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Abstract—This paper addresses the problem of robust identifica-
tion of a class of discrete-time affine hybrid systems, switched affine
models, in a set membership framework. Given a finite collection
of noisy input/output data and some minimal a priori information
about the set of admissible plants, the objective is to identify a suit-
able set of affine models along with a switching sequence that can
explain the available experimental information, while minimizing
either the number of switches or subsystems. For the case where
it is desired to minimize the number of switches, the key idea of
the paper is to reduce this problem to a sparsification form, where
the goal is to maximize sparsity of a suitably constructed vector
sequence. Our main result shows that in the case of /., bounded
noise, this sparsification problem can be exactly solved via convex
optimization. In the general case where the noise is only known to
belong to a convex set \/, the problem is generically NP-hard. How-
ever, as we show in the paper, efficient convex relaxations can be ob-
tained by exploiting recent results on sparse signal recovery. Sim-
ilarly, we present both a sparsification formulation and a convex
relaxation for the (known to be NP hard) case where it is desired to
minimize the number of subsystems. These results are illustrated
using two non-trivial problems arising in computer vision applica-
tions: video-shot and dynamic texture segmentation.

Index Terms—Hybrid systems, piecewise affine systems, set
membership identification, sparse signal recovery.

I. INTRODUCTION AND MOTIVATION

YBRID systems —systems characterized by the inter-
H action of both continuous and discrete dynamics— have
been the subject of considerable attention during the past
decade. These systems arise naturally in many different con-
texts, (e.g., biological systems, systems incorporating logical
and continuous elements, manufacturing, etc,) and, in addition,
can be used to approximate nonlinear dynamics. As a result
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of this research, an extensive body of results is now available
addressing issues such as controllability/observability, stability
analysis and control synthesis. However, applying these results
requires using an explicit model of the system under consider-
ation. While in some cases these models can be obtained from
first principles, many practical applications require identifying
the system from a combination of experimental data and some
a priori information. This has prompted a substantial research
effort devoted towards developing a framework for input/output
identification of hybrid systems. As a result, several methods
have been proposed addressing different aspects of the problem
(see the tutorial paper [1] for an excellent summary of the main
issues and recent developments in the field). While successful
in many situations, a common feature of these methods is
the computational complexity entailed in dealing with noisy
measurements: in this case algebraic procedures [2] lead to
nonconvex optimization problems, while optimization methods
lead to generically NP-hard problems, either necessitating the
use of relaxations [3] or restricted to small size problems [4].
Similarly, methods relying on probabilistic priors [5] also lead
to combinatorial problems, once again requiring the use of
relaxations in order to obtain computationally tractable algo-
rithms. An alternative approach is provided by clustering based
methods [6], [7]. Since these methods rely on identification
performed on local clusters, in order to work well, they require
both proximity of points corresponding to the same subsystem,
and “fair sampling” of each cluster, which places constraints
on the admissible input sequences. Further, the clustering step
entails a non—convex minimization that can potentially get
trapped in local minima.

Motivated by the difficulties noted above, in the first por-
tion of this paper we propose a new approach to the problem
of set membership identification of a class of hybrid systems:
switched affine models. Specifically, given noisy input/output
data and some minimal a priori information about the set of ad-
missible plants, our goal is to identify a suitable set of affine
models along with a switching sequence that can explain the
available experimental information, while minimizing either the
number of switches or the number of submodels. The key idea
of the proposed solution is to reduce the identification problem
to a sparsification form, where the objective is to minimize the
number of non-zero elements of a suitable constructed vector
sequence. The main result of the paper shows that in the case
where it is desired to minimize the number of switches under
£ bounded noise —a problem that arises in several practical ap-
plications including computer vision, medical image processing
and fault detection— the resulting sparsification problem can
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be exactly solved via convex optimization, without the need to
impose additional conditions, such as the Restricted Isometry
Property [8], [9]. In addition, we show that, if the switches are
identifiable from the available input/output data, then the pro-
posed algorithm converges to the true switching sequence as
the noise decreases towards zero. Here the difference with ex-
isting work on identifiability of hybrid systems [10] is the ex-
plicit focus on conditions for detecting switches. In the general
case where the noise is only known to belong to a convex set \/,
the associated sparsification problem is generically NP-hard.
However, as we show in the paper, efficient convex relaxations
can be obtained by exploiting recent results on sparse signal re-
covery based on /1 -norm minimization [8], [9]. Finally, we also
consider the case where it is of interest to minimize the number
of plants. While this problem is also known to be NP-hard, we
show that a convex relaxation based on sparsification works well
in practice, typically outperforming existing methods.

In the second part of the paper we illustrate these results using
two non-trivial problems arising in computer vision applica-
tions: segmentation of video sequences and of dynamic textures.
As shown there, the proposed techniques outperform existing
state-of-the-art algorithms.

II. PRELIMINARIES

Notation and Definitions

For ease of reference, the notation used in the paper is sum-
marized below:

R,Z set of real numbers, integers
X a vector in RV

lcll, = (Ziy faaf)'/? pnominRY, p € [1,00)
x|l = maxi<i<n |2 oo-norm in R

oo

a vector valued sequence
of length T" where each
x(t) € RN

£, norm of a vector
valued sequence,
L <p <oo l{x}l, =

(S lz) .
16 = it 1)

{yp-quasinorm = number
of non-zero vectors

in the sequence (i.e.,
cardinality of the set

{tlx(t) # 0,t € [1,TT})

I identity matrix of appropriate
dimension

{x(D)} iy {x}
{3,

oo

[{xHlo

In this paper we will consider switched autoregressive exoge-
nous (SARX) hybrid affine models of the form

u(t) = > a(oyt ﬂ+zam (t=i)+f(oen(t) (1)
i=1
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where u, y and 1) denote the input, output and noise, respectively,
and where t € [t,,T]. The discrete variable oy € {1,...,s}
—the mode of the system— indicates which of the s submodels is
active at time ¢. The time instants where the value of o, changes
are called discrete transitions or switches. These switches par-
tition the interval [to,T] into a discrete hybrid time set [11],
T = {Ii}ikzo, such that o, is constant within each subinterval
I; = [r;, 7] and different in consecutive intervals. In the sequel
we denote by 7; and 7/ the beginning and ending times of the
it" interval, respectively. Clearly, 7 satisfies

* Tp = to andr,’c = T,

e 7, <7 =741 — 1,
and the number of switches is equal to k. An equivalent repre-
sentation of (1) is

y(t) = p(oe) x(t) + n(t) )

where r(t) = [y(t — 1), ..., y(t — ng), w(t — 1), ...,
u(t — n.), 1]7 is the regressor vector and p(a;) = [a1(0y),

ln, (00),c1(04), ..., en(00), f(0¢)]T is the unknown
coefficient vector at time ¢. Note that if the initial condi-
tions are unknown, it is not possible to identify p(oy) for
t < max(ng,n.), even in the absence of noise. Thus, in the
sequel we will take ¢y = max(ng,,n.).

For notational simplicity, we begin by addressing first the
case of SISO systems and extend our results to the MIMO case
in Section IV-D.

III. PROBLEM STATEMENT

In this paper, we consider the problem of identifying SARX
hybrid affine models from experimental measurements cor-
rupted by noise. From a set-membership point of view, this
problem can be formally stated as follows:

Problem 1: [Consistency] Given input/output data over the
interval [to,T], and a priori information consisting of a set
membership noise description € A/, compact, convex, find
a coefficient vector p(o;) and an admissible noise sequence
n(t) € N such that (2) holds for all ¢ € [t,,T], or prove that
no such pair exists.

It is clear that this problem is not well-posed and has infinitely
many solutions. For instance, one can always find a trivial piece-
wise affine model with T'—t¢+ 1 submodels or one model with a
large order that perfectly fits the data. This situation can be par-
tially avoided by imposing upper bounds n,, and 7., on the order
of each of the terms on the right hand side of (1), e.g., ng < ny
and n. < n,, for some known n,, n,,. Still, even in this case the
problem admits multiple solutions. More interesting problems
can be posed by using the existing degrees of freedom to opti-
mize suitable performance criteria.

One such criterion is to minimize the number of switches (i.e.,
minimum k), subject to consistency. Practical situations where
this problem is relevant arise for instance in segmentation prob-
lems in computer vision and medical image processing, where it
is desired to maximize the size of regions (roughly equivalent to
minimizing the number of boundaries), and in fault-detection, in
cases where it is desired to minimize the number of false alarms.
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The formal statement of the identification problem with this cri-
terion is as follows:

Problem 2: [Minimum Number of Switches] Given input/
output data over the interval [to, 7], and a priori information
consisting of a convex set membership noise description A/ and
bounds n,, > n. and n, > n, on the order of the regressors,
find a hybrid affine model of the form (1) that is consistent with
the a priori information and that can explain the experimental
data with the minimum number of switches.

An alternative is to try to find the minimum number of sub-
models (i.e., minimum s) capable of explaining the data record.
This criterion, used in [3], leads to the following identification
problem:

Problem 3: [Minimum Number of Submodels] Given
input/output data over the interval [to,T], and a priori infor-
mation consisting of a noise description n € N and bounds
Ny, Ny on the regressor orders, find a hybrid affine model of the
form (1) with minimum number of submodels that is consistent
with the a priori information and experimental data.

IV. IDENTIFICATION WITH MINIMUM NUMBER OF SWITCHES
AS A SPARSIFICATION PROBLEM

In this section we address Problem 2 and show that it can be
reduced to a sparsification form, where the objective is to max-
imize the number of zero elements of a suitably defined vector
valued sequence. The starting point is to consider the sequence
of first order differences of the time varying parameters p(t),
given by

g(t) =p(t) —p(t+1). A3)

Clearly, since a non-zero element of this sequence corre-
sponds to a switch, the sequence should be sparse having only
k non-zero elements out of 1" — ¢g. Thus, with this definition,
Problem 2 is equivalent to the following (non—convex) sparsifi-
cation problem:

r;l(itr)l I{p(t) — p(t = 1)}l
st oyt)—r®)Tpt) eN Vi “

In the sequel, we consider two different situations depending
on the characterization of the noise set N: (i) The case where
N is aball in £, and (ii) the case where A is a general convex
set. The main result of Section IV-A shows that, in the case of
£+, bounded noise, the sparsification problem (4) can be exactly
solved via convex optimization, without the need to impose ad-
ditional conditions. In the case of general noise descriptions,
the problem is generically NP hard. However, as we show in
Section IV-C, a convex relaxation can be obtained using Lemma
2 in the Appendix. In this case, exact recovery is no longer guar-
anteed, unless additional conditions are satisfied. However, ex-
tensive experiments show that the convex relaxation works well
in practice.

A. A Greedy Algorithm for the ¢, Case

In this section we propose a computationally simple algo-
rithm for solving Problem 2 in the case where the noise term
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TABLE 1
OPTIMAL GREEDY ALGORITHM FOR PROBLEM 2.

Greedy Algorithm

k=0

to = max(ny, ny)
Tk = to

FOR i=ty: T

Solve the following feasibility problem in p:
F{ |yt)—r@t)Tp| <e Vte[n,i] }
IF F is infeasible
Set I, = [Tk,’i—l], k=k+1,and 7, =1
END IF
END FOR
Set Iy = [, T] and 7 = {L;}_,
RETURN 7 and k

is characterized in terms of its /., norm. This solution is moti-
vated by existing results in time series clustering showing that a
greedy sliding window algorithm [12] is optimal. As we show
below, similar ideas can be applied to Problem 2, leading to an
algorithm that entails solving a sequence of smaller linear pro-
grams in a greedy fashion.

Theorem 1: Let k* denote the number of switches in an op-
timal solution to Problem 2 (equivalently, to the sparsification
problem (4)) when the noise is characterized in terms of an /.,
bound: ||{n}||.c < €. Then the value k returned by the greedy
algorithm outlined in Table I coincides with the optimal £*.

Proof: Assume 7* = {I} }fzo is the discrete hybrid time
set corresponding to an optimal solution with k* switches. Let
T= {Ii}fzo and k be the pair of values returned by the greedy
algorithm. In order to establish that the proposition is true, it is
enough to show thatif r; € I ]* then 7/ > 'rj’»*. Then, an induction
step shows that, 7/ > 7/* Vi € {0,...,k*} implying k < k*.

Since 7* is optimal (hence feasible), p*(¢) is constant in each
subinterval I*. In particular, there exists p; such that for all
t € It, p*(t) = pj and |y(t) — r(t)"'p;| < e. When 7; € I7,
the same p; is a feasible solution of F in the (TJ'-*)th itera-
tion of the greedy algorithm since 7; € I} implies [7;, TJI*] -
I ]* Therefore, the algorithm will continue to the next iteration
without entering the if condition within the for loop, which im-
plies 7/ > 7/,

Next, we show by induction that for all 7 < k, there exists
j > i such that 7/ > 7/% hence 7/ > 7/™:

e Fori=0:19=15 €I} = 7, >7"

* Fori = m: Assume 3j > ms.t. 7, > 7/ .

e For 2 = m + 1: From the previous line and properties of

hybrid time sets, we have that 7,41 = 7/, + 1 > 7/, >

7" = 31 > j (or equivalently 3] > j + 1) s.t. 7pnq1 €

If =7} > 7" >7}," Since j > m implies j +1 >

m + 1, this proves the induction hypothesis.

Using the fact that T = 7 = 7,.” and the result of the
induction particularly at i = k leads to 74, > 71" = 7/." >
=k >k

Since by construction the result of the greedy algorithm is
feasible for problem 2 and £* is the minimum solution of the
problem, k* < k. Therefore, k* = k. |

Remark 1: By construction, the greedy algorithm pushes the
end points of each interval forward in time as much as possible
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(i.e., 7/ is as large as possible). Similarly, running the algorithm
backwards (i.e., = = T : ty) would push the start points of inter-
vals (equivalently, end points of previous intervals) backward in
time as much as possible. Therefore, running it once backwards
and once forwards, it is possible to bracket the true locations
of the switches. That is, 7;, the actual time at which the actual
switch occurs satisfies 729 < 7, < /"¢ where 7/ and

P2k denote the 7" switching time obtained running the algo-
rithm forward and backwards, respectively.

B. Identifiability of the Switches and Convergence of the
Greedy Algorithm

In this section, we address the issue of identifiability of the
switches from input/output data. We first present a necessary
and sufficient condition under which the switches can be ex-
actly identified in a noiseless setup. Later, we show that when
these identifiability conditions hold, the greedy algorithm given
in Table I finds the exact switching times for sufficiently small
noise levels (i.e., as € — 0).

Definition 1: Let 7 = {I;}_, be a hybrid time set corre-
sponding to a particular trajectory of a switched linear ARX
system. 7 is said to be causally identifiable if whenever o;_1 #
oy, it is possible to detect the change in the value of o; as soon
as y(t) is observed.

Definition 2: Given the current regressor vector r(t), two
submodels with parameter vectors p; and ps are one-step in-
distinguishable from r(t) if r(t)* (p1 — p2) = 0.

Next, we present a necessary and sufficient condition for a
switching sequence to be causally identifiable from input/output
data. To this effect, we need to introduce first the following
preliminary result, where, for notational simplicity, we defined
Ry = [r(to), v(to +1),...,x(t1)], Yio.r, = [y(to), y(to +
1),...,y(t)]" and Ny, o, = [n(to), n(to + 1),-..,n(t1)]".

Lemma 1: If v(7;y1) € range (R, /) then there exists a
constant y; such that r”(7;41) [pit1 — pi] = 7 for all pairs
(Pi, Pit1) satisfying

Y :R /pL

Ti,T;

Y(Tig1) = (Ti+1)pi+1~ (5)

Proof: Since r(7;41) € range (er,’) then r7(7;41) =

VTRZ:_ ., for some v # 0. Consider now two pairs (p;, Pi+1)
and (p;, pi+1) satisfying (5). Then

v (7i41) [Pit1 — D]
pi=v" [Rﬁ,ﬁﬁi -

r'(1i41) [Pig1 — Pi] —
=" (7i41) [Bi — RT P } =0,

where the last equality follows from the first equality in (5). l

Theorem 2: In the noise free case, 7 = {I; }k,o is causally
identifiable from input/output data if and only if the following
two conditions hold for all i:

v’ (7it1) [Piy1 — Pi] #0 (6)
r(r;4+1) Erange (RT“T;) . 7
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Proof:

Necessity: Clearly (6) is necessary for the switch to be
causally identifiable. To show that (7) is also necessary, assume
that it fails. Then r (nH)RJ- , = vT #£ 0, where RJ- L de-
notes a basis for the orthogonal complement of R, i Deﬁne

y(Tit1) — 7 (Tig1)pi

P=pi+t TE Ri;’ﬂ/v.

Simple algebra shows that p satisfies Y., .7 = R
y(Tig1) =

I pand
rZ(7;11)p. It follows that the model

y(t) =" (t)p ®)

can explain all the data in the interval [7;,7;+1], and thus the
switch is not causally identifiable from the input/output data
alone.

Sufficiency: Since r(r;41) € range (Rﬂ,T{) and
rT(7i41) [Piz1 — Pi] # 0, it follows, from Lemma 1, that
there does not exist a single p such that (8) holds for all
t € [, Ti+1]. Hence the switch is causally identifiable from the
input/output sequences {u, y}. |

Remark 2: The result above formalizes the intuition that a
switch is causally identifiable if and only if the two modes in-
volved are not one—step indistinguishable and no new modes of
the present model have been excited at the last time step (con-
dition (7)). In addition, it can be shown that conditions (6)—(7)
are equivalent to
RZ

TisTit1

] > rank[RE . )

TiyTit1

rank[Y

TiyTit1

However, since rank is fragile to arbitrarily small perturbations,
the former lead to a better approach for handling noise.

Theorem 3: If conditions (6)—(7) hold, then there exists a
noise level €y such that greedy algorithm correctly identifies the
hybrid time set 7 from the noisy trajectories, whenever the noise
level € is below ¢g.

Proof: In order to show that the greedy algorithm correctly

identifies the hybrid time set 7, we need to show that

|y(Ti1) = v(rip1)Tp| > e (10)
for all p such that
RZ:” ’p Y‘r ,T! + NT ,T! (11)
or, equivalently |r(Ti+1)Tpi+1 - r(Ti+1)Tp| >  2¢ for

all p that satisfy (11). From condition (7), it follows that

r(ri+1) = Ry, A for some A # 0, [[A|l2 finite, and
le(rig1)lls > ag, [|All,, where op  denotes the smallest
(non—zero) singular value of R, ... It follows that, for all
(p, P) that satisfy (11) we have 1

2(ri1)” (P=B)=ATR], , (p = P) =" (Np. - —N;, o).

Hence

<[z v/ (7i = Tig1)2e
|| r (i)l V(i

OR,

|1“(Ti+1)T (p—p)

TL+1>
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From (12) and the fact that (6) implies that
e(ris1) " Pis1 —r(mig) pil = v > 0, it follows
that, if the noise level € satisfies

IR, Vi

13)

€ < €, = min

C2 (||1‘(Ti+1)||2 \/m+g&)

then (10) holds for all 7; and hence all switches will be cor-
rectly detected by the greedy algorithm. Note that, since we are
working over finite horizons, €, > 0. |

It is important to note that in the case of /,,-norm bounded
noise, our results do not explicitly depend on the level of spar-
sity of the sequence p(¢) — p(t — 1). The greedy algorithm
finds the solution that would explain the data with minimum
number of switches even if the sequence p(t) — p(t — 1) is
not too sparse. Moreover, the solution found by the greedy al-
gorithm corresponds to the true switch sequence whenever the
conditions given in Theorem 2 and 3 hold. On the other hand, if
these conditions fail, no algorithm can causally identify the true
switches.

The following examples illustrate some nontrivial facts about
identifiability of the switches and provide further insight into the
results of this section.

Example 1: This example illustrates the fact that dwell-time
constraints are not necessary for identifiability of the switches.
Consider three autonomous systems (o; € {1, 2, 3}) of the form

Y = a1(0)Ye—1 + a2(0t)ye—2 + a3(0¢)ys—3

with
P1 = [a1(1), a2(1), a3(1)] = [=3,2,1]
111
= 2),a2(2),a3(2)|= |z, =, =
pr = (2 02(2). 032 = |3 3.5
P3 = [a1(3)7a2(3)7a3(3)] = [27 -1, 1]
1, tel,4]
and op=142, t=5
3, t=6
The trajectory corresponding to the initial conditions

yo = 0,y_1 = 7,y_o = —12,1is given by 2,1,1,1,1,2.
Thus, the rank condition (9) evaluated at ¢ = 6 yields

1 1 1 1 1 1 1
mnk{2 11 1]_rank[1 1 1]—}—1

which implies that it is possible to detect the switch from ¢t = 5
to t = 6 although the system remains in o; = 2 for only one
time instant.

Example 2: The goal of this example is to illustrate that noise-
less switch identifiability does not imply that mode switches
are identifiable under arbitrarily small noise. To this effect con-
sider a system with 2 submodels: the first corresponds to p; =
[1/3 1/3 1/3], and is active for t = 1,2. The second corre-
spondstops =[1 —1 2]andis active for t = 3. The trajec-
tory corresponding to the initial conditions r(1) = [1 1 1]
and no external input is given by y(1) = 1, y(2) = 1 and
y(3) = 2. In this case the associated matrices satisfy

1 1 11 1 1 1
rank |1 1 1 1| >rank|[1 1 1
2 1 1 1 1 1 1
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Hence the switch is causally identifiable. However, adding the
noise sequence 7(1) = €, n(2) = 0, n(3) = 0 leads to the
trajectory: y(1) = 1+ €, y(2) = 1+ ¢/3,y(3) = 2 — 2(¢/3).
In this case, for any € > 0 the corresponding matrices satisfy

1+¢€ 1 1 1 1 1 1
rank 1—1—2% 1+€ 1 1|{=rank| 1+e¢ 1 1
2—-5 145 1+4e 1 I+5 1+4e 1

Hence, the switch is not identifiable, regardless of how small e
is. This is due to the fact that in this case condition (7) fails since

r(3)=[1+¢/3 1+e¢ 1]T¢range([l-1|—e } ” )

C. The Case of General Convex Noise Descriptions

In the case of general noise descriptions 7 € A/, all samples
are coupled through the noise description. For instance, a noise
description of the form ||n]|, < €, p # o0, requires considering
all elements of the noise sequence at once. Thus, batch algo-
rithms that consider all available data must be used, as opposed
to the greedy one used in the /., case. As we show next, in this
case problem (4) can be relaxed to a convex optimization using
the tools described in the Appendix. The starting point is to de-
fine the new variables z(0) = p(0),z(t) = p(t)—p(t—1), t >
1. Further, without loss of generality, it can be assumed that
p(0) # 0, since p(0) = 0 corresponds to the pathological
case where the initial data consist purely of measurement noise.
Under these conditions, minimizing || {p(¢) — p(¢t — 1)} ||o and
Il {z(¢)} ||o leads to the same optimal sequence. Moreover, if the
noise description A is given in terms of a norm bound, then
the constraints in (4) can be expressed as ||Az + b||. < e,
where A is a matrix formed using the regressors r(¢) and b is a
vector formed by concatenating y(t¢). Thus, problem (4) can be
rewritten as

min

min {20}

st Az + Dbl <e (14)

which is in the standard form of a sparse recovery problem with
structured sparsity, similar to those in [13]-[15]. Indeed pro-
ceeding as in there, conditions can be developed guaranteeing
that minimizing an appropriate convex surrogate recovers the
sparsest solution [16]. For cases where these conditions do not
hold, from Lemma 2 in the Appendix, it follows that replacing
[I-llo by ||-]l1 yields the tightest convex relaxation of the ob-
jective. Further, a better heuristic can be obtained by adapting
to this case the iterative weighted /; relaxation proposed in
[17]-[19]. This requires solving, at each iteration, the following

convex program:
j : k
’LUt( )’Ut

t
Il <ve vt

|Az + D] <

minimize,, .

subject to
(15)

where wgk) = (vt(k) +6)71, vt(k) denotes the optimal solution
at the k" iteration, with w(®) = [1,1,...,1]7, and where & is a
(small) regularization constant. In the first iteration, this method
solves the standard /; -norm relaxation. Then at each subsequent
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iteration, it increases the weight wik)

vt(k)s, thus pushing these elements further towards zero. Note in
passing that, except in cases where the initial data consist purely
of measurement noise, then z(0) # 0. Thus, only the sequence
lz(t)|loo, t = 1, N needs to be sparsified which allows for
setting wy = 0 in (15).

Remark 3: Algorithm (15) requires solving m linear pro-
grams with (n, +n, +2) x (T — to + 1) variables and 2(n,, +
Ny + 2) x (T — to + 1) inequality constraints, where m is the
number of iterations required for convergence of the weighted
{1-norm relaxation, typically around 5. On the other hand, the
greedy algorithm requires solving (7" — ¢y + 1) linear programs
with only (n, + n, + 1) variables and at most 2(T" — to + 1)
inequality constraints (the worst case scenario is when a single
parameter value is feasible for the entire [to, T interval). Thus,
in cases where both algorithms are applicable (e.g., when the
noise is characterized in terms of its /., norm), the greedy algo-
rithm is preferable from a computational complexity standpoint.

associated with the small

D. Extension To Multi-Input Multi-Output Models

It is straightforward to extend the sparsity based identifica-
tion procedure with minimum number of switches criterion to
multi—input multi—output (MIMO) models. Consider the MIMO
switched ARX model with m,, inputs and m,, outputs

Y= Ailoult i)+ Y Ciloult — i)+ f(o) +n(0)

(16)
where y € R™v, u € R™+ are outputs and inputs, A; €
R™vX™y ;€ R™v*™u and f € R™v are coefficient ma-
trices, and n € R™v is the noise, respectively. It is possible
to solve for coefficient matrices in a similar manner as in (15).
Thus, only the following modifications are required: (i) defining
time varying coefficient matrices (i.e., A;(t), Ci(¢) and f(¢)),
(ii) forming p(t) € R™y ™™™y by stacking the elements
of the coefficient matrices at time ¢ into a column vector, and (iii)
replacing the regressor equation in (15) with the multivariate re-
gressor corresponding to(16).

E. Extension to Multidimensional Models

In this section we consider the identification of hybrid mul-
tidimensional systems (i.e., hybrid systems where the process
dynamics depend on more than one indeterminate). In partic-
ular, we consider systems that are governed by affine switched-
coefficient difference equations (ASCDEs). An n-dimensional
ASCDE (a generalization of standard linear constant-coefficient
difference equations) has the following form [20]:

Yt )
= Z Wyl (Ot 1t JY(EL = K1yt — Ky
(k1,..0skn)ERG
+ > hka (O e )ults = Fa, .t — En)
(k1,....kn)ERC
+f(0t1 ..... t,1)+77<t17"'7tn) (17)
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where y is the output; u is the input; 7 is noise; oy, ,..+, €

ybn

{1,..., s} is the discrete mode signal as before. R,, R. C Z"

to be identified.

In particular, 3-D models of this form in noise-free setup
were considered in [21] for spatiotemporal segmentation. Such
a model can be useful in approximating the behavior of a wave
traveling in an inhomogeneous space or images exhibiting re-
gions with different textures.

In the sequel, as a shorthand notation, we denote the indeter-
minate in vector form, i.e., t = [t1,...,t,] € Z". Let D C Z"
denote the domain over which experimental measurements are
collected. Characterizing the interior of the domain as

int(D)={teD|t—-keDVkeR,VkeR.} (18)
allows for defining the set of neighboring indices as the fol-
lowing set of unordered pairs:

I={{t,t}||t-t|], =1, and t,t €int(D)}. (19
In this context, a switch is defined between neighboring indices.
That is, we say that there is a switch whenever o, # o} for
{t, E} € T (analogous to the 1D case where switches are de-
fined between ¢ and t+1). A multidimensional hybrid “time” set
is a partition { P;} of int(D) such that within each part (where
we call the elements of partition as parts or segments) o is con-
stant and it is different between neighboring parts (P; and P;
are called neighboring parts if there exists {t./ t } € 7 such that
te PR and t € PJ)

As in the 1D case, identification of a system of the form (17)
is ill-posed since for example one can choose a partition where
each part consists of a single t. We are interested in finding a
partition with minimum number of switches (this corresponds
to minimizing the boundary of the segments in image segmenta-
tion problem). In order to minimize the number of switches, one
should consider sparsifying the following difference sequence:

g(i) =p(t) - p(t), {t.t} €T (20)
where
p(t) = [ak1 (Ut)v s 0k, (Ut)v Ck1(at)7 <y Cky,, (Ut)7 f(a't)]’
and ¢ = 1,...,|Z] is an index counting the elements of 7.
Then, the identification problem can be written as

min

[{e(@)}Hlo

s.t  Equation (17) andn e N. (21)
which can be solved, exactly as in the 1D case, using a weighted

/1 norm relaxation.

V. IDENTIFICATION WITH MINIMUM NUMBER OF SUBMODELS

In many cases of practical importance, it is of interest to
find an SARX model that explains the data with the minimum
number of submodels, rather than switches. For example, in
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some medical image processing problems the goal is to seg-
ment images in just two groups: healthy and diseased tissue.
Similarly, in activity recognition applications, it is of interest
to segment video clips into the minimum number of sub-ac-
tivities, bearing in mind that frames corresponding to the same
activity are not necessarily contiguous (e.g., a clip can consist
of a person alternating between just two activities). Finally, the
minimum number of submodels description provides an alter-
native for cases where the identifiability conditions of Theo-
rems 2 or 3 fail, but the system is a-priori known to switch
among a small number of submodels. The resulting optimiza-
tion problem is related to partitioning a system of linear equa-
tions into the minimum number of feasible subsystems (MIN
PFS problem [22]). Since it is well known that finding even an
approximate solution to the MIN PFS problem is NP-Hard, [22]
proposed a relaxation based on finding, at each step, a single
vector that renders the maximum number of equations feasible
(known as MAX FS problem). While this latter problem is still
NP-Hard, it can be approximately solved using a thermal relax-
ation [22] (also adopted in [3]). In this section, motivated by
the ideas in [3], [22], we provide an alternative solution to the
MAX FS problem by recasting it into a sequence of sparsifica-
tion problems. The main idea is to find one submodel at a time,
along with the associated parameter vector p, through the solu-
tion of a sparsification problem. This is accomplished by finding
a parameter vector p that makes [y(t) — r(t)"p| € N\ feasible
for as many time instants ¢ as possible. Equivalently, defining
g(t) = p(t)—p, the goal is to maximize sparsity of g(¢) leading
to the following optimization problem:

[{p(t) = B}l
st [y(t)—r(t)"'p(t)] EN Vi

min
t),p
(22)

Then, we can eliminate the time instants ¢ for which g(¢) is
zero, and solve the same problem with the rest of the ¢’s until
all data points are clustered. The number of times (22) is solved
gives an upper bound on the minimum number of submodels
s. Combining this idea with a refinement step similar to the
one proposed in [3] to re-estimate parameter values and reas-
sign, if needed, data points, leads to the overall algorithm listed
in Table II, where ||.||o is (approximately) minimized by mini-
mizing a weighted /; norm surrogate.

Remark 4: Counterexamples are available where our algo-
rithm overestimates the number of systems since MIN PFS and
a sequence of MAX FS problems are not, in general, equiva-
lent. Due to its greedy nature, MAX FS tends to assign as many
points as possible to the parameters found earlier, possibly re-
sulting in the later need to use additional parameter values in
order to explain unassigned data points. Nevertheless, consis-
tent numerical experience shows that MAX FS is a good alter-
native for MIN PFS. A geometric intuition as to under which
conditions solving a sequence of MAX FS problems is indeed
optimal for the MIN PFS problem can be found in [22]. It is
worth mentioning that our alternative method for solving MAX
FS, based on a weighted ¢/; minimization, works, in general,
better than the thermal relaxation of [22] and [3]. This is illus-
trated in Section VI using a large number of random instances
of Problem 3.
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TABLE II
ALGORITHM FOR PROBLEM 3.

Algorithm for Minimum # of Submodels
to = max(ny, ny)
N = {to,..., T}

=0
WHILE N1 # 0
Letl=1+1

Find P; by solving the re-weighted ¢; optimization:

: (k)
min,, p)p D Wi %

subject to  [|p(t) — Pl < 2
[v(t) —x(®)"P()] €N
vVt e Nl
where w}m = (zj(k) +6)~1 are weights with
z](-k) the arguments of the optimal solution in
Kk iteration and w(® = [1,1,...,1]T; and §
is the regularization constant.
Leti=1
WHILE ¢ <[
Let Ky = {t € N;: [y(t) —r(t)Tp(t)] e N}
IF #K; > #K;
Letp;=p;and [ =1
END IF
Leti=i+l
END WHILE

Let K; = {t € Ni : [y(t) —r(t)Tp(t)] e N'}
Let Nl+1 =N, \Kl

END WHILE

RETURN s =1/ and K;,i=1,...,s

VI. EXAMPLES

In this section, we provide simulation examples demon-
strating the effectiveness of the proposed algorithms.

Example 3: In this example, we consider input/output data
generated by a hybrid system that switches among two ARX
submodels. For ¢ € [1,25] U [51, 75], the submodel

y(t) =0.2y(t — 1) + 0.24y(t — 2) + 2u(t — 1) + n(¢t)
is active; and for ¢ € [26, 50] U [76,100],
y(t) = —1.dy(t — 1) — 0.53y(t — 2) + u(t — 1) + n(t)

is active with ||n|| . = 0.5. The goal here is to identify a model
that explained the experimental data record with the fewest pos-
sible number of switches. Fig. 1 compares the performance of
sparsification-based (both the ¢;-based algorithm (4) and the
greedy algorithm of Table I) against the algebraic method and
the bounded error method. As shown there, the sparsification
based methods correctly estimated the parameters and number
of switches, while the other two failed to do so. The running
times for /1 -based, greedy, algebraic and bounded error methods
are 5.9, 40.5, 1.1 and 17.9 seconds respectively. Additional ex-
amples illustrating the use of sparsification to find the minimum
number of switches are given in Section VII.

For this example, ¢, in (13) was found to be 0.3136 which
corresponds to 4.15% of the maximum absolute value of the
output y(#). Thus, in this case (13) does not hold, since the noise
level € = 0.5 > ¢p. Nevertheless, the greedy algorithm was
able to correctly detect the switches. This is due to the fact that
the analysis in Section IV-B is worst-case, in the sense that, for
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Fig. 1. True and estimated parameter sequences for parameter a, () for Example 3.
all noise values below ¢, = 0.3136, the greedy algorithm is ' ' ' '
guaranteed to find the correct switches. However, this analysis 1r Sparsification 1
e . . = = Bounded error
does not rule out the possibility of the algorithm finding out the = = = Algebraic
correct switches for noise levels above ¢, for noise sequences
other than the worst—case one, as is the case here. g 0.8y |
. . . L
Example 4: This example considers the problem of esti- ¢ o]
mating the minimum number of subsystems and investigates the é 06k : o - |
effects of noise level on algorithm performance. The data used .* s
corresponded to the trajectories of 100 randomly generated & .* g e
SARX models of the form § 0.4 Il 1
£ g
y(t)=a1(oe)y(t—1)+az(oe)y(t—2)+cr(o)ult—1)+n(t) |
0.2F 1
(23)
with 0 i i i
0 0.1 0.2 0.3 0.4 0.5
1, te [17 60] Noise Level, Imll_
or=92 te€ [61’ 120] Fig. 2. Median of parameter estimation error A,, versus noise level €. Error
3, te [1217 180] bars indicate the median absolute deviation.

where for all ¢ € {1,2,3}, ¢1(4) is a sample from a zero mean
unit variance normal distribution, a;(7) and as(¢) are chosen
such that the complex conjugate poles of the i*” submodel are
distributed in 0.5 < ||z|| < 1 with uniform random phase and
magnitude, and 7)(¢) is an iid noise term uniformly distributed in
[—e, €]. For each of these systems, the number of submodels was
estimated by solving the minimum submodels problem with our
method and the bounded-error method; and by approximating

the rank of an appropriate matrix obtained from data as proposed
in [23] for the algebraic method. The former two methods give
upper bounds of true value s = 3, whereas the latter estimate
depends on the threshold chosen to calculate the rank and could
be lower than the true value. The same experiment was repeated
for different noise levels. Results on these experiments are sum-
marized in Fig. 2 and Table III.
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Results for 3 submodels when [nl| = 0.1
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Results for 3 submodels when ||'|"[||°°S|:| 5
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Fig. 3. Each histogram shows the frequency of estimated number of submodels for different noise levels. (a) e = 0.15, (b) e = 0.5. The true number of submodels

iss = 3.

TABLE III
MINIMUM NUMBER OF SUBMODEL ESTIMATION ERROR STATISTICS FOR
DIFFERENT NOISE LEVELS.

TABLE V
MEAN CPU TIMES OVER 100 RUNS IN EACH CASE (S:SECOND,
MS:MILLISECOND).

Noise Level ¢ Absolute Error Sparsification | Bounded-Error | Algebraic Noise Level ¢ | Sparsification | Bounded-Error | Algebraic
Mean 0.84 5.64 0.87 0.1 205s 51s 18ms
Standard deviation 1.36 2.03 1.02
0.1 Median 1 5 1 0.5 76s 26s 39ms
Median absolute deviation 1 1 1
Mean 1.93 4.07 2.18
. Standard deviation 1.65 1.58 1.25 1 d fl b del ith 1 f:
0.5 Median 5 4 5 also generate superfiuous submodels wit parameter values 1ar
Median absolute deviation 1 1 1 from the true values.
Finally, Table V summarizes the mean computation time for
TABLE IV this set of simulations. As show there, algebraic method is the

NORMALIZED PARAMETER IDENTIFICATION ERROR STATISTICS FOR THE
MINIMUM NUMBER OF SUBMODELS PROBLEM WITH DIFFERENT NOISE LEVEL.

Noise Level € Ay Sparsification | Bounded-Error | Algebraic
Mean 0.11 1.72 0.79
0.1 Standard deviation 0.18 10.90 4.30
. Median 0.06 0.25 0.15
Median absolute deviation 0.02 0.10 0.08
Mean 0.41 0.61 1.05
0.5 Standard deviation 0.27 0.50 1.43
: Median 0.35 0.49 0.70
Median absolute deviation 0.15 0.12 0.28

Next we consider the parameter estimation accuracy for the
same 100 random systems. To this end, the following normal-
ized parameter identification error measure is defined:

T N
1 Ip(ot) — P(64)ll,
A, = E )
T —to+ 1t:t0 (

24
A &9

The parameter estimation results are summarized in Fig. 3
and Table IV. As shown there, the sparsification—-based method
outperformed both the bounded-error and algebraic procedures.
While all methods proved considerably robust to noise in es-
timating the number of submodels, segmentation quality and
parameter identification performance degraded significantly for
the algebraic method as the noise level increased. On the other
hand, sparsification was the most robust in terms of these perfor-
mance criteria. The bounded-error method performed relatively
poorly when estimating the number of submodels. Even though
it clustered most of the data in the largest three submodels, it

fastest. However, due to scalability issues that will be illus-
trated in Example 5, it applicability is restricted to relatively
small data sets. Among bounded-error and sparsification, there
is a trade-off between accuracy and computation time. It is also
worth mentioning that it is not possible to solve problems of
this size on the same machine using mixed integer programming
(MIP) [4] since its complexity grows exponentially.

Example 5: This large scale example again considers the
minimum number of systems problem and investigates the scal-
ability of the different algorithms. The data was generated using
a switched linear system with three submodels each having eight
poles and four zeros. The mode signal was set to

1, te[1,1000]
or =1 2, te[1001,2000]
3, t € [2001,3000]

For this example, the algebraic method failed due to insuf-
ficient memory since its complexity grows exponentially with
the number of submodels. The running times for the sparsifica-
tion method and bounded error methods were 74 minutes and
54 minutes, respectively.

Example 6: Textured Image Segmentation: The goal of this
example is to illustrate the use of the proposed method to seg-
ment textured images. To this effect we combined two different
textures to generate the two images shown in Fig. 4. In order to
recast the segmentation problem into a hybrid system identifica-
tion form, the grey-scale values of the pixels in each image were
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Fig. 4. Results for detecting switches (i.e., estimating &, ;) in a texture image.

Left: Original image. Middle: GPCA segmentation. Right: Segmentation via
proposed method.

modeled using the following 2D autonomous linear switched-
coefficient difference equation:

>

(kz,ky)ERG

I(.’L’,y) = akm7k;,(az7y)l($ - ka:7y - ky) + 77(«'171/)

(25)
where I(x,y) denotes the intensity at pixel location (z,y) and
the support region R, was chosen according to the fundamental
period of the textures. Fig. 4 shows the segmentation obtained
when using our algorithm to minimize the number of switches,
which in this case corresponds to minimizing the length of the
boundaries between regions. As illustrated there, the proposed
algorithm outperforms GPCA.

VII. APPLICATIONS: SEGMENTATION OF VIDEO SEQUENCES

In this section we illustrate the application of the proposed
identification algorithm to two non-trivial problems arising in
computer vision: segmentation of video-shots and dynamic tex-
tures. Here the goal is to detect changes, e.g., scenes or activi-
ties in the former, texture in the latter, in a sequence of frames.
Given the high dimensionality of the data, the starting point is
to perform a principal component analysis (PCA) compression
[24] to obtain low dimensional feature vectors y(t) € R? rep-
resenting each frame ¢. Specifically, each N, x N, size frame
was represented by a vector f(¢) € R™=™Nv obtained by first con-
verting it to gray scale and vectorizing. Next, the sample mean
was found and used to construct the mean subtracted data ma-
trix F = [f(¢tp) — m,...,f(T") — m]. Finally, low dimensional
representations [y(to), ...,y (T)] = UT ,F of the frames were
obtained by performing a singular value decomposition F =
UDVT followed by a projection of the data onto the subspace
spanned by the first d columns of U.

The next step is to assume, motivated by [25]-[28], that each
component y;(.) of the feature vector y(t) evolves indepen-
dently, according to an unknown multi-output model of the form
described in Section I'V-D

50 = Y syt = D+, @l < e. 26)

Finally, defining g(t) = [p1(t)—p1(t+1), ..., pa(t) —pa(t+
1)] allows to use the (minimum number of switches) sparsifica-
tion-based approach to segment a given sequence according to
the non-zero elements in the corresponding sequence ||g(.)]|oo-
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A. Video-Shot Segmentation

The goal here is to detect scene changes in video sequences.
These changes can be categorized into two: (i) abrupt changes
(cuts), and (ii) gradual transitions, e.g., various special effects
that blend two consecutive scenes gradually. Fig. 5 shows
the ground truth and the segmentations obtained using the
proposed method (using 3"¢ order models and d = 3) ,
GPCA [25], a histogram based method (bin to bin differ-
ence (B2B) with 256 bin histograms and window average
thresholding [29]), and an MPEG-based method [30] for three
sample sequences, mountain.avi, family.avi and fisherman.mpg
available from http://www.open-video.org . A quantitative
measure of the quality of a given segmentation S can be
obtained using the Rand index [31], defined in this case as
RI = (Ni,1+4 Noo)/(Ni1+ Noo+ Nio+ Noy). Here
Ny,1 denotes the number of pairs of points that belong to the
same segment in both S and the ground truth (GT'), Ng is
the number of pairs of points that belong to different segments
in both § and GT, and Ny (/N1,0) denotes the number of
pairs of points that belong to the same segment in G'T' (S) but
were assigned to different segments in S (GT). Intuitively, this
index measures the ratio of the number of agreements between
the given segmentation S and the ground truth, to the number
of agreements plus disagreements. Hence, RI = 1 indicates
perfect clustering. A comparison of the performance of the
four methods in terms of the Rand index is given in Table VI.
Since the frames corresponding to gradual transitions do not
belong to any cluster, these frames were excluded from the
Rand index calculation. As an additional quantitative criterion,
Table VII summarizes switch detection rates. As illustrated
by these examples, the proposed method has slightly better
performance than MPEG (the runner up), without the need
to manually adjust seven parameters one of which, length of
the transition, is very sensitive. B2B works well in finding
cuts when there is a sudden change in color distribution as
in the fisherman sequence, but fails otherwise. On the other
hand, our method works well for different types and lengths of
transitions. If the length of a gradual transition is compatible
with the length of the segments (see, for instance, the first
transition in family sequence), it might identify the transition as
a separate segment since it is no longer possible to account for
the dynamics of the transition within the noise level. It is also
worth emphasizing that both, the B2B and the MPEG methods,
rely on user adjustable parameters (two in the B2B case, seven
for MPEG). In our experiments we adjusted these parameters,
by trial and error, to get the best possible results. Hence the re-
sulting comparisons against the proposed sparsification method
correspond to best-case scenarios for both MPEG and B2B.

B. Dynamic Textures

Next, we consider three challenging sequences generated
using the dynamic texture database http://www.svcl.ucsd.edu/
projects/motiondytex/ synthdb/ . In the first one, we appended
in time one patch from smoke to another patch from the same
texture but transposed. Therefore, both sequences have the same
photometric properties, but differ in the main motion direction:
vertical in the first half and horizontal in the second half of the
sequence. For the second example, we generated a sequence
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Fig. 5. Video Segmentation Results. Left Column: Ground truth segmentation (jumps correspond to cuts and slanted lines correspond to gradual transitions).
Right Column: Changes and segments detected with different methods.

TABLE VI
RAND INDICES FOR VIDEO-SHOT SEGMENTATION.
Sparsification | MPEG | GPCA B2B
e e mountain 0.9965 0.9816 | 0.9263 | 0.5690
Y = — T family 0.9946 0.9480 | 0.8220 | 0.9078
— fisherman 0.9955 0.9593 | 0.8966 | 1.0000

Fig. 6. Sample dynamic texture patches. Top: smoke, Bottom: river.
In the third example, we generated a sequence by using the
river sequence with forward dynamics and subsampling the
of river by sliding a window both in space and time (by going frames in the later part of the sequence. Hence, the river flow
forward in time in the first half and by going backward in the twice as fast in the second half of the clip. Sample frames from
second). Hence, the dynamics due to river flow are reversed. each sequence are shown in Fig. 6. For these sequences both
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TABLE VII
SWITCH DETECTION RATES FOR VIDEO-SHOT SEGMENTATION. NS: TOTAL NUMBER OF SWITCHES IN THE SEQUENCE, TD: TRUE DETECTION, FA: FALSE ALARM,
RD: REDUNDANT DETECTION (I.E., EXTRA SWITCHES FOUND ON GRADUAL TRANSITIONS).
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Sparsification MPEG GPCA B2B
NS | TD | FA | RD | TD | FA | RD | TD | FA | RD | TD | FA | RD
mountain 4 4 0 0 4 0 0 4 8 12 1 0 0
family 5 5 0 1 5 0 0 5 6 5 4 2 1
fisherman 4 4 0 0 4 1 0 4 51 0 4 0 0
Ground truth Segmentation for Transposed Dynamics Ground truth Segmentation for Reversed Dynamics Ground truth Segmentation for Slow-Fast Dynamics
1 1 1
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Fig. 7. Results for detecting change in dynamics only. Left: Smoke sequence concatenated with transposed dynamics. Center: River sequence concatenated with

reversed dynamics. Right: River sequence with slow and fast dynamics.

histogram and MPEG methods failed to detect the cut since
the only change is in the dynamics. On the other hand, the
proposed method (using 5" order models and d = 3) correctly
segmented all sequences. These results are summarized in
Fig. 7.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we considered the problem of identifying
switched linear systems from input/output data and minimal
a priori assumptions on the order of the subsystems and the
magnitude of the noise. Our main result shows that, when an
explanation with the minimum number of switches is sought
(a problem relevant for instance in the context of segmenta-
tion), and /., bounded noise, the problem reduces to a convex
optimization. In the case of general noise descriptions, the
problem is no longer convex, but it can be recast into a sparsi-
fication form and efficiently solved using recently introduced
relaxations. A similar idea can be also used when minimizing
the number of systems. However, in this case, while usually
working well in practice, the approach is suboptimal. The
advantages of the proposed techniques over existing methods
were illustrated using both academic examples and non-trivial
segmentation problems arising in computer vision. As shown
there, while most existing methods perform well in noiseless
scenarios, sparsification—based techniques are substantially
more robust to noise. Research currently under way seeks to
address the issues of suboptimality of the approach for identi-
fying the minimum number of systems consistent with the data,
and to extend these approaches to classes of switched nonlinear
systems, such as Hammerstein and Wiener. These problems are
relevant to application domains such as computer vision where
the high dimensionality of the data requires the use of, often
non-linear, dimensionality reduction methods.

APPENDIX
BACKGROUND RESULTS ON SPARSIFICATION

In this appendix, we present the background results on the
problem of sparse signal recovery [8], [9], [32] that motivate

the approach pursued in the paper. This problem can be stated
as: given some linear measurements y = Ax of a discrete signal
x € R™ where A € R™*™, m < n, find the sparsest signal x*
consistent with the measurements. In terms of the ¢ quasinorm
(i.e., || - ||o satisfies all of the norm axioms except homogeneity
since ||ex|lo = ||x||, for all non-zero scalars ¢), this problem
can be recast into the following optimization form:

min ||z||, subject to:y = Ax. (27)

It is well known that the problem above is at least generically
NP-complete ([33], [34]). Two fundamental questions in sparse
signal recovery are: (i) the uniqueness of the sparse solution,
(ii) existence of efficient algorithms for finding such a signal. In
the past few years it has been shown that if the matrix A sat-
isfies the so-called restricted isometry property (RIP), the solu-
tion is unique and can be recovered efficiently by several algo-
rithms. These algorithms fall into two main categories: greedy
algorithms (e.g., orthogonal matching pursuit [35]-[37]) and
£1-based convex relaxation (also known as basis pursuit [8], [9],
[32]). In this paper we follow the latter approach which is based
on replacing ||x||, in the optimization above by ||x||1. The idea
behind this relaxation is the fact that the ¢; norm is the convex
envelope of the £y norm, and thus, in a sense, minimizing the
former yields the best convex relaxation to the (non-convex)
problem of minimizing the latter. Morever, as shown in [8], [9],
[32], this relaxation is stable and robust to noise. That is, even
when only noisy linear measurements are available, if RIP holds
for A, which is true with high probability for random matrices,
recovery of the correct support of the original signal and approx-
imating the true value within a factor of the noise are possible
by solving

min ||z||; subject to: ||y — Ax|| < e (28)

where € is a bound on the norm of noise. This formulation
arises naturally in many engineering applications such as mag-
netic resonance imaging, radar signal processing and image pro-
cessing. Moreover, existence of efficient algorithms to solve this
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problem led to the compressed sensing framework which en-
abled speeding up signal acquisition considerably since the orig-
inal sparse signal can be reconstructed using relatively few mea-
surements. We refer the interested reader to the recent survey
paper [38] for a comprehensive treatment of the subject.

The results above are not directly applicable to Problems (4)
and (22) since these deal with sparsification problems in the
space of vector valued finite sequences

s = {0, 180 € w7}

rather than with vectors x € RY. This change requires ex-
tending the theory behind the ¢;-norm relaxation to the space
S. To this effect, begin by noting that the number of non-zero
elements (i.e., vectors) in {g} € S (i.e., ||{g}||,) is the same
as in [[gll, where & — [lg(t)l],... llg(T)]" € RT=t+1,
This suggests the use of ||g||; = >_, ||g(¢)|| as a convex objec-
tive function with an appropriate choice of the norm ||g(¢)]|. In
particular, we will use ||g(¢)]| .. The theoretical support for this
intuitive choice is provided next.

Lemma 2: The convex envelope of the £p-norm of a vector
valued sequence on ||{g}|| ., < 1is given by

1{&}Hlo.cno = D 18#)]| - (29)
t

Proof: In order to prove the lemma, we need some prelim-
inary results from convex analysis. For a function f : C — R,
where C C R™, the conjugate f* is defined as

f*(y) = sup ((z,y) — f(@))-
zeC

Under some technical conditions (see [39] Theorem 1.3.5),
which are met here, the conjugate of the conjugate (i.e., f**)
gives the convex envelope of the function f.

The proof proceeds now along the lines of that of the Theorem
1 in [40], by computing ||z||X*, = € S. The isomorphism 7
from S to R™T—%+1) which simply stacks the elements of
the sequence into a column vector, naturally induces an inner

product on S as (z,y) = (Z(x),Z(y)) = S, =T (t)y(t). For

f:S — R, f(z) = ||z||,, the conjugate function in C =
|2l < 11is
y) = sup {{z,y) - f(z)}
llzll . <1
=> Iyl — Al (30)
i€A

where A = {j: |ly(5)ll; > 1, j € {1,2,...,T}} is an index
set and |A| is its cardinality.
7(2)

= sup {(y,z) — f*(y)}

yeS

=sup ¢ > (i) 2(0) + Y y(i)T2(0) =Yy (i)l +A
YES iea igA ieA

= sup ¢ > y(i)" [2() —sign(y(i)]+ Y y(i) 2 (i) +|A
YES iea igA

€29
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Here we consider two cases:

1) If ||z||, > 1, it is possible to choose y such that the first
term in (31) grows unboundedly and f**(z) — oo. So the
domain of f**is ||z, < 1.

2) If ||z|| . < 1, the first term in the last line of (31) is nonpos-
itive. So to maximize the first term, y(7) values should be
chosen small in absolute value for € \. Keeping in mind
the bounds imposed on y(z) values by )\, the maximum
value of the second termis ;4 ||2(2)||. Similarly,

sup ¢ > y(i)" [2(i) — sign(y(i))] + |\l
Y liea
=Y 2l =0+ M =D 11200l -
i€A i€X
Hence,
(=) = Z [12() | o - (32)
|

A related line of results recently appeared in compressed
sensing/sparse signal recovery community for structured spar-
sity (see for instance [13]-[15]).
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