
 

Abstract — We present a systematic method of verification 
for a hierarchical hybrid system which is developed using a 
bottom-up approach. The bottom level of the hybrid system 
hierarchy is verified first, and each higher-level is subsequently 
verified with the assumption that all lower levels are correct. At 
each step in the verification process, lower and higher levels 
than the one currently being verified may be abstracted, thus 
reducing the complexity of verification. This method is 
algorithmically developed and integrated into the design of a 
hierarchical hybrid mission-level controller for an autonomous 
underwater vehicle. 

I. INTRODUCTION

ybrid systems, those containing both continuous 
dynamics and discrete transitions, have become the 

focus of much research in the areas of control and computer 
science because of their wide range of practical use, which 
includes automated highway systems, high-level embedded 
controllers, manufacturing process control, robotics, air 
traffic management systems, and communication network 
synthesis. In each of these areas, much emphasis must be 
placed on safe, reliable and correct operation. Informally, 
safe, reliable and correct operation requires that the system, 
during all times of operation, will never perform any unsafe 
tasks and will eventually complete a desired task. For the 
case of an Autonomous Underwater Vehicle (AUV), a 
simple example of safe and correct operation requires that 
the vehicle never exceeds a certain depth and eventually 
completes the mission tasks. An AUV, like many 
autonomous systems, contains multiple levels of control that 
must each satisfy a set of requirements in order to guarantee 
correctness of the overall system. In this paper, we present a 
methodology for the verification of hierarchical hybrid 
systems that is integrated with the design process and, 
specifically, verification of a hierarchical AUV mission 
controller, where the verification specifications (at this level) 
are derived from high-level specifications. 
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High-level control of AUV’s, such as mission control, is 
often more abstract and includes additional requirements 
such as re-configurability, learning, safety, failure tolerance, 
the ability to manage dynamically changing mission goals, 
and increased autonomy. In order to cope with such 
complexity, mission control is often hierarchically 
decomposed, and thus a hierarchical method of hybrid 
system design, in which each layer of the hierarchy is 
responsible for either executing or coordinating a set of 
tasks, may be used [1]. In order to deal with the complexity 
of verifying a hierarchical hybrid system, we present a 
bottom-up approach to verification, where subsystems on all 
levels, other than the level currently being verified, may be 
abstracted by removing all irrelevant details. Our approach 
to hierarchical modeling and verification is systematic and 
can easily be applied to a wide range of hybrid systems. 

In Section II, we briefly revisit the hybrid mission 
controller architecture for AUVs presented in [1]. Section IV 
presents a rigorous hybrid system model which formalizes 
the mission controller. Section A discusses our approach to 
hybrid system verification, specifically describing a bottom-
up approach and a high-level verification algorithm.  An 
example of verification is also presented. 

II. HIERARCHICAL HYBRID MISSION CONTROLLER 

A mission control architecture for AUVs that has been 
designed to include verification of a set of requirements in 
every design phase is presented in [1]. A specific application 
of this architecture to a generic survey AUV is shown in . 
The primary mission of a survey AUV is to transit to a user 
specified location and conduct a survey following a specific 
pattern in 3D, at a specified speed and depth/altitude. The 
survey AUV control architecture of  is organized 
hierarchically and is composed of various modules, where 
each module is a hybrid system, and the entire architecture is 
modeled as a set of interacting hybrid systems. At the lowest 
level of the hierarchy is the underwater vehicle (plant) and 
the vehicle controllers (VCs), which have a hybrid state 
space and, together, serve as the plant for the higher level 
mission controller (MC). The VC and MC communicate 
through the interface layer shown in . The mission controller 
consists of a collection of high-level hybrid automata that 
communicate via shared data and synchronization events. As 

shown in , the MC, formally {H j
i }, is comprised of a number 

of subsystems that operate at various levels, where i denotes 
the level and j denotes the subsystem on level i. Each 
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subsystem consists of a hybrid automaton that is responsible 
for completing a predetermined set of tasks. The MC is 
hierarchically decomposed into Behavior Controllers, 
Operation Controllers, and at the highest level, the Mission
Coordinators. A mission is defined as a coordinated 
sequence of operations, each of which is a sequence of 
behaviors, which are in turn, sequences of vehicle 
commands.  
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Figure 1: Hybrid Survey AUV Control Architecture 

III. HYBRID SYSTEM MODEL

A controlled hybrid automaton is a tuple 
HHHH ( )RGEIHFYUQ ,,,,,,,,,Σ=  consisting of the following 

components:  
State space: XLQ ×=  is the state space of HHHH, where L is a 

finite set of locations and nX ℜ=  is the continuous state 
space. Each state Q can be described by Qxl ∈),( , where 

Ll ∈  and nx ℜ∈ . 
Events: Σ is the finite alphabet or event set of HHHH.. 

Continuous Controls and Parameters: mU ℜ=  is the 
continuous control space consisting of control and 
exogenous continuous-time parameters.  [ ) Uu →∞,0:

denotes a vector comprised of these controls and parameters. 
Outputs: Y is the output space of HHHH, which may consist of 
both continuous and discrete elements. 
Continuous Dynamics: F is a function on UL × assigning a 
vector field or differential inclusion to each location and 
continuous control vector, also denoted ),(),( ufulF l ⋅= . 

Output Functions: H is a set of output functions, one for 
each location Ll ∈ .  The notation lhlH =)(  is used, where 

YUXhl →×:  is the output function associated with 

location Ll ∈ . 

Invariant conditions: XI 2⊂  is a set of invariant 
conditions on the continuous states, one for each location 

Ll ∈ . The notation XilI l ⊆=)(  may also be used.  If no 

li  is specified for some Ll ∈ , then Xil = . 

Edges: LLE ×Σ×⊂  is a set of directed edges. 
Elle ∈′= ),,( σ  is a directed edge between a source location 

Ll ∈  and a target location Ll ∈′  with event label Σ∈σ .

Guard conditions: XG 2⊂  is the set of guard conditions on 
the continuous states, one for each edge Ee ∈ .  The notation 

XgG ee ⊆=  may also be used. If no 
e

g  is explicitly 

specified for some edge Ee ∈ , then the default value is 
taken to be Xge = . 

Reset conditions: R is the set of reset conditions, one for 
each edge Ee∈ .  The notation ereR =)(  is used, where 

X
e Xr 2: →  is a set-valued map.  If no er  is explicitly 

specified for some edge Ee ∈ , then the default value is 
taken to be the identity function. 
Definition - σ-step: For Σ∈σ , a σ-step is a binary relation 

QQ ×⊂→
σ

 and it is true that ),(),( xlxl ′′→
σ

 if and only if (a) 

Elle ∈′= ),,( σ , (b) le igx ∩∈  and (c) le ixrx ′∩∈′ )( .  A σ-

step is a transition between discrete states and is also know 
as a discrete jump.  A σ-step need not be taken even if 

egx ∈ , but some σ-step must be taken before lix ∉ .  

Definition - t-step: Let ),( uxl
tϕ be a trajectory of ),( ufl ⋅

with initial state x and evolving for time t.  For +
ℜ∈t , a t-

step is a binary relation QQ
t

×⊂→  and it is true that 

),(),( xlxl
t

′′→   if and only if (a) ll ′= ,  (b) xx =′  for 0=t

and (c) ),( uxx l
tϕ=′  for 0>t  where for [ ]t,0∈τ , 

)),((),( uxfux l
l

l
ττ ϕϕ ∈& and (d) for all [ ]t,0∈τ , lix ∈)(τ .  

Accordingly, a t-step is a time trajectory of the system that is 
valid for [ ]t,0∈τ .   
Definition - trajectory: A trajectory π of HHHH is a finite or 

infinite sequence ......:
110

110 ii qqqq
i−

→→→ −

θθθ

π  where 

Qqi ∈  and +
ℜ∪Σ∈iθ . A trajectory is accepted by HHHH if 

each 1+→ ii qq
iθ

 is a t -step or σ -step of HHHH , and we denote the 

space of all such trajectories by HHHH.  A step of a trajectory 
refers to a t-step followed by a σ -step. Associated with the 
kth step of a trajectory is (a) the time interval of the step, 

[ ]10 ,0 tI = or [ ]1, +
=

kkk ttI  for 1≥k ,  (b) its duration, 
kkk tt −=

+1τ ,  (c) the associated edge, ),,( 1+
=

kkkk lle σ , 

and (d) the state, ( ))(, txlq kkk
= , where kl  is fixed over 

kI  and )(tx k  satisfies ( ))(),()( tutxFtx kk
l

k
=& . Thus, the 

step can be represented as 

( ) ( ) ( ))(,)(,)(, 1111
+→+→+

++++ kkkkkkkkk txltxltxl
kk στ

satisfying ke
kk gtx ∈

+ )( 1  and ( ))()( 11 ++
∈+

kk
e

kk txtx kτ .  

Note that we do not exclude the possibility that 0=
kτ , in 

which case there is only a σ-step.   
Definition - run: A run of a hybrid automaton HHHH is the 
projection to the discrete part of a trajectory in HHHH ; namely, a 
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finite or infinite sequence ,...,, 210 lll   of admissible 

locations. We also refer to ∑
∞

=

ΙΙ=
0

)()()(
k

I
k ttxtx k  where 

)(tkI
ΙΙ  is the indicator function of the interval kI , as the 

continuous part of the trajectory. Note that it is not in general 

true that )()( +=+
kkk txtx . For instance, if 0=

kτ  and 

01
>

+kτ  then )()( 1
+=+

+ kkk txtx  which need not be 

)( +=
kk tx . 

A. Interacting Controlled Hybrid Automata 

In order to cope with complexity of real-life applications, it 
is often convenient to model a hybrid system in a modular 
fashion as a set of interacting hybrid automata, {H    j}. Each 
hybrid automaton in the set is a tuple as before: 

HHHH j { }jjjjjjjjjj RGEIHFYUQ ,,,,,,,,,Σ=      (1) 

The interaction among various hybrid autonomous modules 
takes place through event synchronization and sharing of 
variables in invariant and guard conditions, as follows. 

Invariant Conditions: For each k

k

jjj YXlILl Π×⊆∈ )(, , 

where k=1…j-1, j+1…n. 

Guard Conditions: For each ,jEe∈
k

k

j

e

j YXgeG j Π×⊆=)( , where k=1…j-1, j+1…n. 

All other components of the tuple are analogous to those of 
the single hybrid automaton defined above. 

Event Synchronization: For an event U j

j
Σ=Σ∈σ , let 

{ }jjIn Σ∈= σσ |)(  be the set of indices of the event sets 

that contain the event σ .  Then each σ-step must be taken 
synchronously by each of the hybrid automata HHHH j if 

)(σInj ∈ , the corresponding guard condition je
g  is 

satisfied, and the invariant condition )(lI j  of the accepting 

state is satisfied. In other words, for each )(σInj ∈ , 

),(),( 2211
jjjj xlxl

σ

→  if and only if (a) jjjj Elle ∈= ),,( 21 σ (b) 

jj le

j igx ∩∈1  and (c) jj l
jj

e
jj ixrx 2)( 12 ∩∈ . 

IV. HYBRID SYSTEM VERIFICATION

A. Verification Techniques 

Since hybrid systems are prevalent in a variety of real-
world applications, verification techniques for such systems 
have been extensively researched and developed. In general, 
three methods of hybrid system verification are available: 
simulation, model checking, and theorem proving. No single 
method is perfect, as simulation can never exhaustively test 
every possible path in the system, model checking may not 
be decidable for certain classes of hybrid systems, and 
theorem proving is often too complex for reasonably sized 
systems [4]. When verifying real-time systems, simulation 
and model checking are used more prominently, as both 

methods are made available through computational tools. In 
this paper, we present a methodology for the verification of 
hierarchical hybrid systems that is tightly coupled with the 
design process and uses the automated model checking tool 
Uppaal [5]. Uppaal was chosen due to its compatibility with 
the modeling formalism, GUI, ease of use, and portability.  

B. Development Tool vs. Verification Tool 

The survey AUV hybrid mission controller has been 
designed and implemented in Teja NP. Teja NP [3] is a 
graphical hybrid system design tool that contains built-in 
support for automatic code generation. Following a hybrid 
system description, Teja facilitates communication between 
hybrid subsystems via shared data and event 
synchronization. Each Teja system must contain a user-
defined event dependency table that specifies which 
subsystems may receive events that are sent from another 
subsystem. When a Teja subsystem initiates an event, it is 
passed to all subsystems listed within the event dependency 
table, causing synchronization. 

Teja, however, does not contain functionality for formal 
verification; thus an external tool such as Uppaal must be 
used for verification. In order to facilitate rapid (re)design 
and verification, a converter was created that converts a 
hybrid (timed) autonomous system description in Teja to an 
Uppaal system description. The details of this converter are 
omitted here due to space restrictions.  

Although Teja and Uppaal both support timed autonomous 
systems, there are several differences in the tools that must 
not be overlooked. As previously mentioned, event 
synchronization in Teja occurs according to an event 
dependency table; thus, events can only be sent to 
subsystems listed in the event dependency table, and any 
number of subsystems, if enabled, can synchronize on any 
given event. Uppaal, however, does not contain an event 
dependency table. Two, and only two, Uppaal subsystems 
may synchronize on two enabled edges over a normal 
channel if one edge is commanding and one edge is 
accepting. Any one Uppaal subsystem with an enabled edge 
may synchronize with the commanding subsystem, and if no 
synchronizing edge is available, no transition will take place; 
whereas in Teja, the transition will take place in the 
commanding subsystem regardless of how many systems, 
including zero, are synchronizing on the event.  

To overcome this problem, all channels in Uppaal must be 
declared as broadcast channels. Zero, one, or multiple 
Uppaal subsystems may synchronize on a single event over a 
broadcast channel. We are however restricted in that a 
certain subsystem, not listed to receive an event in the Teja 
event dependency table, may still synchronize on that event 
in Uppaal. This restriction must be overcome by examining 
the Teja event dependency table during Uppaal verification. 

C. Bottom-up Approach 

In order to deal with the complexity of verifying multiple 
levels in a hierarchical hybrid system, we propose a bottom-
up method of hybrid verification, in which the bottom-most 
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subsystems are verified first, the subsequent higher level is 
verified next, assuming the bottom level has been correctly 
verified, and this process is continued until all levels have 
been properly verified. Using this approach, the verification 
process is simplified in the following ways: (1) subsystems 
on lower levels, once verified, may be abstracted by 
removing all irrelevant details; (2) subsystems on higher 
levels, before being verified, may be abstracted by removing 
all intrinsic details, as well as, all states not relevant to the 
subsystem currently being verified; (3) changes to 
subsystems arising from their verification do not necessitate 
re-verification of other subsystems. 

In a hierarchical hybrid system, subsystems may 
synchronize with other subsystems on either higher, lower, or 
the same level (lateral subsystems). During verification of a 
particular subsystem, a conservatively abstracted subsystem, 
called a driver subsystem, may be created to emulate only 
the relevant commands issued by either a higher level or 
lateral subsystem. Similarly, a conservatively abstracted 
subsystem, called a stub subsystem, may be created to 
emulate relevant responses issued by either lower level or 
lateral subsystems. Driver and stub subsystems serve the 
purpose of simplifying the complexity of verification by 
reducing the number of discrete states and clocks in a 
composed system. Subsystems whose internal states, guard 
conditions, or update laws affect the subsystem being 
verified should not be abstracted.   

D. Hierarchical Verification Algorithm 

The first step of the verification process involves 
determining a set of requirements that the system must 
satisfy. This step can often prove to be very difficult and 
time-consuming and is currently the subject of further 
research. Examples of high-level requirements for a specific 
hierarchical hybrid system are provided in Section I.A.  

Once the high-level requirements have been identified, the 
verification process for a hierarchical interacting hybrid 
system 

H H H H ji { }j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i RGEIHFYUQ ,,,,,,,,,Σ=            (2) 

which synchronize as HHHH = HHHH 1
1 || H H H H 2

1 …    H H H H 1
1
m … H H H H nm

n ,    where 

i=1…n (number of levels) and j=1…mi (number of 
interacting hybrid automata on level i), may be performed 
using the following algorithm, which has been derived from 
the bottom-up approach. Initially, model each subsystem as 
an interacting hybrid system as given by eq. (2), where i=1 
corresponds to the lowest level and j=1 corresponds to the 
first subsystem on each level. Order the subsystems on each 

level according to their lateral dependence: HHHH 2j
i commands    

HHHH 1j
i 12 jj >⇒ .   

For i = 1 to n
 For j = 1 to mi

  - Select subsystem H H H H j
i for verification 

- Find all subsystems HHHH l
k , k=1 to n, l=1 to mk, 

),(),( jilk ≠  that interact with subsystem H H H H j
i

- Abstract all subsystems HHHH l
k , for k,l as found above,

whose internal states are not relevant to verification, 
as drivers or stubs, and replace the original 
subsystems with the abstracted subsystems. Denote 

the abstracted subsystems by H’  H’  H’  H’ l
k     

- Compose the system as H H H H = HHHH j
i ||H’ H’ H’ H’ l

k     for k,l as found 

above 
- Formulate queries using temporal logic formulas 

based on the requirements of the system and check 
queries on the composed system H’H’H’H’

- Correct any problems with subsystem H H H H j
i

 Next j 
Next i

E. Hybrid System Abstractions 

A hybrid system may be abstracted in two ways [2]: the 
discrete behavior of the system may be abstracted or the 
continuous behavior of the system may be abstracted. In the 
context of logical verification, the survey AUV mission 
controller does not depend on the continuous dynamics of 
the underwater vehicle. At this level of verification, the 
continuous dynamics are ignored, except in the case of real-
valued clocks. A similar approach is taken in [6]. 

CheckSafeties

SafetyAbort

Idle

LowAltitude

Start

Abort!
Safeties_VoltageAbort||Safeties_WaterDepthAbort

NewVCData?
t:=0

Nav__Altitude<
MinimumAltitude

LowAltitudeTimer:=0
Abort!

LowAltitudeTimer>LowAltitudeTO

Nav__Altitude>=MinimumAltitude

Figure 2 - Safeties subsystem 

A hybrid system may also be discretely abstracted. An 
example of discretely abstracting a hybrid automaton is now 
presented. The Safeties mission coordinator, shown in Figure 
2, resides at the top level of the AUV mission control 
architecture and maintains safe operation of the vehicle at all 
times. If an unsafe condition is detected, Safeties may abort 
the mission by aborting operation of all subsystems. Thus, if 
a safety abort occurs, all subsystems must properly respond 
and abort operation. An abstracted version of the safeties 
subsystem, called the safeties driver, was created for 
verification and is shown in Figure 3(a). The safeties driver 
must be included in the verification of every subsystem in the 
mission controller. 

Start Aborting
Abort! Idle Run

Abort?

Do!

Done?

Figure 3: (a)  Safeties driver        (b) Generic driver susbsystem 
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All other drivers generally take the form shown in Figure 
3(b), where the ! denotes a commanding transition and the ? 
denotes an accepting transition. 

F. Mission Controller Subsystem Requirements  

As previously mentioned, the first step in the verification 
process involves identifying a set of system requirements. 
For the case of the AUV mission controller presented in 
Section I.A, a set of requirements based on high-level 
specifications has been derived for each level within the 
hierarchy. The behavior and operation controllers, which are 
responsible for executing tasks, share the same requirements 
that are listed below. 

(1-b) The composed system must never be deadlocked 
(2-b) The subsystem, when in any state, must properly 

respond to an abort command 
(3-b) The subsystem must not improperly abort 

commanding subsystems 
(4-b) The subsystem must properly respond to a 

command from a higher level or lateral subsystem   
(5-b) The subsystem must properly issue commands to 

other subsystems, if necessary 
(6-b) States in which outgoing transitions rely on the 

navigational or functional state of the vehicle must 
contain timeout conditions 

An example of verifying requirement (2-b), which may be 
used for every behavior or operation subsystem, is illustrated 
using the Uppaal query shown below. 

E<> SafetyDriver.Aborting and not Subsystem.Idle 
a. Does a path exist where the safety driver has issued 

an abort command but the subsystem has not 
correctly responded by transitioning to the Idle state? 

b. If the query is satisfied, the subsystem contains a 
path that does not correctly respond to an abort 
command; otherwise, the subsystem correctly 
responds to an abort command throughout all paths 
in the system. 

As with requirement (2-b), generic Uppaal queries have been 
formulated to check requirements (1-b), (3-b), and (4-b) on 
every behavior and operation subsystem; however, 
requirements (5-b) and (6-b) necessitate a more rigorous 
inspection of each individual subsystem. Several cases are 
examined in Example 1 below. 
 The mission coordinators are responsible for coordinating 
tasks (rather than executing tasks), and thus share a different 
set of requirements, which are listed below. 

(1-c) The composed system must never be deadlocked 
(2-c) Each coordinator must always properly respond to 

an abort command. 
(3-c) Each coordinator must properly respond to a done 

event from a lower-level subsystem. 
(4-c) Each coordinator must properly issue commands to 

lower-level subsystems. 
(5-c) Interaction among coordinators must always occur 

correctly. (e.g.) The Interrupt coordinator must 
properly suspend the Sequential coordinator when 
necessary.   

(6-c) Coordinators only issue commands when 
appropriate. (e.g.) The Interrupt coordinator must 
not start a timed order before the order is scheduled 
to occur. 

The requirements listed above must be examined with all 
coordinators in the composed system. An example of 
checking requirement (2-c) is illustrated using the Uppaal 
query shown below.   

E<> Coordinator1.End and not Coordinator2.End
a. Does a path exist where Coordinator1 is in the End 

state but Coordinator2 is not? 
b. If the query is satisfied, Coordinator2 may not 

properly end execution when Coordinator1 ends 
execution; otherwise, Coordinator2 properly 
transitions to the End state when Coordinator1 
transitions to the End state. 

c. This query must also be verified in the reverse case. 

G. Example: Operation level verification 

Applying the algorithm listed in Section IV.D to the survey 
AUV, verification begins at the behavior level, proceeds to 
the operation level, then finally to the coordinator level. In 
the following verification example, the GPSFix subsystem, 

shown in Figure 4 and denoted by HHHH 2
2 , is verified using 

Uppaal.  
Following the algorithm for verifying a hierarchical hybrid 
system, the behavior controllers, which, in this case, have 
already been verified, are replaced by stub subsystems, as is 
illustrated for the Steering subsystem in Figure 5a. Likewise, 
a driver subsystem has been created to imitate the 
synchronization that normally occurs between the GPSFix 
subsystem and a coordinator level subsystem, as shown in 
Figure 5b. 

Idle_ds

GoToSurface_ds

RaiseMast_ds

TakeFix_ds

ReportTO_ds

Start_ds

ComeOffSurface_ds

ReturnToStart_ds

Decide_ds

TakeGPSFix?
TimeInState:=0, t:=0

Nav__Depth<=SurfaceThreshold
TimeInState:=0

Launch!

DevState__GPSFixState==DONE
TimeInState:=0

TimeInState>=GoToSurfaceTO
TimeInState:=0

TimeInState>=RaiseMastTO
TimeInState:=0

TimeInState>=TakeFixTO

TimeInState:=0

Launch!

TimeInState:=0,
NumFailed:=NumFailed+1

Abort?

Abort?

Abort?

Abort?

Abort?

LaunchDone?

TimeInState:=0

Steer!

GPSOrd__ReturnToStart

TimeInState:=0

GPSFixDone!

!GPSOrd__ReturnToStart

TimeInState:=0
Abort!

Helm__DistanceToPoint<=WPThresholdDistance
TimeInState:=0,
GPSOrd__ReturnToStart:=0

Abort?
TimeInState:=0

DevState__MastState==UP
TimeInState:=0

Figure 4: GPSFix subsystem 
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Idle Steering
Steer?

SteeringDone?

Abort?
       

Idle TakingFix
Abort?

TakeGPSFix!

GPSFixDone?

Figure 5: (a) Steering stub subsystem   (b) GPSFix driver subsystem 

The Launcher subsystem (not shown) is an operation 
controller that is commanded by the GPSFixer. Since the 
GPSFixer (laterally) depends on the Launcher, the Launcher 
was verified first and replaced by an abstracted stub 
subsystem and included in the verification of the GPSFix 
subsystem. Also included in the integrated system is the 
abstracted Safeties driver shown in Figure 3(a).The GPSFix 
subsystem, GPSFix driver subsystem, Steering stub 
subsystem, Launcher stub subsystem, and Safeties driver 
subsystem, which interact according to (2), are 
synchronously composed in Uppaal, and a set of temporal 
logic queries are formulated based on requirements (1-b) 
through (6-b), a few of which are listed below. Note that the 
subsystem requirements are transformed into temporal logic 
queries that specify an erroneous set of states, and Uppaal is 
used to check whether this set is reachable. If the set is 
reachable, Uppaal generates a diagnostic trace that is used to 
identify and correct the problem. 

A[] not deadlock
- Requirement (1-b) 
- For all paths, is the system not deadlocked? 
- The query is satisfied signifying no immediate 

deadlocks. 

E<> SafetyDriver.Aborting and not GPSFixer.Idle 
- Requirement (2-b) 
- Does a path exist where a safety abort has occurred 

but the GPSFix subsystem does not properly abort? 
- The query is satisfied suggesting that the GPSFixer 

may not properly abort under certain conditions. 
- The ReportTO state is missing an abort response 

transition to the Idle state, which must be added. 

E<> GPSdriver.Idle and not GPSFixer.Idle
- Requirement (3-b) 
- Does a path exist where the GPSFix driver is in the 

Idle state but GPSFix is not? 
- The query is satisfied indicating that the GPSFixer 

may improperly abort the GPSFix driver. 
- The abort output event on the transition from 

ReturnToStart to Decide should be changed to a 
SteeringDone output event.

E<> GPSdriver.TakingFix and GPSFixer.Idle
- Requirement (4-b) 
- Does a path exist where the GPSFixer does not 

properly respond to a TakeGPSFix command? 
- The query is not satisfied, signifying proper GPSFix 

subsystem response.

Once verification of the GPSFix subsystem is complete, it 
can be replaced with a stub system, as shown in Figure 6, 
when subsequently verifying the top level of the mission 
controller hierarchy. Notice that, in Figure 6, the GPSFix 
stub subsystem contains more than two states. Since the 
GPSFix subsystem commands other subsystems (in this case 
the Launcher subsystem and Steering subsystem), do/done
transitions that command/respond to the other subsystems 
must be included in the abstracted subsystem. 

Idle_ds TakingFix_ds Launching_ds

Steering_ds

TakeGPSFix?

t:=0

GPSFixDone!

Launch!Abort?

LaunchDone?

Abort?

Steer!
SteeringDone?

Abort?

Figure 6: GPSFix stub subsystem 

V. CONCLUSION

In a complicated hierarchically structured hybrid system, 
the verification process may be greatly simplified by using a 
bottom-up approach and employing the algorithm presented 
here. This approach is tractable and efficient, as it 
significantly reduces the complexity of verification for two 
distinct reasons. First, the verification process is divided 
according to the number of levels in the system, verification 
occurs at each level, and the overall system is guaranteed to 
be correct when all levels have been verified. Second, when 
verifying a particular level, all subsystems on other levels 
may be abstracted thus reducing the number of states in the 
system and, consequently, the complexity and computational 
requirements of verification. We also present a high-level 
verification algorithm for a hierarchal hybrid system. This 
algorithm, along with the state machine description converter 
which allows Teja NP hybrid systems to be semi-
automatically imported into Uppaal, results in a tightly 
coupled design/verification process resulting in controllers 
which are guaranteed to satisfy a set of requirements. 
Illustrative examples of verification are provided.
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