634

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 3, MARCH 2012

A Sparsification Approach to Set Membership
Identification of Switched Affine Systems

Necmiye Ozay, Member, IEEE, Mario Sznaier, Member, IEEE, Constantino M. Lagoa, Member, IEEE, and
Octavia |I. Camps, Member, IEEE

Abstract—This paper addresses the problem of robust identifica-
tion of a class of discrete-time affine hybrid systems, switched affine
models, in a set membership framework. Given a finite collection
of noisy input/output data and some minimal a priori information
about the set of admissible plants, the objective is to identify a suit-
able set of affine models along with a switching sequence that can
explain the available experimental information, while minimizing
either the number of switches or subsystems. For the case where
it is desired to minimize the number of switches, the key idea of
the paper is to reduce this problem to a sparsification form, where
the goal is to maximize sparsity of a suitably constructed vector
sequence. Our main result shows that in the case of £, bounded
noise, this sparsification problem can be exactly solved via convex
optimization. In the general case where the noise is only known to
belong to a convex set A/, the problem is generically NP-hard. How-
ever, as we show in the paper, efficient convex relaxations can be ob-
tained by exploiting recent results on sparse signal recovery. Sim-
ilarly, we present both a sparsification formulation and a convex
relaxation for the (known to be NP hard) case where it is desired to
minimize the number of subsystems. These results are illustrated
using two non-trivial problems arising in computer vision applica-
tions: video-shot and dynamic texture segmentation.

Index Terms—Hybrid systems, piecewise affine systems, set
membership identification, sparse signal recovery.

. INTRODUCTION AND MOTIVATION

YBRID systems —systems characterized by the inter-

action of both continuous and discrete dynamics— have
been the subject of considerable attention during the past
decade. These systems arise naturally in many different con-
texts, (e.g., biological systems, systems incorporating logical
and continuous elements, manufacturing, etc,) and, in addition,
can be used to approximate nonlinear dynamics. As a result
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of this research, an extensive body of results is now available
addressing issues such as controllability/observability, stability
analysis and control synthesis. However, applying these results
requires using an explicit model of the system under consider-
ation. While in some cases these models can be obtained from
first principles, many practical applications require identifying
the system from a combination of experimental data and some
a priori information. This has prompted a substantial research
effort devoted towards developing a framework for input/output
identification of hybrid systems. As a result, several methods
have been proposed addressing different aspects of the problem
(see the tutorial paper [1] for an excellent summary of the main
issues and recent developments in the field). While successful
in many situations, a common feature of these methods is
the computational complexity entailed in dealing with noisy
measurements: in this case algebraic procedures [2] lead to
nonconvex optimization problems, while optimization methods
lead to generically NP-hard problems, either necessitating the
use of relaxations [3] or restricted to small size problems [4].
Similarly, methods relying on probabilistic priors [5] also lead
to combinatorial problems, once again requiring the use of
relaxations in order to obtain computationally tractable algo-
rithms. An alternative approach is provided by clustering based
methods [6], [7]. Since these methods rely on identification
performed on local clusters, in order to work well, they require
both proximity of points corresponding to the same subsystem,
and “fair sampling” of each cluster, which places constraints
on the admissible input sequences. Further, the clustering step
entails a non-convex minimization that can potentially get
trapped in local minima.

Motivated by the difficulties noted above, in the first por-
tion of this paper we propose a new approach to the problem
of set membership identification of a class of hybrid systems:
switched affine models. Specifically, given noisy input/output
data and some minimal a priori information about the set of ad-
missible plants, our goal is to identify a suitable set of affine
models along with a switching sequence that can explain the
available experimental information, while minimizing either the
number of switches or the number of submodels. The key idea
of the proposed solution is to reduce the identification problem
to a sparsification form, where the objective is to minimize the
number of non-zero elements of a suitable constructed vector
sequence. The main result of the paper shows that in the case
where it is desired to minimize the number of switches under
£ bounded noise —a problem that arises in several practical ap-
plications including computer vision, medical image processing
and fault detection— the resulting sparsification problem can
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be exactly solved via convex optimization, without the need to
impose additional conditions, such as the Restricted Isometry
Property [8], [9]. In addition, we show that, if the switches are
identifiable from the available input/output data, then the pro-
posed algorithm converges to the true switching sequence as
the noise decreases towards zero. Here the difference with ex-
isting work on identifiability of hybrid systems [10] is the ex-
plicit focus on conditions for detecting switches. In the general
case where the noise is only known to belong to a convex set NV,
the associated sparsification problem is generically NP-hard.
However, as we show in the paper, efficient convex relaxations
can be obtained by exploiting recent results on sparse signal re-
covery based on £;-norm minimization [8], [9]. Finally, we also
consider the case where it is of interest to minimize the number
of plants. While this problem is also known to be NP-hard, we
show that a convex relaxation based on sparsification works well
in practice, typically outperforming existing methods.

In the second part of the paper we illustrate these results using
two non-trivial problems arising in computer vision applica-
tions: segmentation of video sequences and of dynamic textures.
As shown there, the proposed techniques outperform existing
state-of-the-art algorithms.

Il. PRELIMINARIES

Notation and Definitions

For ease of reference, the notation used in the paper is sum-
marized below:

R, set of real numbers, integers
x a vector in RN
. n 1/p . in N
x = (X0, @) p-norm in RY, p € [1,00)
X = axi i on & oo-norm in RN

a vector valued sequence
of length T" where each
x(t) € RN

£, norm of a vector
valued sequence,
1 <p<oo {x} » =

(=, =0 2)"
B = x()

1 + T

{x(O} 1 {x}

{x},

{x} £ -quasinorm = number
of non-zero vectors

in the sequence (i.e.,
cardinality of the set

{tx(t) # 0.t € [L,T]))

I identity matrix of appropriate
dimension

In this paper we will consider switched autoregressive exoge-
nous (SARX) hybrid affine models of the form

Na Ne

y() =Y ai( Jy(t=) D i Dult=) f( ) n(t) L)

i1 i1
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where u, y and n denote the input, output and noise, respectively,
and where t € [t,,T]. The discrete variable ; € {1,..., }
—the mode of the system- indicates which of the  submodels is
active at time ¢. The time instants where the value of ; changes
are called discrete transitions or switches. These switches par-
tition the interval [¢ ,T] into a discrete hybrid time set [11],
T ={ l}f , such that , is constant within each subinterval
. = [1:, 7/] and different in consecutive intervals. In the sequel
we denote by ; and 7/ the beginning and ending times of the
t interval, respectively. Clearly, 7 satisfies
e 7 =t and7, =T,
e 7, <7 =Ti41— 1,
and the number of switches is equal to k. An equivalent repre-
sentation of (1) is

n(t) )

where (¢t) = [yt — 1), ..., y(t — na), u(t — 1), ...,
u(t —n ), 17 is the regressor vector and p( ;) = [a1( ),
cosn, (1) 1 4), s (), fC 9)]F is the unknown
coefficient vector at time ¢. Note that if the initial condi-
tions are unknown, it is not possible to identify p( ;) for
t < ax(na,n ), even in the absence of noise. Thus, in the
sequel we will take t = ax(n.,n ).

For notational simplicity, we begin by addressing first the
case of SISO systems and extend our results to the MIMO case
in Section IV-D.

I1l. PROBLEM STATEMENT

In this paper, we consider the problem of identifying SARX
hybrid affine models from experimental measurements cor-
rupted by noise. From a set-membership point of view, this
problem can be formally stated as follows:

Problem 1: [Consistency] Given input/output data over the
interval [¢ , T, and a priori information consisting of a set
membership noise description n € A/, compact, convex, find
a coefficient vector p( ;) and an admissible noise sequence
n(t) € N such that (2) holds for all ¢ € [t,,T], or prove that
no such pair exists.

Itis clear that this problem is not well-posed and has infinitely
many solutions. For instance, one can always find a trivial piece-
wise affine model with T'—¢ 1 submodels or one model with a
large order that perfectly fits the data. This situation can be par-
tially avoided by imposing upper bounds n,, and »  on the order
of each of the terms on the right hand side of (1), e.g., n, < ny
andn < mn forsome known n,,n . Still, even in this case the
problem admits multiple solutions. More interesting problems
can be posed by using the existing degrees of freedom to opti-
mize suitable performance criteria.

One such criterion is to minimize the number of switches (i.e.,
minimum k), subject to consistency. Practical situations where
this problem is relevant arise for instance in segmentation prob-
lems in computer vision and medical image processing, where it
is desired to maximize the size of regions (roughly equivalent to
minimizing the number of boundaries), and in fault-detection, in
cases where it is desired to minimize the number of false alarms.
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The formal statement of the identification problem with this cri-
terion is as follows:

Problem 2: [Minimum Number of Switches] Given input/
output data over the interval [t , T, and a priori information
consisting of a convex set membership noise description A and
bounds» > n andn, > n, on the order of the regressors,
find a hybrid affine model of the form (1) that is consistent with
the a priori information and that can explain the experimental
data with the minimum number of switches.

An alternative is to try to find the minimum number of sub-
models (i.e., minimum ) capable of explaining the data record.
This criterion, used in [3], leads to the following identification
problem:

Problem 3: [Minimum Number of Submodels] Given
input/output data over the interval [¢ ,T], and a priori infor-
mation consisting of a noise description n € A and bounds
ny, nonthe regressor orders, find a hybrid affine model of the
form (1) with minimum number of submodels that is consistent
with the a priori information and experimental data.

IV. IDENTIFICATION WITH MINIMUM NUMBER OF SWITCHES
AS A SPARSIFICATION PROBLEM

In this section we address Problem 2 and show that it can be
reduced to a sparsification form, where the objective is to max-
imize the number of zero elements of a suitably defined vector
valued sequence. The starting point is to consider the sequence
of first order differences of the time varying parameters p(¢),
given by

g(t)=p) —p(t 1) ©))

Clearly, since a non-zero element of this sequence corre-
sponds to a switch, the sequence should be sparse having only
k non-zero elements out of 1" — ¢ . Thus, with this definition,
Problem 2 is equivalent to the following (non-convex) sparsifi-
cation problem:

i {p() = p(t= 1)

st oyt)— )Tpt)eN Vi 4)

In the sequel, we consider two different situations depending
on the characterization of the noise set \: (i) The case where
Nisaballinf ,and (ii) the case where A/ is a general convex
set. The main result of Section IV-A shows that, in the case of
£ bounded noise, the sparsification problem (4) can be exactly
solved via convex optimization, without the need to impose ad-
ditional conditions. In the case of general noise descriptions,
the problem is generically NP hard. However, as we show in
Section IV-C, a convex relaxation can be obtained using Lemma
2 in the Appendix. In this case, exact recovery is no longer guar-
anteed, unless additional conditions are satisfied. However, ex-
tensive experiments show that the convex relaxation works well
in practice.

A. A Greedy Algorithm for the {  Case

In this section we propose a computationally simple algo-
rithm for solving Problem 2 in the case where the noise term
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TABLE |
OPTIMAL GREEDY ALGORITHM FOR PROBLEM 2.

Greedy Algorithm
k=0
to = max(ny, ny)
Tk = to
FORi=ty:T
Solve the following feasibility problem in p:
F{ |yt)—r@t)Tp| <e Vte[n,i] }
IF F is infeasible
Set I, = [Tk,’ifl], k=k+1,and 7, =1
END IF
END FOR
Set Iy = [, T] and 7 = {L;}_,
RETURN 7 and k

is characterized in terms of its # norm. This solution is moti-
vated by existing results in time series clustering showing that a
greedy sliding window algorithm [12] is optimal. As we show
below, similar ideas can be applied to Problem 2, leading to an
algorithm that entails solving a sequence of smaller linear pro-
grams in a greedy fashion.

Theorem 1: Let k* denote the number of switches in an op-
timal solution to Problem 2 (equivalently, to the sparsification
problem (4)) when the noise is characterized in terms of an /¢
bound: {n} < e Then the value & returned by the greedy
algorithm outlined in Table I coincides with the optimal &*.

Proof: Assume 7* = { ;‘}f is the discrete hybrid time
set corresponding to an optimal solution with £* switches. Let
T={ l}f and k be the pair of values returned by the greedy
algorithm. In order to establish that the proposition is true, it is
enough to show thatif 7; € jthen Tl > frg*.Then, an induction
step shows that, 7/ > 7/* V € {0,...,k*} implying k < k*.

Since 7* is optimal (hence feasible), p*(¢) is constant in each
subinterval *. In particular, there exists p such that for all
te rp*(t)=p and|y(t)— (t)"p| < e Whenr € 7,
the same p is a feasible solution of 7 in the (}")" itera-
tion of the greedy algorithm since 7; € } implies [Ti,'rj'»*] -

7. Therefore, the algorithm will continue to the next iteration
without entering the if condition within the for loop, which im-
plies 7/ > 77"

Next, we show by induction that for all
j > suchthat 7/ > 7", hence 7/ > 7™

e For =0:7 =7"€ *=71 >71"

« For = :Assume3dj > st >7).

« For = 1: From the previous line and properties of

< k, there exists

hybrid time sets, we have that 7,01 = 7, 1 7/, >
" =3 j(orequivalently 3/ > j 1) s.t. 7uq1 €
=T >7 >7/,,.Sincej > impliesj 1>

1, this proves the induction hypothesis.

Using the fact that 7 = 7/, = 7, ™ and the result of the
induction particularly at = kleadstor, > 7" = 7, * >
=kt >k

Since by construction the result of the greedy algorithm is
feasible for problem 2 and £* is the minimum solution of the
problem, k* < k. Therefore, k* = k. [ |

Remark 1: By construction, the greedy algorithm pushes the
end points of each interval forward in time as much as possible
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From (12) and the fact that (6) implies that
| (ris)"Pir — (rip)'Pi] = 0, it follows
that, if the noise level e satisfies
e<e= in =k (13)
b2 ( (Ti+1) (Ti - Ti+1) R )

then (10) holds for all =; and hence all switches will be cor-
rectly detected by the greedy algorithm. Note that, since we are
working over finite horizons, ¢, 0. [ |

It is important to note that in the case of /£ -norm bounded
noise, our results do not explicitly depend on the level of spar-
sity of the sequence p(¢t) — p(t — 1). The greedy algorithm
finds the solution that would explain the data with minimum
number of switches even if the sequence p(t) — p(t — 1) is
not too sparse. Moreover, the solution found by the greedy al-
gorithm corresponds to the true switch sequence whenever the
conditions given in Theorem 2 and 3 hold. On the other hand, if
these conditions fail, no algorithm can causally identify the true
switches.

The following examples illustrate some nontrivial facts about
identifiability of the switches and provide further insight into the
results of this section.

Example 1: This example illustrates the fact that dwell-time
constraints are not necessary for identifiability of the switches.
Consider three autonomous systems ( ; € {1,2,3}) of the form

ye=a1( )y 1 a ( )y as( +)ye 3
with
p1 = [aa(1),a (1),a3(1)] = [-3,2,1]
111
p =0 2oa®]= |5 3.5]
P3 [al(?’)?a (3)@3(3)] = [27_17 1]
1, tell, ]
and t = 2, t=25
3, t=6
The trajectory corresponding to the initial conditions

y = 0,y 1 = ,y = —12,isgiven by 2,1,1,1,1,2.
Thus, the rank condition (9) evaluated at ¢ = 6 yields

1 1 1 1 1 1 1
1"3unk{2 11 1]_rank[1 1 1] 1

which implies that it is possible to detect the switch from¢ =5
to ¢ = 6 although the system remains in ;, = 2 for only one
time instant.

Example 2: The goal of this example is to illustrate that noise-
less switch identifiability does not imply that mode switches
are identifiable under arbitrarily small noise. To this effect con-
sider a system with 2 submodels: the first corresponds to p; =
[1/3 1/3 1/3], and is active for t = 1,2. The second corre-
spondstop =[1 —1 2]andisactivefort = 3. The trajec-
tory corresponding to the initial conditions (1) = [1 1 1]
and no external input is given by y(1) = 1, y(2) = 1 and
y(3) = 2. In this case the associated matrices satisfy

1 1 11 1 1 1
rank |1 1 1 1 rank |1 1 1
2 1 1 1 J 1 1 1 J
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Hence the switch is causally identifiable. However, adding the
noise sequence 7n(1) = ¢ n(2) = 0, n(3) = 0 leads to the
trajectory: y(1) =1 ¢ y(2) =1 ¢/3,y(3) =2 —2(¢/3).
In this case, for any ¢ 0 the corresponding matrices satisfy

1 € 1 1 1 1 1 1
rank | 1 % 1 € 1 1,=rank| 1 ¢ 1 1
-5 1 5§ 1 e 1 J I 5 1 €1 J

Hence, the switch is not identifiable, regardless of how small e
is. This is due to the fact that in this case condition (7) fails since

3)=[1 €¢/3 1 ¢ 1]T¢ram,g_§e([116 } H )

C. The Case of General Convex Noise Descriptions

In the case of general noise descriptions n € A/, all samples
are coupled through the noise description. For instance, a noise
description of the form n , <'¢, p # oo, requires considering
all elements of the noise sequence at once. Thus, batch algo-
rithms that consider all available data must be used, as opposed
to the greedy one used in the £ case. As we show next, in this
case problem (4) can be relaxed to a convex optimization using
the tools described in the Appendix. The starting point is to de-
fine the new variables z(0) = p(0), z(t) = p(¢t)—p(t—1), t >
1. Further, without loss of generality, it can be assumed that
p(0) # 0, since p(0) = 0 corresponds to the pathological
case where the initial data consist purely of measurement noise.
Under these conditions, minimizing {p(¢) — p(t — 1)} and

{z(t)} leads to the same optimal sequence. Moreover, if the
noise description N is given in terms of a norm bound, then
the constraints in (4) can be expressed as Az « < 6
where A is a matrix formed using the regressors (¢) and isa
vector formed by concatenating y(¢). Thus, problem (4) can be
rewritten as

_in {z(t)}
st Az « <€ (14)

which is in the standard form of a sparse recovery problem with
structured sparsity, similar to those in [13]-[15]. Indeed pro-
ceeding as in there, conditions can be developed guaranteeing
that minimizing an appropriate convex surrogate recovers the
sparsest solution [16]. For cases where these conditions do not
hold, from Lemma 2 in the Appendix, it follows that replacing

» by . 1 yields the tightest convex relaxation of the ob-
jectlve Further, a better heuristic can be obtained by adapting
to this case the iterative weighted /; relaxation proposed in
[17]1-[19]. This requires solving, at each iteration, the following
convex program:

ini ize,, > w, v
t
subject to z(t) <wv VYt
Az L <e (15)
where w,” = (v,"  §) 1, v," denotes the optimal solution
atthe k* iteration, withw = [1,1,...,1]7,and where § is a

(small) regularization constant. In the first iteration, this method
solves the standard £;-norm relaxation. Then at each subsequent
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Fig. 1. True and estimated parameter sequences for parameter for Example 3.

all noise values below , the greedy algorithm is
guaranteed to bPnd the correct switches. However, this analysis
does not rule out the possibility of the algorithm Pnding out the
correct switches for noise levels above for noise sequences
other than the worstbcase one, as is the case here.

Example 4: This example considers the problem of esti-
mating the minimum number of subsystems and investigates the
effects of noise level on algorithm performance. The data used
corresponded to the trajectories of 100 randomly generated
SARX models of the form

(23)

with

Fig. 2. Median of parameter estimation error versus noise level. Error
bars indicate the median absolute deviation.

where for all , is a sample from a zero mean
unit variance normal distribution, and are chosen the rank of an appropriate matrix obtained from data as proposed
such that the complex conjugate poles of thesubmodel are in [23] for the algebraic method. The former two methods give
distributed in with uniform random phase andupper bounds of true value , Whereas the latter estimate
magnitude, and is aniid noise term uniformly distributed in depends on the threshold chosen to calculate the rank and could
. For each of these systems, the number of submodels vieedower than the true value. The same experiment was repeated
estimated by solving the minimum submodels problem with ofwr different noise levels. Results on these experiments are sum-
method and the bounded-error method; and by approximatimgrized in Fig. 2 and Table .
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Fig. 3. Each histogram shows the frequency of estimated number of submodels for different noise levels. (a)

is = 3.

TABLE Il1
MINIMUM NUMBER OF SUBMODEL ESTIMATION ERROR STATISTICS FOR
DIFFERENT NOISE LEVELS.

Noise Level e Absolute Error Sparsification | Bounded-Error | Algebraic
Mean 0.84 5.64 0.87
0.1 Standard deviation 1.36 2.03 1.02
’ Median 1 5 1
Median absolute deviation 1 1 1
Mean 1.93 4.07 2.18
0.5 Standard deviation 1.65 1.58 1.25
: Median 2 4 2
Median absolute deviation 1 1 1
TABLE IV

NORMALIZED PARAMETER IDENTIFICATION ERROR STATISTICS FOR THE
MINIMUM NUMBER OF SUBMODELS PROBLEM WITH DIFFERENT NOISE LEVEL.

Next we consider the parameter estimation accuracy for the
same 100 random systems. To this end, the following normal-
ized parameter identification error measure is defined:

1 P t IA)At)
T — ¢ Z )

The parameter estimation results are summarized in Fig. 3
and Table IV. As shown there, the sparsification—based method
outperformed both the bounded-error and algebraic procedures.
While all methods proved considerably robust to noise in es-
timating the number of submodels, segmentation quality and
parameter identification performance degraded significantly for
the algebraic method as the noise level increased. On the other
hand, sparsification was the most robust in terms of these perfor-
mance criteria. The bounded-error method performed relatively
poorly when estimating the number of submodels. Even though
it clustered most of the data in the largest three submodels, it

A, =

(24)
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=0 5,(b) =0 5.Thetrue number of submodels

TABLE V
MEAN CPU TIMES OVER 100 RUNS IN EACH CASE (S:SECOND,
MS:MILLISECOND).

also generated superfluous submodels with parameter values far
from the true values.

Finally, Table VV summarizes the mean computation time for
this set of simulations. As show there, algebraic method is the
fastest. However, due to scalability issues that will be illus-
trated in Example 5, it applicability is restricted to relatively
small data sets. Among bounded-error and sparsification, there
is a trade-off between accuracy and computation time. It is also
worth mentioning that it is not possible to solve problems of
this size on the same machine using mixed integer programming
(MIP) [4] since its complexity grows exponentially.

Example 5: This large scale example again considers the
minimum number of systems problem and investigates the scal-
ability of the different algorithms. The data was generated using
aswitched linear system with three submodels each having eight
poles and four zeros. The mode signal was set to

1, te[1,1000]
;=14 2, te[1001,2000] .
3, t € [2001,3000]

For this example, the algebraic method failed due to insuf-
ficient memory since its complexity grows exponentially with
the number of submodels. The running times for the sparsifica-
tion method and bounded error methods were 74 minutes and
54 minutes, respectively.

Example 6: Textured Image Segmentation: The goal of this
example is to illustrate the use of the proposed method to seg-
ment textured images. To this effect we combined two different
textures to generate the two images shown in Fig. 4. In order to
recast the segmentation problem into a hybrid system identifica-
tion form, the grey-scale values of the pixels in each image were
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A. Video-Shot Segmentation

The goal here is to detect scene changes in video sequences.
These changes can be categorized into two: (i) abrupt changes
(cuts), and (ii) gradual transitions, e.g., various special effects
that blend two consecutive scenes gradually. Fig. 5 shows
the ground truth and the segmentations obtained using the
proposed method (using 3 order models and ),
GPCA [25], a histogram based method (bin to bin differ-
ence (B2B) with 256 bin histograms and window average
Fig. 4. Results for detecting switches (i.e., estimating) in a texture image. thresholding [29]), and an MP_EG-paseq method [30] for three
Left: Original image. Middle: GPCA segmentation. Right: Segmentation vig@Mmple sequenceasountain.avifamily.aviandbsherman.mpg
proposed method. available from http://www.open-video.org . A quantitative
measure of the quality of a given segmentationcan be
obtained using thd&kandindex [31], debned in this case as

modeled using the following 2D autonomous linear switched- _ Here
coefbcient difference equation: denotes the number of pairs of points that belong to the
same segment in both and the ground truth ( ), is
the number of pairs of points that belong to different segments
(25) in both  and , and ( ) denotes the number of
. . . . pairs of points that belong to the same segment in( ) but
where denotes the intensity at pixel location  and

i i ere assigned to different segments i . Intuitively, this
the supportregion was chosen according to the fundament# g J ¢ ) Y

period of the textures. Fig. 4 shows the segmentation obtain[ﬁ given segmentation and the ground truth, to the number
when using our algorithm to minimize the number of switchegf agreements plus disagreements. Hence indicates
which in_this case corres_ponds to_ minimizing the length of ﬂ}?erfect clustering. A comparison of the performance of the
boundaries between regions. As illustrated there, the proposgdr methods in terms of the Rand index is given in Table VI.

algorithm outperforms GPCA. Since the frames corresponding to gradual transitions do not
belong to any cluster, these frames were excluded from the
VII. A PPLICATIONS SEGMENTATION OF VIDEO SEQUENCES  Rand index calculation. As an additional quantitative criterion,
In this section we illustrate the application of the proposetable VII summarizes switch detection rates. As illustrated
identibcation algorithm to two non-trivial problems arising iPy these examples, the proposed method has slightly better
computer vision: segmentation of video-shots and dynamic tdderformance than MPEG (the runner up), without the need
tures. Here the goal is to detect changes, e.g., scenes or actvimanually adjust seven parameters one of which, length of
ties in the former, texture in the latter, in a sequence of framdBe transition, is very sensitive. B2B works well in Pnding
Given the high dimensionality of the data, the starting point Rits when there is a sudden change in color distribution as
to perform a principal component analysis (PCA) compressidh the Psherman sequence, but fails otherwise. On the other
[24] to obtain low dimensional feature vectors rep- hand, our method works well for different types and lengths of
resenting each frame Specibcally, each size frame transitions. If the length of a gradual transition is compatible
was represented by a vector obtained by brst con- With the length of the segments (see, for instance, the Prst
verting it to gray scale and vectorizing. Next, the sample me&i@nsition in family sequence), it might identify the transition as
was found and used to construct the mean subtracted data faeparate segment since it is no longer possible to account for
trix . Finally, low dimensional the dynamics of the transition within the noise level. It is also
representations of the frames were Worth emphasizing that both, the B2B and the MPEG methods,
obtained by performing a singular value decomposition ~ rely on user adjustable parameters (two in the B2B case, seven
followed by a projection of the data onto the subspader MPEG). In our experiments we adjusted these parameters,
spanned by the brstcolumns of . by trial and error, to get the best possible results. Hence the re-
The next step is to assume, motivated by [25]D[28], that ea@hiting comparisons against the proposed sparsibcation method
component of the feature vector  evolves indepen- correspond to best-case scenarios for both MPEG and B2B.
dently, according to an unknown multi-output model of the for
described in Section IV-D

aex measures the ratio of the number of agreements between

B. Dynamic Textures

Next, we consider three challenging sequences generated
(26) using the dynamic texture database http://www.svcl.ucsd.edu/
projects/motiondytex/ synthdb/ . In the Pbrst one, we appended
in time one patch from smoke to another patch from the same
Finally, dePning texture but transposed. Therefore, both sequences have the same
allows to use the (minimum number of switches) sparsibcphotometric properties, but differ in the main motion direction:
tion-based approach to segment a given sequence accordingetdical in the brst half and horizontal in the second half of the
the non-zero elements in the corresponding sequence . sequence. For the second example, we generated a sequence
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Fig. 5. Video Segmentation Results. Left Column: Ground truth segmentation (jumps correspond to cuts and slanted lines correspond to gradual transitions).

Right Column: Changes and segments detected with different methods.

Fig. 6. Sample dynamic texture patches. Top: smoke, Bottom: river.

of river by sliding a window both in space and time (by going
forward in time in the first half and by going backward in the
second). Hence, the dynamics due to river flow are reversed.

TABLE VI
RAND INDICES FOR VIDEO-SHOT SEGMENTATION.

Sparsification | MPEG | GPCA B2B
mountain 0.9965 0.9816 | 0.9263 | 0.5690
family 0.9946 0.9480 | 0.8220 | 0.9078
fisherman 0.9955 0.9593 | 0.8966 | 1.0000

In the third example, we generated a sequence by using the
river sequence with forward dynamics and subsampling the
frames in the later part of the sequence. Hence, the river flow
twice as fast in the second half of the clip. Sample frames from
each sequence are shown in Fig. 6. For these sequences both
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problem led to the compressed sensing framework which en-
abled speeding up signal acquisition considerably since the orig-
inal sparse signal can be reconstructed using relatively few mea-
surements. We refer the interested reader to the recent survey
paper [38] for a comprehensive treatment of the subject.

The results above are not directly applicable to Problems (4)
and (22) since these deal with sparsification problems in the
space of vector valued finite sequences

s={tsO)", 0w}

rather than with vectors x € RY. This change requires ex-
tending the theory behind the ¢;-norm relaxation to the space
S. To this effect, begin by noting that the number of non-zero
elements (i.e., vectors) in {g} € S (i.e, {g} ) isthe same
asin g whereg = [ g(to) ,..., g(T)]" € RT totl,
This suggeststhe useof g , = >, g(t) asa convex objec-
tive function with an appropriate choice of the norm g(¢) . In
particular, we willuse g(¢) . The theoretical support for this
intuitive choice is provided next.

Lemma 2: The convex envelope of the ¢ -norm of a vector
valued sequence on {g} < 1isgiven by

{g} 2D &)

t

(29)

Proof: In order to prove the lemma, we need some prelim-
inary results from convex analysis. For a function f C R,
where C C R™, the conjugate f* is defined as

[*(y) = iug(év;y - f(z)).

Under some technical conditions (see [39] Theorem 1.3.5),
which are met here, the conjugate of the conjugate (i.e., f**)
gives the convex envelope of the function f.

The proof proceeds now along the lines of that of the Theorem
1in [40], by computing = **, =z € S. The isomorphism
from S to R™ T te*1 which simply stacks the elements of
the sequence into a column vector, naturally induces an inner

producton Sas (z,y = ( (), (y) =& ;=T (t)y(t). For

f S R, f(z) = =z , the conjugate function in C =
x <l1is
fy) = o 1‘[(ﬂmy = f(x)}
=> y() - A (30)
where A = {7 y(j) ; 1,j€{1,2,...,T}} is an index
setand A\ is its cardinality.
(=)

=sup{{y,z — f*(y)}
y S

:sug{zyo%() S uO™0-3 w0) A}
y i i/

i

—sup {Zy( O -sien(u()] SwOT=0) A }
L ! (31)
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Here we consider two cases:

HIf z 1, it is possible to choose y such that the first
term in (31) grows unboundedly and f**(z)  oo. So the
domain of f**is =z < 1.

2) If z < 1,thefirstterm inthe last line of (31) is nonpos-
itive. So to maximize the first term, y( ) values should be
chosen small in absolute value for € A. Keeping in mind
the bounds imposed on y( ) values by A, the maximum
value of the second termis 3, z() . Similarly,

sup {Z y( )" [2() —sign(y( )] A }

=300 -1 A=Y =0

i

Hence,

)= =0

i1

(32)

|

A related line of results recently appeared in compressed

sensing/sparse signal recovery community for structured spar-
sity (see for instance [13]-[15]).
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