

Abstract — We present a systematic method of verification
for a hierarchical hybrid system which is developed using a
bottom-up approach. The bottom level of the hybrid system
hierarchy is verified first, and each higher-level is subsequently
verified with the assumption that all lower levels are correct. At
each step in the verification process, lower and higher levels
than the one currently being verified may be abstracted, thus
reducing the complexity of verification. This method is
algorithmically developed and integrated into the design of a
hierarchical hybrid mission-level controller for an autonomous
underwater vehicle.

I. INTRODUCTION

ybrid systems, those containing both continuous
dynamics and discrete transitions, have become the

focus of much research in the areas of control and computer
science because of their wide range of practical use, which
includes automated highway systems, high-level embedded
controllers, manufacturing process control, robotics, air
traffic management systems, and communication network
synthesis. In each of these areas, much emphasis must be
placed on safe, reliable and correct operation. Informally,
safe, reliable and correct operation requires that the system,
during all times of operation, will never perform any unsafe
tasks and will eventually complete a desired task. For the
case of an Autonomous Underwater Vehicle (AUV), a
simple example of safe and correct operation requires that
the vehicle never exceeds a certain depth and eventually
completes the mission tasks. An AUV, like many
autonomous systems, contains multiple levels of control that
must each satisfy a set of requirements in order to guarantee
correctness of the overall system. In this paper, we present a
methodology for the verification of hierarchical hybrid
systems that is integrated with the design process and,
specifically, verification of a hierarchical AUV mission
controller, where the verification specifications (at this level)
are derived from high-level specifications.

Manuscript received March 23, 2006. This work was supported in
part by the NSF under grants NSF-ECS-0218207, NSF-ECS-0244732,
NSF-EPNES-0323379, and NSF-ECS-0424048, by ONR under a DoD-
EPSCoR grant N000140110621, and by an Exploratory and Foundational
Research grant from ARL.

M. O’Connor (phone: 814-863-8418; email: mjo151@psu.edu) and S.
Tangirala (phone: 814-863-7594; email: cxt148@psu.edu) are with the
Applied Research Laboratory at Penn State University.

 R. Kumar is with Iowa State University, Dept. of Electrical and
Computer Engineering.

S. Bhattacharyya and L. Holloway are with the University of Kentucky,
Dept. of Electrical and Computer Engineering.

M. Sznaier is with Penn State Univ., Dept. of Electrical Engineering.

High-level control of AUV’s, such as mission control, is
often more abstract and includes additional requirements
such as re-configurability, learning, safety, failure tolerance,
the ability to manage dynamically changing mission goals,
and increased autonomy. In order to cope with such
complexity, mission control is often hierarchically
decomposed, and thus a hierarchical method of hybrid
system design, in which each layer of the hierarchy is
responsible for either executing or coordinating a set of
tasks, may be used [1]. In order to deal with the complexity
of verifying a hierarchical hybrid system, we present a
bottom-up approach to verification, where subsystems on all
levels, other than the level currently being verified, may be
abstracted by removing all irrelevant details. Our approach
to hierarchical modeling and verification is systematic and
can easily be applied to a wide range of hybrid systems.

In Section II, we briefly revisit the hybrid mission
controller architecture for AUVs presented in [1]. Section IV
presents a rigorous hybrid system model which formalizes
the mission controller. Section A discusses our approach to
hybrid system verification, specifically describing a bottom-
up approach and a high-level verification algorithm. An
example of verification is also presented.

II. HIERARCHICAL HYBRID MISSION CONTROLLER

A mission control architecture for AUVs that has been
designed to include verification of a set of requirements in
every design phase is presented in [1]. A specific application
of this architecture to a generic survey AUV is shown in .
The primary mission of a survey AUV is to transit to a user
specified location and conduct a survey following a specific
pattern in 3D, at a specified speed and depth/altitude. The
survey AUV control architecture of is organized
hierarchically and is composed of various modules, where
each module is a hybrid system, and the entire architecture is
modeled as a set of interacting hybrid systems. At the lowest
level of the hierarchy is the underwater vehicle (plant) and
the vehicle controllers (VCs), which have a hybrid state
space and, together, serve as the plant for the higher level
mission controller (MC). The VC and MC communicate
through the interface layer shown in . The mission controller
consists of a collection of high-level hybrid automata that
communicate via shared data and synchronization events. As

shown in , the MC, formally {H j
i }, is comprised of a number

of subsystems that operate at various levels, where i denotes
the level and j denotes the subsystem on level i. Each

A Bottom-Up Approach to Verification of Hybrid Model-Based
Hierarchical Controllers with application to Underwater Vehicles

M. O’Connor, S. Tangirala, R. Kumar, S. Bhattacharyya, M. Sznaier and L.E. Holloway

H

Proceedings of the 2006 American Control Conference
Minneapolis, Minnesota, USA, June 14-16, 2006

FrA02.4

1-4244-0210-7/06/$20.00 ©2006 IEEE 4267

subsystem consists of a hybrid automaton that is responsible
for completing a predetermined set of tasks. The MC is
hierarchically decomposed into Behavior Controllers,
Operation Controllers, and at the highest level, the Mission
Coordinators. A mission is defined as a coordinated
sequence of operations, each of which is a sequence of
behaviors, which are in turn, sequences of vehicle
commands.

Sequential
Coordinator

Interrupt
Coordinator

Safeties

WPNav GPSFix Launch
Device

Commander

Steering Loiter Pause

Command
Conflict

Manager
VC2MC

Coordinators

Operation
Controllers

Behavior
Controllers

Interface

Vehicle
Controllers

Autopilot
VBS

Controller
Device

Controller

Autonomous Underwater Vehicle

MC2VC

Events

C
o

m
m

an
ds

R
es

p
on

se
s

Shared
Data

V
eh

ic
le

 C
om

m
an

ds

V
eh

ic
le

 S
ta

te

Surface/Dive

Figure 1: Hybrid Survey AUV Control Architecture

III. HYBRID SYSTEM MODEL

A controlled hybrid automaton is a tuple
HHHH ()RGEIHFYUQ ,,,,,,,,,Σ= consisting of the following

components:
State space: XLQ ×= is the state space of HHHH, where L is a

finite set of locations and nX ℜ= is the continuous state
space. Each state Q can be described by Qxl ∈),(, where

Ll ∈ and nx ℜ∈ .
Events: Σ is the finite alphabet or event set of HHHH..

Continuous Controls and Parameters: mU ℜ= is the
continuous control space consisting of control and
exogenous continuous-time parameters. [) Uu →∞,0:

denotes a vector comprised of these controls and parameters.
Outputs: Y is the output space of HHHH, which may consist of
both continuous and discrete elements.
Continuous Dynamics: F is a function on UL × assigning a
vector field or differential inclusion to each location and
continuous control vector, also denoted),(),(ufulF l ⋅= .

Output Functions: H is a set of output functions, one for
each location Ll ∈ . The notation lhlH =)(is used, where

YUXhl →×: is the output function associated with

location Ll ∈ .

Invariant conditions: XI 2⊂ is a set of invariant
conditions on the continuous states, one for each location

Ll ∈ . The notation XilI l ⊆=)(may also be used. If no

li is specified for some Ll ∈ , then Xil = .

Edges: LLE ×Σ×⊂ is a set of directed edges.
Elle ∈′=),,(σ is a directed edge between a source location

Ll ∈ and a target location Ll ∈′ with event label Σ∈σ .

Guard conditions: XG 2⊂ is the set of guard conditions on
the continuous states, one for each edge Ee ∈ . The notation

XgG ee ⊆= may also be used. If no
e

g is explicitly

specified for some edge Ee ∈ , then the default value is
taken to be Xge = .

Reset conditions: R is the set of reset conditions, one for
each edge Ee∈ . The notation ereR =)(is used, where

X
e Xr 2: → is a set-valued map. If no er is explicitly

specified for some edge Ee ∈ , then the default value is
taken to be the identity function.
Definition - σ-step: For Σ∈σ , a σ-step is a binary relation

QQ ×⊂→
σ

 and it is true that),(),(xlxl ′′→
σ

 if and only if (a)

Elle ∈′=),,(σ , (b) le igx ∩∈ and (c) le ixrx ′∩∈′)(. A σ-

step is a transition between discrete states and is also know
as a discrete jump. A σ-step need not be taken even if

egx ∈ , but some σ-step must be taken before lix ∉ .

Definition - t-step: Let),(uxl
tϕ be a trajectory of),(ufl ⋅

with initial state x and evolving for time t. For +
ℜ∈t , a t-

step is a binary relation QQ
t

×⊂→ and it is true that

),(),(xlxl
t

′′→ if and only if (a) ll ′= , (b) xx =′ for 0=t

and (c)),(uxx l
tϕ=′ for 0>t where for []t,0∈τ ,

)),((),(uxfux l
l

l
ττ ϕϕ ∈& and (d) for all []t,0∈τ , lix ∈)(τ .

Accordingly, a t-step is a time trajectory of the system that is
valid for []t,0∈τ .
Definition - trajectory: A trajectory π of HHHH is a finite or

infinite sequence:
110

110 ii qqqq
i−

→→→ −

θθθ

π where

Qqi ∈ and +
ℜ∪Σ∈iθ . A trajectory is accepted by HHHH if

each 1+→ ii qq
iθ

 is a t -step or σ -step of HHHH , and we denote the

space of all such trajectories by HHHH. A step of a trajectory
refers to a t-step followed by a σ -step. Associated with the
kth step of a trajectory is (a) the time interval of the step,

[]10 ,0 tI = or []1, +
=

kkk ttI for 1≥k , (b) its duration,
kkk tt −=

+1τ , (c) the associated edge,),,(1+
=

kkkk lle σ ,

and (d) the state, ())(, txlq kkk
= , where kl is fixed over

kI and)(tx k satisfies ())(),()(tutxFtx kk
l

k
=& . Thus, the

step can be represented as

() () ())(,)(,)(, 1111
+→+→+

++++ kkkkkkkkk txltxltxl
kk στ

satisfying ke
kk gtx ∈

+)(1 and ())()(11 ++
∈+

kk
e

kk txtx kτ .

Note that we do not exclude the possibility that 0=
kτ , in

which case there is only a σ-step.
Definition - run: A run of a hybrid automaton HHHH is the
projection to the discrete part of a trajectory in HHHH ; namely, a

4268

finite or infinite sequence ,...,, 210 lll of admissible

locations. We also refer to ∑
∞

=

ΙΙ=
0

)()()(
k

I
k ttxtx k where

)(tkI
ΙΙ is the indicator function of the interval kI , as the

continuous part of the trajectory. Note that it is not in general

true that)()(+=+
kkk txtx . For instance, if 0=

kτ and

01
>

+kτ then)()(1
+=+

+ kkk txtx which need not be

)(+=
kk tx .

A. Interacting Controlled Hybrid Automata

In order to cope with complexity of real-life applications, it
is often convenient to model a hybrid system in a modular
fashion as a set of interacting hybrid automata, {H j}. Each
hybrid automaton in the set is a tuple as before:

HHHH j { }jjjjjjjjjj RGEIHFYUQ ,,,,,,,,,Σ= (1)

The interaction among various hybrid autonomous modules
takes place through event synchronization and sharing of
variables in invariant and guard conditions, as follows.

Invariant Conditions: For each k

k

jjj YXlILl Π×⊆∈)(, ,

where k=1…j-1, j+1…n.

Guard Conditions: For each ,jEe∈
k

k

j

e

j YXgeG j Π×⊆=)(, where k=1…j-1, j+1…n.

All other components of the tuple are analogous to those of
the single hybrid automaton defined above.

Event Synchronization: For an event U j

j
Σ=Σ∈σ , let

{ }jjIn Σ∈= σσ |)(be the set of indices of the event sets

that contain the event σ . Then each σ-step must be taken
synchronously by each of the hybrid automata HHHH j if

)(σInj ∈ , the corresponding guard condition je
g is

satisfied, and the invariant condition)(lI j of the accepting

state is satisfied. In other words, for each)(σInj ∈ ,

),(),(2211
jjjj xlxl

σ

→ if and only if (a) jjjj Elle ∈=),,(21 σ (b)

jj le

j igx ∩∈1 and (c) jj l
jj

e
jj ixrx 2)(12 ∩∈ .

IV. HYBRID SYSTEM VERIFICATION

A. Verification Techniques

Since hybrid systems are prevalent in a variety of real-
world applications, verification techniques for such systems
have been extensively researched and developed. In general,
three methods of hybrid system verification are available:
simulation, model checking, and theorem proving. No single
method is perfect, as simulation can never exhaustively test
every possible path in the system, model checking may not
be decidable for certain classes of hybrid systems, and
theorem proving is often too complex for reasonably sized
systems [4]. When verifying real-time systems, simulation
and model checking are used more prominently, as both

methods are made available through computational tools. In
this paper, we present a methodology for the verification of
hierarchical hybrid systems that is tightly coupled with the
design process and uses the automated model checking tool
Uppaal [5]. Uppaal was chosen due to its compatibility with
the modeling formalism, GUI, ease of use, and portability.

B. Development Tool vs. Verification Tool

The survey AUV hybrid mission controller has been
designed and implemented in Teja NP. Teja NP [3] is a
graphical hybrid system design tool that contains built-in
support for automatic code generation. Following a hybrid
system description, Teja facilitates communication between
hybrid subsystems via shared data and event
synchronization. Each Teja system must contain a user-
defined event dependency table that specifies which
subsystems may receive events that are sent from another
subsystem. When a Teja subsystem initiates an event, it is
passed to all subsystems listed within the event dependency
table, causing synchronization.

Teja, however, does not contain functionality for formal
verification; thus an external tool such as Uppaal must be
used for verification. In order to facilitate rapid (re)design
and verification, a converter was created that converts a
hybrid (timed) autonomous system description in Teja to an
Uppaal system description. The details of this converter are
omitted here due to space restrictions.

Although Teja and Uppaal both support timed autonomous
systems, there are several differences in the tools that must
not be overlooked. As previously mentioned, event
synchronization in Teja occurs according to an event
dependency table; thus, events can only be sent to
subsystems listed in the event dependency table, and any
number of subsystems, if enabled, can synchronize on any
given event. Uppaal, however, does not contain an event
dependency table. Two, and only two, Uppaal subsystems
may synchronize on two enabled edges over a normal
channel if one edge is commanding and one edge is
accepting. Any one Uppaal subsystem with an enabled edge
may synchronize with the commanding subsystem, and if no
synchronizing edge is available, no transition will take place;
whereas in Teja, the transition will take place in the
commanding subsystem regardless of how many systems,
including zero, are synchronizing on the event.

To overcome this problem, all channels in Uppaal must be
declared as broadcast channels. Zero, one, or multiple
Uppaal subsystems may synchronize on a single event over a
broadcast channel. We are however restricted in that a
certain subsystem, not listed to receive an event in the Teja
event dependency table, may still synchronize on that event
in Uppaal. This restriction must be overcome by examining
the Teja event dependency table during Uppaal verification.

C. Bottom-up Approach

In order to deal with the complexity of verifying multiple
levels in a hierarchical hybrid system, we propose a bottom-
up method of hybrid verification, in which the bottom-most

4269

subsystems are verified first, the subsequent higher level is
verified next, assuming the bottom level has been correctly
verified, and this process is continued until all levels have
been properly verified. Using this approach, the verification
process is simplified in the following ways: (1) subsystems
on lower levels, once verified, may be abstracted by
removing all irrelevant details; (2) subsystems on higher
levels, before being verified, may be abstracted by removing
all intrinsic details, as well as, all states not relevant to the
subsystem currently being verified; (3) changes to
subsystems arising from their verification do not necessitate
re-verification of other subsystems.

In a hierarchical hybrid system, subsystems may
synchronize with other subsystems on either higher, lower, or
the same level (lateral subsystems). During verification of a
particular subsystem, a conservatively abstracted subsystem,
called a driver subsystem, may be created to emulate only
the relevant commands issued by either a higher level or
lateral subsystem. Similarly, a conservatively abstracted
subsystem, called a stub subsystem, may be created to
emulate relevant responses issued by either lower level or
lateral subsystems. Driver and stub subsystems serve the
purpose of simplifying the complexity of verification by
reducing the number of discrete states and clocks in a
composed system. Subsystems whose internal states, guard
conditions, or update laws affect the subsystem being
verified should not be abstracted.

D. Hierarchical Verification Algorithm

The first step of the verification process involves
determining a set of requirements that the system must
satisfy. This step can often prove to be very difficult and
time-consuming and is currently the subject of further
research. Examples of high-level requirements for a specific
hierarchical hybrid system are provided in Section I.A.

Once the high-level requirements have been identified, the
verification process for a hierarchical interacting hybrid
system

H H H H ji { }j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i RGEIHFYUQ ,,,,,,,,,Σ= (2)

which synchronize as HHHH = HHHH 1
1 || H H H H 2

1 … H H H H 1
1
m … H H H H nm

n , where

i=1…n (number of levels) and j=1…mi (number of
interacting hybrid automata on level i), may be performed
using the following algorithm, which has been derived from
the bottom-up approach. Initially, model each subsystem as
an interacting hybrid system as given by eq. (2), where i=1
corresponds to the lowest level and j=1 corresponds to the
first subsystem on each level. Order the subsystems on each

level according to their lateral dependence: HHHH 2j
i commands

HHHH 1j
i 12 jj >⇒ .

For i = 1 to n
 For j = 1 to mi

 - Select subsystem H H H H j
i for verification

- Find all subsystems HHHH l
k , k=1 to n, l=1 to mk,

),(),(jilk ≠ that interact with subsystem H H H H j
i

- Abstract all subsystems HHHH l
k , for k,l as found above,

whose internal states are not relevant to verification,
as drivers or stubs, and replace the original
subsystems with the abstracted subsystems. Denote

the abstracted subsystems by H’ H’ H’ H’ l
k

- Compose the system as H H H H = HHHH j
i ||H’ H’ H’ H’ l

k for k,l as found

above
- Formulate queries using temporal logic formulas

based on the requirements of the system and check
queries on the composed system H’H’H’H’

- Correct any problems with subsystem H H H H j
i

 Next j
Next i

E. Hybrid System Abstractions

A hybrid system may be abstracted in two ways [2]: the
discrete behavior of the system may be abstracted or the
continuous behavior of the system may be abstracted. In the
context of logical verification, the survey AUV mission
controller does not depend on the continuous dynamics of
the underwater vehicle. At this level of verification, the
continuous dynamics are ignored, except in the case of real-
valued clocks. A similar approach is taken in [6].

CheckSafeties

SafetyAbort

Idle

LowAltitude

Start

Abort!
Safeties_VoltageAbort||Safeties_WaterDepthAbort

NewVCData?
t:=0

Nav__Altitude<
MinimumAltitude

LowAltitudeTimer:=0
Abort!

LowAltitudeTimer>LowAltitudeTO

Nav__Altitude>=MinimumAltitude

Figure 2 - Safeties subsystem

A hybrid system may also be discretely abstracted. An
example of discretely abstracting a hybrid automaton is now
presented. The Safeties mission coordinator, shown in Figure
2, resides at the top level of the AUV mission control
architecture and maintains safe operation of the vehicle at all
times. If an unsafe condition is detected, Safeties may abort
the mission by aborting operation of all subsystems. Thus, if
a safety abort occurs, all subsystems must properly respond
and abort operation. An abstracted version of the safeties
subsystem, called the safeties driver, was created for
verification and is shown in Figure 3(a). The safeties driver
must be included in the verification of every subsystem in the
mission controller.

Start Aborting
Abort! Idle Run

Abort?

Do!

Done?

Figure 3: (a) Safeties driver (b) Generic driver susbsystem

4270

All other drivers generally take the form shown in Figure
3(b), where the ! denotes a commanding transition and the ?
denotes an accepting transition.

F. Mission Controller Subsystem Requirements

As previously mentioned, the first step in the verification
process involves identifying a set of system requirements.
For the case of the AUV mission controller presented in
Section I.A, a set of requirements based on high-level
specifications has been derived for each level within the
hierarchy. The behavior and operation controllers, which are
responsible for executing tasks, share the same requirements
that are listed below.

(1-b) The composed system must never be deadlocked
(2-b) The subsystem, when in any state, must properly

respond to an abort command
(3-b) The subsystem must not improperly abort

commanding subsystems
(4-b) The subsystem must properly respond to a

command from a higher level or lateral subsystem
(5-b) The subsystem must properly issue commands to

other subsystems, if necessary
(6-b) States in which outgoing transitions rely on the

navigational or functional state of the vehicle must
contain timeout conditions

An example of verifying requirement (2-b), which may be
used for every behavior or operation subsystem, is illustrated
using the Uppaal query shown below.

E<> SafetyDriver.Aborting and not Subsystem.Idle
a. Does a path exist where the safety driver has issued

an abort command but the subsystem has not
correctly responded by transitioning to the Idle state?

b. If the query is satisfied, the subsystem contains a
path that does not correctly respond to an abort
command; otherwise, the subsystem correctly
responds to an abort command throughout all paths
in the system.

As with requirement (2-b), generic Uppaal queries have been
formulated to check requirements (1-b), (3-b), and (4-b) on
every behavior and operation subsystem; however,
requirements (5-b) and (6-b) necessitate a more rigorous
inspection of each individual subsystem. Several cases are
examined in Example 1 below.
 The mission coordinators are responsible for coordinating
tasks (rather than executing tasks), and thus share a different
set of requirements, which are listed below.

(1-c) The composed system must never be deadlocked
(2-c) Each coordinator must always properly respond to

an abort command.
(3-c) Each coordinator must properly respond to a done

event from a lower-level subsystem.
(4-c) Each coordinator must properly issue commands to

lower-level subsystems.
(5-c) Interaction among coordinators must always occur

correctly. (e.g.) The Interrupt coordinator must
properly suspend the Sequential coordinator when
necessary.

(6-c) Coordinators only issue commands when
appropriate. (e.g.) The Interrupt coordinator must
not start a timed order before the order is scheduled
to occur.

The requirements listed above must be examined with all
coordinators in the composed system. An example of
checking requirement (2-c) is illustrated using the Uppaal
query shown below.

E<> Coordinator1.End and not Coordinator2.End
a. Does a path exist where Coordinator1 is in the End

state but Coordinator2 is not?
b. If the query is satisfied, Coordinator2 may not

properly end execution when Coordinator1 ends
execution; otherwise, Coordinator2 properly
transitions to the End state when Coordinator1
transitions to the End state.

c. This query must also be verified in the reverse case.

G. Example: Operation level verification

Applying the algorithm listed in Section IV.D to the survey
AUV, verification begins at the behavior level, proceeds to
the operation level, then finally to the coordinator level. In
the following verification example, the GPSFix subsystem,

shown in Figure 4 and denoted by HHHH 2
2 , is verified using

Uppaal.
Following the algorithm for verifying a hierarchical hybrid
system, the behavior controllers, which, in this case, have
already been verified, are replaced by stub subsystems, as is
illustrated for the Steering subsystem in Figure 5a. Likewise,
a driver subsystem has been created to imitate the
synchronization that normally occurs between the GPSFix
subsystem and a coordinator level subsystem, as shown in
Figure 5b.

Idle_ds

GoToSurface_ds

RaiseMast_ds

TakeFix_ds

ReportTO_ds

Start_ds

ComeOffSurface_ds

ReturnToStart_ds

Decide_ds

TakeGPSFix?
TimeInState:=0, t:=0

Nav__Depth<=SurfaceThreshold
TimeInState:=0

Launch!

DevState__GPSFixState==DONE
TimeInState:=0

TimeInState>=GoToSurfaceTO
TimeInState:=0

TimeInState>=RaiseMastTO
TimeInState:=0

TimeInState>=TakeFixTO

TimeInState:=0

Launch!

TimeInState:=0,
NumFailed:=NumFailed+1

Abort?

Abort?

Abort?

Abort?

Abort?

LaunchDone?

TimeInState:=0

Steer!

GPSOrd__ReturnToStart

TimeInState:=0

GPSFixDone!

!GPSOrd__ReturnToStart

TimeInState:=0
Abort!

Helm__DistanceToPoint<=WPThresholdDistance
TimeInState:=0,
GPSOrd__ReturnToStart:=0

Abort?
TimeInState:=0

DevState__MastState==UP
TimeInState:=0

Figure 4: GPSFix subsystem

4271

Idle Steering
Steer?

SteeringDone?

Abort?

Idle TakingFix
Abort?

TakeGPSFix!

GPSFixDone?

Figure 5: (a) Steering stub subsystem (b) GPSFix driver subsystem

The Launcher subsystem (not shown) is an operation
controller that is commanded by the GPSFixer. Since the
GPSFixer (laterally) depends on the Launcher, the Launcher
was verified first and replaced by an abstracted stub
subsystem and included in the verification of the GPSFix
subsystem. Also included in the integrated system is the
abstracted Safeties driver shown in Figure 3(a).The GPSFix
subsystem, GPSFix driver subsystem, Steering stub
subsystem, Launcher stub subsystem, and Safeties driver
subsystem, which interact according to (2), are
synchronously composed in Uppaal, and a set of temporal
logic queries are formulated based on requirements (1-b)
through (6-b), a few of which are listed below. Note that the
subsystem requirements are transformed into temporal logic
queries that specify an erroneous set of states, and Uppaal is
used to check whether this set is reachable. If the set is
reachable, Uppaal generates a diagnostic trace that is used to
identify and correct the problem.

A[] not deadlock
- Requirement (1-b)
- For all paths, is the system not deadlocked?
- The query is satisfied signifying no immediate

deadlocks.

E<> SafetyDriver.Aborting and not GPSFixer.Idle
- Requirement (2-b)
- Does a path exist where a safety abort has occurred

but the GPSFix subsystem does not properly abort?
- The query is satisfied suggesting that the GPSFixer

may not properly abort under certain conditions.
- The ReportTO state is missing an abort response

transition to the Idle state, which must be added.

E<> GPSdriver.Idle and not GPSFixer.Idle
- Requirement (3-b)
- Does a path exist where the GPSFix driver is in the

Idle state but GPSFix is not?
- The query is satisfied indicating that the GPSFixer

may improperly abort the GPSFix driver.
- The abort output event on the transition from

ReturnToStart to Decide should be changed to a
SteeringDone output event.

E<> GPSdriver.TakingFix and GPSFixer.Idle
- Requirement (4-b)
- Does a path exist where the GPSFixer does not

properly respond to a TakeGPSFix command?
- The query is not satisfied, signifying proper GPSFix

subsystem response.

Once verification of the GPSFix subsystem is complete, it
can be replaced with a stub system, as shown in Figure 6,
when subsequently verifying the top level of the mission
controller hierarchy. Notice that, in Figure 6, the GPSFix
stub subsystem contains more than two states. Since the
GPSFix subsystem commands other subsystems (in this case
the Launcher subsystem and Steering subsystem), do/done
transitions that command/respond to the other subsystems
must be included in the abstracted subsystem.

Idle_ds TakingFix_ds Launching_ds

Steering_ds

TakeGPSFix?

t:=0

GPSFixDone!

Launch!Abort?

LaunchDone?

Abort?

Steer!
SteeringDone?

Abort?

Figure 6: GPSFix stub subsystem

V. CONCLUSION

In a complicated hierarchically structured hybrid system,
the verification process may be greatly simplified by using a
bottom-up approach and employing the algorithm presented
here. This approach is tractable and efficient, as it
significantly reduces the complexity of verification for two
distinct reasons. First, the verification process is divided
according to the number of levels in the system, verification
occurs at each level, and the overall system is guaranteed to
be correct when all levels have been verified. Second, when
verifying a particular level, all subsystems on other levels
may be abstracted thus reducing the number of states in the
system and, consequently, the complexity and computational
requirements of verification. We also present a high-level
verification algorithm for a hierarchal hybrid system. This
algorithm, along with the state machine description converter
which allows Teja NP hybrid systems to be semi-
automatically imported into Uppaal, results in a tightly
coupled design/verification process resulting in controllers
which are guaranteed to satisfy a set of requirements.
Illustrative examples of verification are provided.

REFERENCES

[1] Tangirala, S., Kumar, R., Bhattacharyya, S., O’Connor, M., and
Holloway, L.E., “Hybrid-Model based Hierarchical Mission Control
Architecture for Autonomous Underwater Vehicles”, Proceedings
from the American Control Conference, 2005.

[2] Alur, R., Henzinger, T., Lafferriere, G., and Pappas, G., “Discrete
Abstractions of Hybrid Systems”, Proceeding of the IEEE, v 88, n 7,
July 2000.

[3] www.teja.com
[4] Greenstreet, M., “Pragmatic Verification for Hybrid and Real-time

Designs”, Proceedings of the American Control Conference,
Chicago, Illinois, June 2000.

[5] www.uppaal.com
[6] Puri, A. and Varaiya, P., “Modeling and Verification of Hybrid

Systems”, Proceedings from the American Control Conference,
Seattle, Washington, June 1996.

4272

