coefficients:

[a1(1), a2(1), c1(1)] = [−1.6758, −0.8292, 1.8106]
[a1(2), a2(2), c1(2)] = [−0.8402, −0.6770, 0.2150]
[a1(3), a2(3), c1(3)] = [1.0854, −0.9501, 0.6941].

In this case we used two different criteria to assess the

performance, for different noise levels, of the sparsification-

based (Table II), bounded error, and algebraic algorithms,

both in terms of quality of the segmentation and parameter

identification error. Quality of the clustering was assessed

using the Rand index [20] to compare the estimated mode

signal σ̂t against the true σt
5. Quality of the parameter

estimation was evaluated using the following error measure:

∆ =

√

∑T
t=t0

‖p(σt) − p̂(σ̂t)‖
2
2

T − t0 + 1
(11)

For the noise level of ǫ = 0.05, the sparsification, bounded

error and algebraic methods found 4, 9 and 4 submodels,

respectively. For the noise level of ǫ = 0.5, the number of

submodels found were 3, 9 and 4, respectively. The results

of these experiments are summarized in Tables IV and V.

Noise Level Sparsification Bounded-error Algebraic

ǫ = 0.05 0.9681 0.9157 0.9212

ǫ = 0.5 0.8436 0.7482 0.6849

TABLE IV

RAND INDICES THAT SHOW THE QUALITY OF MODE SIGNAL ESTIMATES.

5Recall that a Rand index of 1 corresponds to a perfect clustering.
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Noise Level Sparsification Bounded-error Algebraic

ǫ = 0.05 0.0456 0.1355 0.0226

ǫ = 0.5 0.0513 0.1757 0.2518

TABLE V

ERROR MEASURE ∆ THAT SHOWS THE QUALITY OF PARAMETER

ESTIMATES.

In these last two examples the sparsification–based method

outperformed both the bounded-error and algebraic proce-

dures. While all methods proved considerably robust to

noise in estimating the number of submodels, segmentation

quality and parameter identification performance degraded

significantly for the algebraic method as the noise level

increased. On the other hand, sparsification was the most

robust in terms of these performance criteria. The bounded-

error method performed relatively poorly when estimating

the number of submodels. Even though it clustered most of

the data in the largest three submodels, it also generated

superfluous submodels with parameter values far from the

true values.

VI. APPLICATIONS: SEGMENTATION OF VIDEO

SEQUENCES.

In this section we illustrate the application of the proposed

identification algorithm to two non-trivial problems arising in

computer vision: segmentation of video-shots and dynamic

textures. Here the goal is to detect changes, e.g. scenes or

activities in the former, texture in the later, in a sequence

of frames. Given the high dimensionality of the data, the

starting point is to perform a principal component analysis

(PCA) compression [7] to obtain low dimensional feature

vectors y(t) ∈ R
d representing each frame t. The next

step is to assume, motivated by [23], [14], [4], [5], that

each component yj(.) of the feature vector y(t) evolves

independently, according to an unknown model of the form:

yj(t) =

na
∑

i=1

ai,j(σt)yj(t − 1) + η(t), ‖η(t)‖2 ≤ ǫ (12)

Finally, defining g(t) = [p1(t) − p1(t + 1), . . . ,pd(t) −
pd(t+1)] allows to use the (minimum number of switches)

sparsification-based approach to segment a given sequence

according to the non-zero elements in the corresponding

sequence ‖g(.)‖∞.

Video-Shot Segmentation: The goal here is to detect scene

changes in video sequences. These changes can be cate-

gorized into two: i) abrupt changes (cuts), and ii) gradual

transitions, e.g. various special effects that blend two con-

secutive scenes gradually. Figure 3 shows the ground truth

and the segmentations obtained using the proposed method,

GPCA [23], a histogram based method (bin to bin differ-

ence (B2B) with 256 bin histograms and window average

thresholding [10]), and an MPEG-based method [25] for

two sample sequences, mountain.avi and family.avi, available

from http://www.open-video.org. Both the B2B

and MPEG methods rely on user adjustable parameters (two

in the B2B case, seven for MPEG). In our experiments we

Sparsification MPEG GPCA B2B

mountain 0.9965 0.9816 0.9263 0.5690

family 0.9946 0.9480 0.8220 0.9078

TABLE VI

RAND INDICES FOR VIDEO-SHOT SEGMENTATION

Fig. 4. Sample dynamic texture patches. Top: smoke, Bottom: river

adjusted these parameters, by trial and error, to get the best

possible results. Hence the resulting comparisons against

the proposed sparsification method correspond to best-case

scenarios for both MPEG and B2B. As shown in Table VI,

the proposed method has slightly better performance than

MPEG (the runner up), without the need to manually adjust

seven parameters one of which, length of the transition, is

very sensitive.

Dynamic textures: Next, we consider two challenging

sequences generated using the dynamic texture database

http://www.svcl.ucsd.edu/projects/motion-

dytex/synthdb/. In the first one, we appended in time

one patch from smoke to another patch from the same

texture but transposed. Therefore, both sequences have the

same photometric properties, but differ in the main motion

direction: vertical in the first half and horizontal in the

second half of the sequence. For the second example, we

generated a sequence of river by sliding a window both in

space and time (by going forward in time in the first half

and by going backward in the second). Hence, the dynamics

due to river flow are reversed. Sample frames from each

sequence are shown in Figure 4. For these sequences both

histogram and MPEG methods failed to detect the cut

since the only change is in the dynamics. On the other

hand, the proposed method (using 5th order models and

d = 3) correctly segmented both sequences. These results

are summarized in Figure 5.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we consider the problem of identifying

switched linear systems from input/output data and minimal

a priori assumptions on the order of the subsystems and the

magnitude of the noise. Our main result shows that, when an

explanation with the minimum number of switches is sought

(a problem relevant for instance in the context of segmen-

tation), the problem can be recast into a sparsification form

and efficiently solved using recently introduced relaxations.

A similar idea can be also used when minimizing the number
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Fig. 3. Video Segmentation Results. Left Column: Ground truth segmentation (jumps correspond to cuts and slanted lines correspond to gradual transitions).
Right Column: Changes detected with different methods. Value 0 corresponds to frames within a segment and value 1 corresponds to the frames in transitions.

of systems. However, in this case, while usually working

well in practice, the approach is suboptimal. The advantages

of the proposed techniques over existing methods were

illustrated using both academic examples and non-trivial

segmentation problems arising in computer vision. As shown

there, while most existing methods perform well in noiseless

scenarios, sparsification–based techniques are more robust to

noise. Research currently under way seeks to address the

issues of suboptimality of the approach for identifying the

minimum number of systems consistent with the data, and

to extend these approaches to classes of switched nonlinear

systems, such as Hammerstein and Wiener. These problems

are relevant to application domains such as computer vision

where the high dimensionality of the data requires the use

of, often non-linear, dimensionality reduction methods.
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APPENDIX

PROOF OF LEMMA 1

In order to prove the lemma, we need some preliminary

results from convex analysis. For a function f : C → R,

where C ⊆ Rn, the conjugate f⋆ is defined as

f⋆(y) = sup
x∈C

(〈x, y〉 − f(x))

Under some technical conditions (see [13] Theorem 1.3.5),

which are met here, the conjugate of the conjugate (i.e. f⋆⋆)

gives the convex envelope of the function f .

The proof proceeds now along the lines of that of the

Theorem 1 in [8], by computing ‖x‖∗∗o , x ∈ S. The

isomorphism I from S to R
m(T−to+1), which simply stacks

the elements of the sequence into a column vector, naturally

induces an inner product on S as 〈x, y〉 = 〈I(x), I(y)〉 =
∑T

t=1 xT (t)y(t). For f : S → R, f(x) = ‖x‖0, the

conjugate function in C
.
= ‖x‖∞ ≤ 1 is:

f∗(y) = sup‖x‖
∞

≤1 {〈x, y〉 − f(x)}

=
∑

i∈λ ‖y(i)‖1 − |λ|
(13)

where λ = {j : ‖y(j)‖1 > 1, j ∈ {1, 2, . . . , T}} is an index

set and |λ| is its cardinality.

f∗∗(z) = supy∈S {〈y, z〉 − f∗(y)}
= supy∈S

{
∑

i∈λ y(i)T z(i)
+

∑

i/∈λ y(i)T z(i) −
∑

i∈λ ‖y(i)‖1 + |λ|
}

= supy∈S

{
∑

i∈λ y(i)T [z(i) − sign(y(i))]
+

∑

i/∈λ y(i)T z(i) + |λ|
}

(14)

Here we consider two cases:

1) If ‖z‖∞ > 1, it is possible to choose y such that the

first term in (14) grows unboundedly and f∗∗(z) → ∞. So

the domain of f∗∗ is ‖z‖∞ ≤ 1.

2) If ‖z‖∞ ≤ 1, the first term in the last line of

(14) is nonpositive. So to maximize the first term, y(i)
values should be chosen small in absolute value for i ∈ λ.

Keeping in mind the bounds imposed on y(i) values by λ,

the maximum value of the second term is
∑

i/∈λ ‖z(i)‖∞.

Similarly, supy

{
∑

i∈λ y(i)T [z(i) − sign(y(i))] + |λ|
}

=
∑

i∈λ [‖z(i)‖∞ − 1] + |λ| =
∑

i∈λ ‖z(i)‖∞. Hence,

f∗∗(z) =
∑T

i=1 ‖z(i)‖∞ .
(15)
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