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Abstract

Multi-camera tracking systems often must maintain con-
sistent identity labels of the targets across views to recover
3D trajectories and fully take advantage of the additional
information available from the multiple sensors. Previous
approaches to the “correspondence across views” problem
include matching features, using camera calibration infor-
mation, and computing homographies between views under
the assumption that the world is planar. However, it can
be difficult to match features across significantly different
views. Furthermore, calibration information is not always
available and planar world hypothesis can be too restric-
tive. In this paper, a new approach is presented for match-
ing correspondences based on the use of nonlinear manifold
learning and system dynamics identification. The proposed
approach does not require similar views, calibration nor ge-
ometric assumptions of the 3D environment, and is robust to
noise and occlusion. Experimental results demonstrate the
use of this approach to generate and predict views in cases
where identity labels become ambiguous.

1. Introduction

Multi-camera tracking systems often must maintain con-

sistent identity labels of the targets across views to recover

3D trajectories and fully take advantage of the additional

information available from the multiple sensors. Previous

approaches to the “correspondence across views” problem

include matching features such as color and apparent height

[10, 13, 36, 15], using 3D information from camera calibra-

tion [13, 4, 1, 14, 16] or computing homographies between

views [32, 33, 12]. More recently, Khan and Shah [27] pre-

sented an approach based on finding the limits of the field of
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view of each camera as visible by the other cameras under

the assumption that the world is planar. However, it can be

difficult to find matching features across significantly dif-

ferent views, camera calibration information is not always

available and planar world hypothesis can be too restrictive.

In this paper, we propose a new approach to the prob-

lem of finding correspondences across frames that does not

require feature matching, camera calibration or planar as-

sumptions. Instead, the proposed approach exploits the high

spatial and temporal correlations between frames and across

sequences to find a set of intrinsic coordinates on which

finding correspondences becomes an easy problem. In par-

ticular, we propose to use nonlinear dimensionality reduc-

tion methods to map the high dimensional images into low

dimensional manifolds that preserve neighborhood proper-

ties of the original data. Additional robustness to noise and

occlusion is incorporated by capturing the temporal evo-

lution of the manifolds with system dynamics identifica-

tion techniques. Two alternative methods to find correspon-

dences between sequences using these manifolds are pre-

sented. In the first method, manifolds from different se-

quences are aligned so corresponding views have the same

intrinsic coordinates in the low dimensional space. In the

second method, the points on the manifold of one view are

modeled as the output of a linear time invariant (LTI) sys-

tem excited with the manifold corresponding to the other

view as an input. The main contribution of this paper is that

it provides a method for (1) learning appearance correspon-

dences between different frames without requiring one-to-

one correspondence, (2) learning temporal as well as spatial

dynamics between views, and (3) generating new unseen

views either by using another existing view as input or by

predicting all views simultaneously based on temporal dy-

namics.

The paper is organized as follows. In section 2 previous

related work is discussed. In section 3 we briefly discuss

the preprocessing steps needed before learning correspon-
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dences. In sections 4 and 5 the algorithms for nonlinear

manifold learning and system dynamics identification used

to capture spatial and temporal correlations are respectively

summarized. The proposed approach to learn view corre-

spondences and generate views is described in section 6 and

7, respectively, and is illustrated with experiments in sec-

tion 8. Finally, conclusions and future work are discussed

in section 9.

2. Relation to Previous Work

Correlation of image sets has been extensively used in

image compression, object recognition and tracking [40, 34,

5, 30, 31]. In these applications, images are viewed as high

dimensional vectors that can be represented as points in

lower dimensional subspaces without much loss of informa-

tion. Principal component analysis (PCA) is the tool most

often used to extract the linear subspaces in which the data

has the highest variance. More recently, low-dimensional

linear subspace models have been proposed to predict an

image sequence from a related image sequence [6, 29] and

to model dynamic texture [18].

However, image data does not usually lie in a linear sub-

space but instead on a low dimensional nonlinear manifold

within the higher dimensional space [7, 8, 9, 19, 20, 21, 23,

22, 37, 41, 43, 42]. As a result, images that are far apart can

have similar representations when they are projected onto a

linear subspace using a PCA decomposition.

Thus, in this paper we propose to use a nonlinear di-

mensionality reduction technique to obtain low dimensional

mappings that preserve the spatial and temporal neighbor-

hoods of the data. There are various techniques that can be

used for this purpose. Methods such as LLE [37], Isomap

[39], Laplacian Eigenmaps [3], Hessian LLE [17], and

Semidefinite Embedding [43, 42] seek to find an embed-

ding of the data which preserves some relationship between

the datasets, without providing an explicit mapping func-

tion. Other methods have been proposed that do provide a

mapping for the embeddings, such as nonlinear Canonical

Correlation Analysis (CCA) [41], Charting [7], Local Tan-

gent Space Analysis [44] and Geodesic Nullspace Analy-

sis (GNA) [9]. LLE has been used for gait and activity

recognition [19, 20, 21] and ways have been proposed to

use prior information to align two manifolds [23, 22]. Also,

new samples can be approximately mapped into the embed-

ding space using the training dataset despite the lack of a

mapping function [37].

3. Preprocessing

To model correspondences between person appearance

in multiple views, the objects first need to be extracted and

Figure 1. Example of tracking in two views.
Row 1: The input images. Row 2: Normalized
person appearance.

normalized so that they can be compared in a meaningful

way. First, we use foreground segmentation methods such

as background subtraction and morphological operations to

smooth the resulting binary images. After thresholding for

size, only the blobs corresponding to persons remain in the

image. These are then resized to a standard size for each

frame. Figure 1 illustrates one example of preprocessing

multiple views of a scene containing two persons. The ap-

pearance templates are then transformed into column vec-

tors that are then used for manifold learning and system

identification steps.

4. Nonlinear Manifold Learning

Ideally, we would like to use a nonlinear manifold learn-

ing technique that gives both the mapping and the embed-

ding of our training set. However, such luxury comes at ex-

tra computational cost and algorithm complexity. Thus, we

use the locally linear embedding (LLE) algorithm to find the

embedding of the data [37]. Though LLE does not directly

provide a mapping from the high dimensional image space

to the embedding space, methods similar to those described

in [37] can approximate the mapping.

Given a set of images X = [x1 . . . xn] ∈ �D×n, where

xi is the view of an object at time i, we want to find an

embedding Y = [y1 . . . yn] ∈ �d×n such that d � D.

The LLE algorithm finds an embedding where data point

relationships in the high dimensional space are preserved in

the embedding.

To learn a locally linear embedding of X , we seek to

represent each sample xi as a linear combination of k neigh-

bors. We define i ∼ j to be true if i is a neighbor of j. Thus,
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we want to find the weights Wij so that for each sample xi

W = argminW

∑
i

|xi −
∑

j

Wijxj |2 (1)

so that
∑

j Wij = 1 and Wij = 0 if xi and xj are not

neighbors. Using these weights we then find the embedding

Y so that

Y = argminY

∑
i

|yi −
∑

j

Wijyj |2 (2)

Letting

L = (I − W )T (I − W ), (3)

the solution is found by calculating the eigenvalues and

eigenvectors of L. Because it can be shown that the small-

est eigenvalue is zero, the embedding coordinates are given

by Y = [v2 . . . vd+1]T , where vi is the eigenvector corre-

sponding to the ith smallest eigenvalue of L.

0.2 0.15 0.1 0.05 0 0.05 0.1 0.15 0.2
0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

Coefficient 1

C
oe

ffi
ci

en
t 2

0.15 0.1 0.05 0 0.05 0.1 0.15 0.2
0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

Coefficient 1

C
oe

ffi
ci

en
t 2

Figure 2. Top: Sample images. Bottom: Em-
beddings of two sequences found by LLE.
Blue and red points are training and test im-
age embedding coordinates, respectively.

To map a new vector xnew into the embedding, we

use the method described in [37]. We find the k nearest

neighbors of xnew in the training set X , and compute the

weights corresponding to the neighbors which best approx-

imate xnew. Using these weights we combine the values in

Y corresponding to the neighbors to get an approximation

of the new coordinates in the embedding, ynew. A similar

approach can be used to map from the embedding coordi-

nates to the initial high dimensional space.

The constraints we place on the weights also have an ef-

fect on the embeddings. For example, we can allow the

weights to be negative values to give us an affine recon-

struction, or we can force the weights to be positive to give

a convex reconstruction. Affine weights can be found in

closed form and they do not cause the embedding corners

to be rounded. Convex weights provide more robustness

to noise, but are found by solving a convex quadratic pro-

gramming problem [37]. In our experiments, we found that

convex weights result in a lower normalized error. Affine

reconstruction weights resulted in very high normalized er-

ror in cases where the weights were of very high magni-

tude (such as 17.26 and -16.26 for two neighbors). Figure 2

shows the embeddings found using the LLE technique on

sequences of a person walking on a treadmill obtained from

the CMU MoBo database. The values needed for k and d
depend on the intrinsic dimensionality of the input dataset,

so there is no preset value. The problem of finding accept-

able values for k and d is explored in more depth by Saul

and Roweis [37].

5. System Dynamics Identification

In principle, the location of a target in a video sequence

can be predicted using a combination of its (assumed) dy-

namics, empirically learned noise distributions and past

position observations [24, 25, 26, 35]. While successful

in many scenarios, these approaches remain vulnerable to

model uncertainty and occlusion. Camps et al [11] ad-

dressed these difficulties by modeling the dynamical ap-

pearance and motion of the target as the output of a linear

operator driven by a stochastic signal. In turn, they iden-

tified this operator using an extended Caratheodory-Fejer

(CF) interpolation theory [38] that allows for dealing with

operators that are not necessarily stable1.

In this paper, we propose to use CF interpolation theory

to identify the dynamic evolution of the data on the reduced

manifolds. Let fk denote the coordinates of a data point on

a LLE manifold. Assume that the position of the data point

fk is related to the location of the previous N data points by

fk = Ff + e, yk = fk + ηk (4)

where f =
(
fk−1 . . . fk−N

)T
contains the previous lo-

cations of the data, e =
(
ek ek−1 . . . ek−m

)T
repre-

sents an input, yk denotes the available measurement of the

data, corrupted by noise ηk, and where F is a LTI suitable

operator. A simple example is the case when the data points

progress on the manifold with random acceleration:

fk+1 = 2fk − fk−1 + ek−1

1A simple example is the case of a person moving with random accel-

eration: a double integrator.
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Moreover, assume that F admits a finite expansion of the

form F = Fp + Fnp. Here, Fp =
n∑

j=1

pjFj where Fj

are known, given, not necessarily �2 stable operators that

contain all the information available about possible modes

of motion of the data on the manifold 2.

In this context, the next data point on the manifold fk

can be predicted by first identifying the relevant dynamics

F and then using it to propagate its past N values. In turn,

identifying the dynamics entails finding an operator F ∈
S .= {F : F = Fp + Fnp} such that y − η = Ff + e.

In [38] Sznaier et al showed that establishing existence of

this operator is equivalent to establishing feasibility of a set

of Linear Matrix Inequalities (LMIs): a finite dimensional

convex optimization problem.
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Figure 3. Learning temporal dynamics. Top:
First two coefficients of sequence 2 as time
progresses. Solid and dotted lines show
actual and interpolated coefficients, respec-
tively. Bottom: The predicted(red) and ac-
tual(blue) points on the embedding.

2If this information is not available the problem reduces to purely non–

parametric identification by setting Fj ≡ 0. In this case the proposed

approach still works, but obtaining comparable error bounds requires using

a larger number of samples.

Figure 3 illustrates the use of CF interpolation to learn

the temporal evolution of the points on an embedding. In

this example, CF interpolation was applied to one of the em-

beddings shown in Figure 2 corresponding to a sequence of

160 frames. The dynamics of the points on this embedding

was learned from its first 80 points, assuming an impulse

signal as the input. Figure 3 (top) shows the close agree-

ment between the temporal evolution of the coordinates of

the points on the embedding and the positions predicted by

the CF identified dynamics. An alternative view of these re-

sults is given in Figure 3 (bottom) where the predicted and

actual points on the embedding are shown.

6. Learning View Correspondences

After obtaining low dimensional representations of a set

of video sequences, we want to learn correspondences be-

tween views across sequences. One way to learn this corre-

spondence is to align the embeddings so that corresponding

views map to the same low dimensional coordinates. An-

other option is to model correspondence as an input-output

LTI system, where the embedding coordinates of one view

are the input to the system and the corresponding image em-

bedding coordinates are the output. These approaches are

described in more detail next.

6.1. Correspondences By Embedding Align-
ment

Finding correspondences between views of two video se-

quences X1 and X2 becomes trivial if their correspond-

ing manifolds are aligned – i.e. if corresponding views

x1
i ∈ X1 and x2

j ∈ X2 have identical low dimensional

embedding representations y1
i = y2

j . In general one-to-one

correspondences between all training views are not avail-

able, since the cameras may not be synchronized or one

camera may be occluded at times. However, it is not un-

reasonable to assume that some correspondences might be

available. In this case, the method proposed in [23, 22] can

be used to align the manifolds.

First we divide the data sets into subsets for which we

know correspondences and for which we do not. Let X1
c

and X2
c contain the same number of samples each, where

x1
i corresponds to x2

i . Similarly X1
u and X2

u contain the

samples from each sequence for which we do not know cor-

respondences (X1
u and X2

u can be empty and do not neces-

sarily have the same number of samples).

To align two data sets where we know the correspon-

dence of some or all of the samples, we first compute L1

and L2 as shown in Equation 3, where X1 =
[

X1
c X1

u

]
and X2 =

[
X2

c X2
u

]
. We can then split each Lk into
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corresponding and non-corresponding parts:

Lk =
[

Lk
cc Lk

cu

Lk
uc Lk

uu

]
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Figure 4. Embeddings aligned using LLE.
Blue dots: training embeddings. Red X: test
sequence 2 embeddings. Green +: test se-
quence 5 embeddings.

To find the embedding where Y 1
c = Y 2

c is a hard con-

straint, we let

L =

⎡
⎣ L1

cc + L2
cc L1

cu L2
cu

L1
uc L1

uu 0
L2

uc 0 L2
uu

⎤
⎦

and we then find the eigenvalues and eigenvectors for the

solution. Once the embedding is computed, we can then

map a new sample x1
new into the embedding using the

method described above to get y1
new, which we assume is

equal to y2
new since the embeddings are aligned for the two

sequences. We can then generate the second image by map-

ping from y2
new to x2

new. The results of this approach are

illustrated in Figure 4 where the embeddings from Figure 2

are now aligned using LLE.

6.2. Correspondences By System Identifica-
tion

An alternative approach to finding view correspondences

is to capture the temporal correlations between sequences

with a LTI operator that generates as output the points on

the manifold from one camera when it is excited with a se-

quence of points from the manifold of the other camera as

an input. This operator can be easily identified with the CF

interpolation technique described in section 5, by setting in

equation (4) f and e to the coordinates of sets of points in

the first and second manifold, respectively3.

Figure 5 shows plots of the temporal evolution of the

coordinates of the points on two embeddings, and the pre-

dictions obtained by learning the dynamic relation between

3Note that the number of points in f and e do not have to be the same.
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Figure 5. View correspondences using sys-
tem dynamics. Top: First two output coef-
ficients as time progresses. Solid and dot-
ted lines show actual and interpolated coeffi-
cients, respectively. Bottom: First two coeffi-
cients of sequence 2 are the inputs.

them. In this case, f was set to the coordinates of the first

80 points of one embedding and e was set to the coordinates

of the corresponding points on the second embedding. The

plot on the top of the figure shows the accuracy of the pre-

dictions for the next 80 points, obtained using the learned

dynamics excited with the coordinates from the second em-

bedding.

7. Generating Views

If the correspondences between views and their dynam-

ics are learned using the methods described above, they can

be used to generate new views in two situations: (1) when

at time t, we have the image of an object in one view but

not in the other, and (2) when we do not have the image of

an object in any of the views at time t but we had it in the

previous views.

In the first case, we can generate a new image in one

of two ways, depending on how the correspondences were

learned. If the embeddings were aligned during training by

the dimensionality reduction method, then we can simply

map the input view xin onto the embedding to get a cor-

responding yin. Since the embeddings of both views are

aligned, yin = yout, so we simply map yout into the output

space using the neighbors of yout from the output sequence.

If the embeddings were aligned using system identification,

then yin and yout are not equal, but are related by a dy-
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Figure 6. Generating one sequence from an-
other. Row 1: input. Row 2: actual images.
Rows 3 and 4: generated by aligned LLE and
CF interpolation, respectively.

namic system that we learned. Thus, we can obtain yout

from a sequence of inputs from the other manifold using

the identified dynamics, and then map it into the high di-

mensional output space to get a new view. We note that

each mapping(to and from) will use different neighboring

points in the embedding since the training sequences can be

of different sizes and not all images in the sequences are

in one-to-one correspondence. Figure 6 illustrates the re-

sults of using both methods to generate missing views on

the treadmill sequences. We conducted our experiments on

the first 160 frames of the slowWalk image sequence from

the CMU MoBo database. The first 80 images were used to

train our embeddings and the last 80 were used for testing

the reconstruction of the views. One sequence (top row) is

used as input to generate the other (row 2). Both methods

are very effective at reconstructing the actual views.

In the second case, we can predict new views in one

of two ways, again depending on how the correspondences

were learned. If correspondences were learned as part of the

Figure 7. Generated and actual images gen-
erated by predicting position on embedding.

dimensionality reduction step, there is only one embedding

for all images. The temporal dynamics of the low dimen-

sional coordinates along the embedding can then be learned

and used to predict where on the low dimensional embed-

ding a view will be in the future, yfuture. From that point,

we can generate the high-dimensional views by mapping

into the spaces of each of the input sequences. Similarly,

if system identification was used to learn correspondences,

the embeddings will be separate for each view, so the dy-

namics will be learned for each embedding separately and
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used to generate a new position on each embedding from

which a new view can be constructed. Figure 7 illustrates

the result of predicting views using both methods. We used

the first 80 frames to learn the low dimensional embeddings

and then learned the temporal dynamics of the coefficients

of the low dimensional embeddings to predict the next 80

views.

8. Experimental Results

For our experiments, we implemented a tracker that ex-

tracts persons from multi-camera views and, given an initial

manual labeling, tracks the persons and their appearance

throughout the sequence, while maintaining their correct

identities. For the foreground segmentation, we used the

Codebook Background Subtraction algorithm [28]. During

the training period, we tracked each person using the blob

tracker described by Argyros and Lourakis [2] and extracted

the appearance template for each person. During the occlu-

sion periods, the appearance templates could no longer be

extracted in one of the videos. However, we used one of

our proposed proposed methods, alignment of embeddings

through LLE, to create the views of each person despite the

occlusion. When the occlusion period ends, we compare

the two extracted templates with our generated templates to

make sure that the identities are correct, and relabel if neces-

sary. We note that the persons had very similar appearance –

both persons were wearing yellow shirts and jeans and both

persons were of approximately the same build. Thus, meth-

ods that normally depend on such appearance characteris-

tics as color would not be able to maintain correct identities.

Figure 8 shows selected frames before, during, and after the

occlusion period. In the corner of each view are the tem-

plates maintained by the tracker. The templates for person

2, which are generated during the occlusion are provided at

the bottom of the figure. Additional results are available at

www.umiacs.umd.edu/˜morariu/demo.html.

9. Conclusions

Previous approaches to establishing object correspon-

dence in multi-camera systems have required matching fea-

tures across views, using camera calibration information, or

making planar world assumptions. Because of the difficul-

ties that arise in these approaches, we sought to extract the

spatial and temporal correlations present in multiple cam-

era views using nonlinear manifold learning and target dy-

namics. Nonlinear manifold learning techniques allow us to

extract intrinsic coordinates of the observed objects, ame-

liorating the problem of high dimensionality when working

with images. To provide robustness to noise and occlusion,

we incorporate the dynamics of the calculated intrinsic co-

ordinates.

To improve the method in the future, we can study ad-

ditional manifold learning methods, such as Hessian LLE,

Semidefinite Embedding and Geodesic Nullspace Analysis

which are more robust when extracting non-convex mani-

folds. In addition, improved mapping functions from em-

bedding coordinates could improve generated appearance

templates. In future work, we will study the use of this

method in more complicated scenarios (e.g. outdoor scenes)

with more complex motion.
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Figure 8. Learned correspondence is used to
generate appearance of occluded person and
to maintain identity. Top: tracker views. Bot-
tom: templates of occluded person.
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