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Abstract— Model (In)Validation has been extensively stud-
ied during the past decade, leading to efficient algorithms
to establish whether some a priori information, typically a
given model, uncertainty and noise description, is consistent
with some observed experimental data. These algorithms are
optimistic in the sense that a given description is considered
to be not invalidated by the experimental data when there
exists at least one pair (noise, uncertainty) that together with
the nominal model can reproduce the observed data. Thus,
they can substantially underestimate the size of the model
uncertainty, leading to poor performance or even instability
when this information is used to design a robust controller. To
solve this difficulty, in this paper we take a pessimistic approach,
where we seek the smallest ball such that the resulting model
is invalidated by the experimental data for all uncertainties
outside this ball. Thus, a robust controller designed using this
information is guaranteed to stabilize the unknown plant. The
main result of the paper provides an LMI–based optimization
procedure for computing an upper bound on the radius of this
ball for the case of structured uncertainty entering the plant in
an LFT form. Moreover, in the case of up to two uncertainty
blocks this upper bound is indeed exact.

I. INTRODUCTION AND MOTIVATION

Before a given system description, obtained either from

first principles or an identification step, can be used to syn-

thesize a controller, it must be validated using experimental

data. In addition, this step can be used to obtain bounds on

the modelling error that can be directly incorporated into a

robust controller design algorithm such as µ–synthesis.

Model (in)validation of Linear Time Invariant (LTI) sys-

tems in a Robust Control setting has been extensively ad-

dressed in the past decade (see for instance [13], [10], [3],

[2], [9], [11], [16] and references therein). The main result

([3], [2]) shows that in the case of LTI causal unstructured

uncertainty and general Linear Fractional (LFT) depen-

dence, model (in)validation reduces to a convex optimization

problem that can be efficiently solved, by applying norm

constrained interpolation theory. In the case of structured

uncertainty, the problem has been shown in [15] to be

NP–hard in the number of uncertainty blocks. However,

computable weaker conditions (sufficient for the model to be

invalidated) in the form of Linear Matrix Inequalities (LMIs)

are available, by reducing the problem to the (in)validation

of a scaled model subject to a scaled unstructured uncer-

tainty as proposed in [3], [15], [11], or alternatively, by
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stating the invalidation problem as one of violation of robust

performance by any admissible uncertainty (and solved as

a structured singular value problem type) as in [13], [9],

[6]. Moreover, as shown in [6], these conditions are indeed

necessary and sufficient in the case of (arbitrarily) slow time–

varying uncertainty.

A potential difficulty when using these approaches to

estimate the size of the uncertainty, as a first step to a

robust controller design, stems from the fact that they are

optimistic in the sense that a given description is considered

to be not invalidated when there exists at least one pair

(noise, uncertainty) that together with the nominal model

can reproduce the observed experimental data. Thus, they can

substantially underestimate the size of the model uncertainty,

leading to poor performance or even instability when this

information is used to design a robust controller. This effect

is illustrated next with a very simple example:

Example 1: Consider the following candidate model rep-

resented in the standard z-domain as:

y(z) =
δ(z)

z
u(z) + η(z) (1)

with a priori information:

No =
{
η(ejω) : ‖η‖∞ ≤ 0.5

}
(2)

∆o =
{
δ(ejω) : ‖δ‖∞ ≤ γ

}
(3)

and assume the experimental input/output data is given by:

u(ωk) = 1 and y(ωk) = e−jωk , respectively. It can be easily

shown that γmin = 0.5 is the minimum uncertainty size such

that the model (1) is not invalidated by the experimental data.

Thus, the set of (constant) output feedback H∞ controllers

u(z) = Ky(z) that robustly stabilize the plant, that is
∥
∥
∥
∥

δ(z)K

z

∥
∥
∥
∥
∞

≤ 1 for all δ ∈ ∆o.

is given by |K| < 1
γmin

= 2. Hence K = 1 is a suitable

“robust” controller. Note however that δ̃ = 1.5 is also in

the uncertainty consistency set (that is, it could also have

generated the given input/output data). In this case, the corre-

sponding “real” plant is given by y(z) = 1.5z−1u(z)+η(z),
which is destabilized by the controller K = 1.

To avoid this difficulty, in this paper we propose a pes-

simistic approach to model (in)validation, where we seek the

smallest ball guaranteed to include the uncertainty consis-

tency set, e.g. such that the resulting model is invalidated by
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the experimental data for all uncertainties outside this ball.

Thus, a robust controller designed using this information is

guaranteed to stabilize the unknown plant. For instance, in

the simple example above it is easily seen that the experi-

mental information is invalidated for all ‖δ‖∞ > 1.5, which

implies that any controller |K| < 2
3 will stabilize all plants

in the consistency set, e.g. all plants compatible with the

available a priori information and a posteriori experimental

data.

The main result of the paper provides an LMI–based

optimization procedure for computing an upper bound on

the radius of a ball guaranteed to contain the uncertainty

consistency, for the case of structured uncertainty entering

the plant in an LFT form. Moreover, in the case of up to

two uncertainty blocks this upper bound is indeed exact.

This is accomplished by first recasting the problem into a

robust performance violation form and then invoking the

S–procedure to obtain sufficient conditions for the latter

problem1. These results are illustrated with some simple

examples.

II. PRELIMINARIES

A. Notation

We consider the model (in)validation problem for discrete

time, causal, linear time-invariant (LTI) stable systems sub-

ject to LTI structured uncertainty. We will represent discrete

LTI systems by their complex-valued transfer function matri-

ces H(z) =
∑∞

k=0 H(k)zk. L∞ denotes the Lebesgue space

of complex valued matrix functions essentially bounded

on the unit circle, equipped with the norm: ‖H(z)‖∞
.
=

ess sup|z|=1 σ̄ (H(z)) where σ̄ denotes the largest singular

value. By H∞ we refer to the subspace of functions in L∞

with a bounded analytic continuation inside the unit disk,

with norm defined as ‖H(z)‖∞
.
= ess sup|z|<1 σ̄ (H(z)).

L∞[0, 2π] denotes the space of bounded vector val-

ued functions x(ejω) equipped with the norm ‖x‖∞
.
=

ess supω∈[0,2π)

∥
∥x(ejω)

∥
∥

2
where for a fixed frequency

∥
∥x(ejωo )

∥
∥

2
stands for the standard 2-norm in Cn.

BL∞[0, 2π](ǫ) is the ball in this space centered at the origin

with radius ǫ.

Given a complex valued matrix M , M ∗ denotes its con-

jugate transpose. M > 0 (M ≥ 0) indicates the matrix is

positive (semi)definite. Fu(M, ∆) denotes the upper linear

fractional interconnection of matrices M and ∆, defined as:

Fu(M, ∆)
.
= M21∆(I − M11∆)−1M12 + M22.

B. Pessimistic Model Invalidation Setup

Consider the upper linear fractional (LFT) interconnection

Fu(P, ∆) shown in Figure 1 of a discrete–time, causal,

stable, LTI candidate model P ∈ RH∞ and dynamic

structured uncertainty ∆. In the sequel we will assume that

the block ∆ is known to belong to the set:

∆(γ) = {∆ ∈ H∞ : ∆ = diag(δ1I1, . . . , δnIn), ‖∆‖∞ ≤ γ}
(4)

1Thus these conditions are indeed necessary and sufficient for cases where
the S–procedure is lossless.

that is a block diagonal structure consisting of (possibly

repeated) scalar blocks2. In addition, we will assume that

a (perhaps very coarse) bound is available on the size of

the admissible uncertainty. For instance, if the plant P has

been identified from experimental data using an interpolatory

algorithm, such a bound can be obtained by computing

the diameter of information (see for instance [12], Chapter

10). Finally, we will assume that the available experimental

information consists of samples y(ejωk) of the frequency

response of the plant to a known input u(ejωk), corrupted

by bounded measurement noise η(ejωk). In summary, the

a priori information and a posteriori experimental data are

given by:

S = {Fu(P, ∆), ∆ ∈ ∆(γ)}
∆(γ) = {∆ : ∆ = diag(δ1I1, . . . , δnIn), ‖∆‖∞ ≤ γ}

N = {η : η ∈ BL∞[0, 2π](ǫ)}
y(ejωk) = H(ejωk)u(ejωk) + η(ejωk)

(5)

where H denotes the frequency response of the (unknown)

plant.

Motivated by Example 1, in this paper we will consider

the following “pessimistic” model (in)validation problem for

the setup described above:

Problem 1: Given the experimental information

{u(ejω), y(ejω)}, the nominal plant P and noise level

ǫ, find the minimum α such that the model is invalid for all

∆ ∈ ∆, ‖∆‖∞ > α.

As we show in the sequel, an upper bound on α can be

found by solving a convex optimization problem, obtained

through the use of the S–procedure. Thus, this bound is exact

in cases where the procedure is lossless.

Remark 1: Problem 1 can be thought of as a specific

instance of worst case model set identification problem where

the aim is to find a nominal model and a bound on its

uncertainty given some a priori information on the true plant,

noise and a posteriori experimental data so that nominal plant

together with the uncertainty bound covers the consistency

set (see [12], Chapter 10 for details). In classical worst

case identification the a priori information on the true plant

is usually in the form of bounds on its gain and stability

margin ([5]). Whereas, here the uncertainty (∆) itself can be

considered as the plant to be identified, given the a priori

information on the true system in the form of a candidate

model P , the structure of the uncertainty and how these

two are interconnected. The identified worst-case uncertainty

bound is such that any uncertainty exceeding this bound is

inconsistent with the experimental data hence it covers the

consistency set.

2Since our goal is to find bounds on the uncertainty such that the resulting
model is guaranteed to be invalid, assuming this uncertainty structure does
not entail any loss of generality: Uncertainty structures containing full
matrix blocks can be converted to this form by augmenting the plant
with suitable input/output signals. In this case the proposed procedure will
provide bounds on each of the elements of the matrix.
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III. MAIN RESULTS

A. Problem Transformation

The first step towards obtaining tractable conditions for

pessimistic invalidation is to transform Problem 1 into a

robust performance violation form. To this effect, begin

by noting that, since only a finite number of input/output

measurements are available through experiment, it is possible

to assume that both u(ejω) and y(ejω) are the impulse

responses of some known systems Su, Sy ∈ RH∞
3. Under

this assumption, the condition

y = Fu(P, ∆)(u) + η

can be rewritten as follows:

η̃ = Fu(M, ∆̃)1

or equivalently
[
q(ejω)
η̃(ejω)

]

=

[
M11(e

jω) M12(e
jω)

M21(e
jω) M22(e

jω)

]

︸ ︷︷ ︸

M(ejω)

[
p(ejω)

1

]

pj(e
jω) = δ̃j(e

jω)qj(e
jω) ∀j = 1, . . . , n

(6)

where

M11(e
jω) = γP11(e

jω)
M12(e

jω) = P12(e
jω)Su(ejω)

M21(e
jω) = − γ

ǫ P21(e
jω)

M22(e
jω) = 1

ǫ (Sy(ejω) − P22(e
jω)Su(ejω)).

This transformation is depicted in Figure 1 where ∆̃ and

η̃ are normalized so that they lie in the corresponding unit

balls.

In this framework, having

∥
∥
∥Fu(M, ∆̃)1

∥
∥
∥
∞

> 1 is equiv-

alent to the invalidation of the original model.

B. A Sufficient Condition for Pessimistic Invalidation

Theorem 1: Given the input-output pair
{
u(ejω), y(ejω)

}

and the sets of admissible noise and uncertainty, then:
∥
∥
∥Fu(M, ∆̃)1(ejωo)

∥
∥
∥

2
> 1

for all ∆ ∈ ∆(γ) with

∣
∣
∣δ̃i(e

jωo)
∣
∣
∣ > αi(e

jωo) if there exist

xj(e
jωo ) > 0 for j = 1, . . . , n such that the following LMI

is feasible at ωo

M∗







−Xu(ejω) 0 0 0
0 α2

i (e
jω)xi(e

jω) 0 0
0 0 −Xl(e

jω) 0
0 0 0 I







M

−







−Xu(ejω) 0 0 0
0 xi(e

jω) 0 0
0 0 −Xl(e

jω) 0
0 0 0 1







> 0

(7)

where Xu(ejω) = diag[x1(e
jω), . . . , xi−1(e

jω)] and

Xl(e
jω) = diag[xi+1(e

jω), . . . , xn(ejω)].

3Su and Sy can be found for instance by solving a boundary Nevanlinna-
Pick interpolation problem.

P

∆

-

�

h+ - y
?

η

-u

-

(a)

M

∆̃

-

q

�

η̃-1

-p

(b)

Fig. 1. (a) Pessimistic Model (In)Validation Set–up. (b) Equivalent
“Robust” Performance Violation Formulation.

Proof: At ωo pre and post multiplying (7) by p∗ =
[p∗1(e

jωo) . . . p∗i (e
jωo) . . . p∗n(ejωo) 1] and p, and

using the relations in (6) gives:

∥
∥η̃(ejωo)

∥
∥

2

2
>

n∑

j = 1
j 6= i

xj(e
jωo)

(∣
∣qj(e

jωo)
∣
∣
2
−

∣
∣pj(e

jωo)
∣
∣
2
)

+xi(e
jωo)(

∣
∣pi(e

jωo)
∣
∣
2
− α2

i (e
jωo )

∣
∣qi(e

jωo)
∣
∣
2
) + 1 (8)

The first term on the right hand side of (8) is nonnegative

since each δ̃j is scaled to be a contraction. Since

∣
∣
∣δ̃i(e

jωo)
∣
∣
∣ >

αi(e
jωo) the second term is also nonnegative. Hence:

∥
∥
∥Fu(M, ∆̃)1(ejωo)

∥
∥
∥

2
=

∥
∥η̃(ejωo)

∥
∥

2
> 1

that is the model is invalid for all ∆ ∈ ∆(γ) with∣
∣
∣δ̃i(e

jωo)
∣
∣
∣ > αi(e

jωo).

Direct application of Theorem 1 leads to the following

algorithm for finding an envelope (i.e. an upper bound) for

the frequency response of each δi.

Algorithm 1: Given the a priori information P , N , ∆(γ)
and experimental data {u(ejωk), y(ejωk)} at N different

frequency:

0) Set k = 0.

1) Form the system M defined in (6). Set i = 1.

2) For each i, do:

(i) Find the minimum value of αi(e
jωk) such that

(7) holds. 4

(ii) Scale M by





I 0 0
0 αi 0
0 0 I



. Set i = i+1. If i ≤ n

go to step 2.

4This step can be accomplished with a line search over [0, 1].
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(iii) The value of the envelope at ωk is given by

Ē(ωk)
.
= γ[α1(e

jωk), . . . , αn(ejωk)].

3) If k ≤ N , set k = k + 1 and go to step 1.

4) The envelope can be obtained by interpolating the

Ēi(ωk) values over [0, 2π).5

Remark 2: As additional experimental data becomes

available, the envelope can be easily updated by taking

the pointwise minimum of the old envelope and the new

envelope.

In principle, one could suspect that the minimum αi values

will depend on the order in which they are calculated since i)

the problem is not convex in all αis and Xs, and ii) condition

(7) is just sufficient in some cases. However, as shown next,

this is not the case.

Theorem 2: Let αk denote the values obtained using Al-

gorithm 1 above. Then these values are independent of the

order in which they are computed.

Proof: Given in the Appendix

C. Analysis of the conservatism of the condition

In this section we briefly comment on the conservatism

of condition (7). Let r
.
= (pT u)T and s

.
= (qT ηT )T and

define the following (quadratic) inequalities:

σi(r, s)
.
= α|si|

2 − |ri|
2,

σj(r, s)
.
= |rj |

2 − γ|sj |
2, j = 1, . . . , n, j 6= i,

σn+1(r, s)
.
= |sn+1|

2 − |rn+1|
2

(9)

Since u is a scalar, ‖Fu(M, ∆̃)(ejωo)‖ > 1 is equivalent to

the condition:

σn+1(r) > 0 ∀r such that σi(r) < 0, i = 1, . . . , n. (10)

It is well known (see for instance [8]) that a sufficient

condition for (10) to hold is the existence of n+1 multipliers

xi > 0 such that
∑

i xiσi(r, s) > 0. Replacing the explicit

dependence of s on r and rewriting the resulting condition

in matrix form leads to the LMI (7). In general, the step

above is conservative, and the gap between necessity and

sufficiency is known to grow linearly with the number of

blocks [7]. However, in the case of up to three Hermitian

quadratic forms in a complex linear space, the two conditions

are equivalent (e.g. the S–procedure is lossless) [4], [8].

Hence the conditions in Theorem 1 are indeed necessary

and sufficient for uncertain structures containing up to two

blocks.

IV. EXAMPLE

In this section, we illustrate the proposed method with

a simple example. Consider the following true LTI system

Fu(P, ∆), with:

P11(z) =

[
0 0
1 0

]

P12(z) =

[
1

−4.9z−5.1
3.625z−6.375

]

P21(z) =

[
1 0
0 1

]

P22(z) =

[
−4.9z−5.1

3.625z−6.375
1.5(z+1)2

18.6z2−48.8z+32.6

]

5Note that it is not possible to deduce an exact bound for frequency
response at frequencies not included in the experiment.

and

∆(z) = diag(δ1(z), δ2(z)) (11)

δ1(z) =
−0.24z2 + 0.2z

0.53z2 − 0.4z + 1

δ2(z) =
0.044368(z − 5)(z2 − 1.244z + 0.5181)

(z − 1.149)(z2 + 2z + 2)
.

−3 −2 −1 0 1 2 3
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0.5
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d
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1
(e

jω
)|

noisy
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upper bound

lower bound
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M
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g
n
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u

d
e

|Y
2
(e

jω
)|

noisy

ideal

upper bound

lower bound

Fig. 2. Experimental data, noise free system, upper bound and lower bound
of noisy system. The noise values are scaled by four for illustrative purposes.

Assume we are given P as a candidate model, together

with the structure of ∆. Our experimental data consists of a

set of N = 200 samples of the impulse response of Fu(P, ∆)
corrupted by additive noise in N = BL∞[0, 2π](0.05). Noise

samples are generated as complex numbers in this ball with

uniform random phase and magnitude. We use γ = 3 as

the coarse upper bound where ‖∆‖∞ = 0.5976 for the

uncertainty in (11). The experimental output and the noise

free plant are shown in Figure 2.

The goal is to find the “largest uncertainty” that could

have generated this input/output pair given the a priori

information. Figure 3 shows the frequency responses of this

worst case uncertainty and the true uncertainty given in (11).

Any δ with frequency response larger than the envelope

at any frequency is invalidated by the experimental data.

Moreover, for any δ whose frequency response is below

the envelope it is possible to construct an admissible noise

sequence to generate the experimental output.

It is important to note that, the worst case uncertainty

does not necessarily correspond to the real uncertainty. It
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Fig. 3. Real uncertainties and the worst case uncertainties that could have
generated the same input output pair.

is rather an upper bound of the real uncertainty since the

real uncertainty could be anywhere in the consistency set,

whereas the worst case uncertainty is on its boundary. As the

consistency set shrinks by collecting multiple experimental

data for a single frequency, the envelope will converge to

the real uncertainty. In that sense, the presented algorithm

can also be used as an identification scheme. However, our

goal in this paper is not identification but to find a hard

bound on the size of admissible uncertainty set given a single

experiment.

V. CONCLUSIONS AND FUTURE WORK

Model (In)Validation is a critical step that must precede

the use of models, obtained either from first principles

or an identification step, to synthesize a controller. This

problem has been extensively studied in the past decade,

leading to several computationally efficient algorithms for

invalidating a given (plant, uncertainty) description, based

on noisy experimental data. A common feature of these

algorithms is the fact that a given description is considered

to be non–invalidated when a single pair (uncertainty, noise)

is found such that, in conjunction with the assumed plant,

can reproduce the experimental data. In this sense, these

algorithms are overly optimistic, since they can substantially

underestimate the actual size of the uncertainty, leading to

poor performance, or even instability, when this description is

used to synthesize a controller. This effect can be mitigated

in part by pursuing a risk–adjusted approach such as the

one pursued in [17], [14], that will reject as invalid, with

probability close to 1, models validated only by a small set

of (uncertainty, noise) pairs. Still, the resulting uncertainty

bounds are optimistic, since the algorithm stops when a

single validating pair is found.

To avoid these difficulties, in this paper we pursued a

pessimistic approach, seeking to establish an outer bound on

the uncertainty consistency set, that is, to find a set such that

the model is guaranteed to be invalid for all uncertainties

outside it. The main result of the paper shows that this

problem can be reduced to a tractable convex optimization

form by recasting it into a robust performance violation form.

Since the latter is convexified by exploiting the S-procedure,

the resulting conditions are generically only sufficient, that

is, will tend to overbound the set. We conjecture that these

conditions are also necessary and sufficient in the case of an

arbitrary number of slowly time varying uncertainty blocks,

but no formal proof is available at the moment. Efforts

are currently under way pursuing research in this direction

and towards reducing the conservatism in the LTI case by

combining the approach described in this paper with risk

adjusted methods.

APPENDIX

PROOF OF THEOREM 2

For simplicity, and without loss of generality, we will

prove that the results of Algorithm 1 do not depend on the

order in which α1 and α2 are calculated. However, the same

reasoning applies to any pair (αi, αj). For a given frequency,

start by assuming that α1 is the minimum solution calculated

in Step 2.i in algorithm 1 when i = 1. If α2 is the minimum

solution given α1 (i.e in the second iteration when i = 2), it

is indeed the solution to the following optimization problem:

α2 = min
α∈[0,1],B

α subject to

M∗







−α2
1b1 0 0 0
0 α2b2 0 0
0 0 −Bl 0
0 0 0 I







M

−







−b1 0 0 0
0 b2 0 0
0 0 −Bl 0
0 0 0 1







> 0

B = diag[b1, . . . , bn] > 0

(12)

On the other hand, let α2 be the solution when we initialize

the algorithm with i = 2. That is:

α2 = min
α∈[0,1],C

α subject to

M∗







−c1 0 0 0
0 α2c2 0 0
0 0 −Cl 0
0 0 0 I







M

−







−c1 0 0 0
0 c2 0 0
0 0 −Cl 0
0 0 0 1







> 0

C = diag[c1, . . . , cn] > 0.

(13)

If α2 < α2, there exists no X = diag[x1, x2, . . . , xn] > 0
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such that

M∗







−α2
1x1 0 0 0
0 α2

2x2 0 0
0 0 −Xl 0
0 0 0 I







M

−







−x1 0 0 0
0 x2 0 0
0 0 −Xl 0
0 0 0 1







> 0

(14)

since α2 is the minimum of all α ∈ [0, 1] that satisfies (12).

By duality (see [1] p.29) this is equivalent to the existence of

a positive semidefinite matrix W = W ∗ ≥ 0, W 6= 0 such

that the following holds for all X = diag[x1, x2, . . . , xn] >
0:

traceW







M∗







−α2
1x1 0 0 0
0 α2

2x2 0 0
0 0 −Xl 0
0 0 0 I







M

−







−x1 0 0 0
0 x2 0 0
0 0 −Xl 0
0 0 0 1













≤ 0

(15)

In particular, (15) is true for X =
diag[c1/α2

1, c2 . . . , cn] > 0 where we choose ci values the

same as the arguments of (13) in the optimal solution.

Plugging X into (15) and some simple manipulation leads:

traceW 1/2







M∗







−c1 0 0 0
0 α2

2c2 0 0
0 0 −Cl 0
0 0 0 I







M

−







−c1 0 0 0
0 c2 0 0
0 0 −Cl 0
0 0 0 1













W 1/2

+ traceW 1/2







( 1
α2

1

− 1)c1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0







W 1/2 ≤ 0.

(16)

However, the first term in (16) is positive because of the

positive definiteness constraint in (13) and the fact that W =
W ∗ ≥ 0, W 6= 0. Since α1 ∈ [0, 1], the second term is also

nonnegative, leading to a contradiction. Hence α2 ≥ α2. On

the other hand, α2 is always less than or equal to α2 since

the optimization problem (13) is less restrictive than (12).

Thus, α2 = α2.
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