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Abstract—This paper addresses the problem of human gait classification from a

robust model (in)validation perspective. The main idea is to associate to each

class of gaits a nominal model, subject to bounded uncertainty and measurement

noise. In this context, the problem of recognizing an activity from a sequence of

frames can be formulated as the problem of determining whether this sequence

could have been generated by a given (model, uncertainty, and noise) triple. By

exploiting interpolation theory, this problem can be recast into a nonconvex

optimization. In order to efficiently solve it, we propose two convex relaxations,

one deterministic and one stochastic. As we illustrate experimentally, these

relaxations achieve over 83 percent and 86 percent success rates, respectively,

even in the face of noisy data.

Index Terms—Gait classification, activity recognition, model (in)validation, risk-

adjusted (in)validation.

�

1 INTRODUCTION

THE problem of human activity recognition has received consider-
able attention within the Computer Vision community (see, for
instance, the surveys [1] and [9]). Existing approaches to this
problem can be divided into those recasting activity recognition as
a classification problem, and those that seek to exploit context
information (see [9], [19] and references therein).

Classification approaches are based on the general idea of
matching experimental data provided by an earlier segmentation
stage against a set of suitable representations of different actions of
interest. Roughly speaking, most of these approaches accomplish
this by finding the “nearest neighbor,” in some suitable distance,
either stochastic or deterministic. Among the several approaches
available in the literature that fall in this general category, one can
distinguish the use of spatio and/or temporal templates [10], [3];
principal component analysis [24], [12]; Bayesian-based stochastic
methods [17], [21]; Hidden Markov Models [5], [6], [20], [11]; and
the use of dynamical black or gray box models underlying the
activities under consideration [2].

While these approaches have proven successful in many
scenarios, in others they may fail due to the effects of measurement
noise and errors in extracting the features under consideration. In
addition, methods that exploit underlying models (either Marko-
vian or deterministic) are susceptible to failure due to modeling
errors, arising from the fact that, in practical situations, the
parameters of these models are identified from a finite set of noisy
measurements. Finally, stochastic approaches, due to their nature,
cannot unequivocally falsify the experimental information, to
indicate cases where the observed data does not match any of
the available models.

In order to circumvent these difficulties, in this paper we
propose a method for robust gait classification based upon
recasting the problem into a robust model (in)validation form.
Specifically, we will associate to each class of gaits a family of

models, represented by a nominal model and bounded model
uncertainty, and a class of admissible inputs, representing
measurement and process noise. In this context, the problem of
determining whether or not a given experimental sequence
corresponds to a particular activity type reduces to establishing
whether this sequence could have been generated by a combina-
tion of the given model, and some elements from its associated
classes of model uncertainty and inputs: a model (in)validation
problem. However, contrary to the standard invalidation case
discussed in the Robust Control literature [7] where the input is
known, here the only information available is a set membership
characterization, based on spectral data. This leads to a nonconvex,
generically NP-hard problem. To solve this difficulty, we propose
two relaxations: one convex and one stochastic. These relaxations
achieved over 83 percent and 86 percent success rates, respectively,
with real data.

2 PRELIMINARIES

2.1 Notation

‘2½0; N � denotes the space of square summable, real-valued

sequences fxigNk¼0 equipped with the norm kxk2‘2¼
: PN

i¼0 x
2
i . L

denotes the space of causal, linear time invariant (LTI) operators

bounded in ‘2½0;1Þ. It is well-known that this space is isomorphic

to H1, the space of matrix functions essentially bounded on the

unit circle and with bounded analytic continuation inside the unit

disk, equipped with the norm: kGk1¼: ess supjzj<1 �GðzÞ, where �:

denotes maximum singular value. In the sequel, to any finite

sequence fxkg, we will associate the following Toeplitz matrix:

Tn
x ¼

x0 0 . . . 0
x1 x0 . . . 0

..

. ..
. . .

. ..
.

xn xn�1 . . . x0

2
6664

3
7775:

By a slight abuse of notation, to each LTI system S we will

associate the matrix Tn
S obtained from the first nþ 1 elements of its

impulse response sequence.

2.2 Modeling Human Gait

The problem of modeling human gait has been extensively

researched (see, for instance, the surveys [1], [9], [14]) leading to

several different approaches that can be roughly divided into

biomechanical motivated [8], [15] and input/ouput (or gray/black

box) box modeling [2], [6]. In the sequel, we will concentrate on

input/output models since we are interested in classifying gaits,

rather than explaining the internal processes involved. In this

situation is advantageous to use smaller, simpler models since

model order is directly related to the computational complexity of

the algorithms involved. However, we want to stress the fact that

the approach pursued here is completely general and can be

applied to other models and/or activities.
Specifically, following [2], we will represent each of the

activities under consideration as realizations of a second order

stationary stochastic process. Thus, to each activity we can

associate a discrete LTI system Si, driven by white zero-mean

Gaussian noise e:

xkþ1 ¼ Aixk þKieik; yS
k ¼ Cixk þwi

k; ð1Þ

where w denotes measurement noise. The output of the model,

yS ¼ fyS
k g, is a vector sequence containing the angular displace-

ments, relative to their mean values, of the shoulder, elbow, hip,

and knee joints of the target. In this formulation, the actual values

of the matrices Ai;Ki;Ci
� �

can be obtained from the experimental

data using subspace identification methods [23], [2].
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2.3 Gait Classification as a Model (In)Validation Problem

The goal of this paper is to, given 1) a set of gaits G ¼ Gif g, each
represented by a set of exemplars, and 2) a sequence of frames
from an unknown activity, determine whether the latter corre-
sponds to one of the known gaits in G. We propose to solve this
problem by postulating that all time sequences corresponding to
realizations of a given gait Go can be obtained as the output of some
LTI system So to an unknown input signal e 2 ‘2, kek‘2 � 1.1 This
leads to the set-up shown in Fig. 1, where S is one of the models in
the set S, and where y and w represent the experimental data and
(energy bounded) measurement noise, respectively. The block �
represents (dynamic) model uncertainty to account for the fact that
the models S were identified using finite data sequences,
corrupted by noise (see the Appendix for a discussion of the role
of �). Motivated both by theoretical and practical considerations
we will use the ‘2 norm2 to measure the distance between two
given experimental sequences dðyi; yjÞ ¼ kyi � yjk‘2 . Thus, since all
other signals involved are also in ‘2, in the sequel the operator �
will be characterized in terms of its ‘2-induced (or H1) norm. In
this context, the gait classification problem can be precisely recast
in the following model (in)validation form:

Problem 1. Given 1) experimental data fykg; k ¼ 0; . . . ; n, consisting

of ðnþ 1Þ measurements of the angles of the shoulder, elbow, hip, and

knee joints of a person, and 2) some a priori information consisting of

the set of models S and the following set descriptions E, Nð�Þ, and ��

of admissible inputs, noise, and uncertainty blocks:

E ¼ e 2 ‘2: kek‘2 ½0;n� � 1
n o

Nð�Þ ¼ w 2 ‘2: kwk‘2 ½0;n� � �
n o

;

�� ¼ � 2 H1: k�k‘2!‘2 � �
� �

;

ð2Þ

where the constants � and � characterize the noise and

uncertainty levels, determine if there exists at least one quadruple

ðei; wi;�i; SiÞ 2 E � N ���� S that can reproduce the available

experimental evidence, that is:

y ¼ ðI þ�iÞSi � ei þ wi; ð3Þ

where � denotes convolution.

If the answer to this problem is negative, then the experimental
sequence does not correspond to any of the known gait types Si.
On the other hand, if more than a feasible quadruple exists, the
unknown sequence can be assigned to the class corresponding to
the smallest uncertainty norm, k�ik1 ¼ �i. In this sense, the
proposed approach belongs to the class of “nearest-neighbor”
classifiers, with a metric selected to improve robustness against
model uncertainty and noise.

3 MAIN RESULTS

In this section, we show that Problem 1 can be transformed into a
finite-dimensional convex optimization and efficiently solved with
commercially available software.

Theorem 1. Problem 1 has an affirmative answer if and only if there
exists at least one pair of finite sequences e ¼ fe0; e1; � � � ; eng 2 E
and w ¼ fw0;w1; � � � ;wng 2 N such that

Tn
zT

n
z � �2ðTn

ST
n
e Þ

TTn
ST

n
e ; ð4Þ

where Tn
z ¼: Tn

y �Tn
yS �Tn

w, and where Tn
y , T

n
e , T

n
w, and Tn

S are
defined as in Section 2.

Proof. Begin by noting that the interconnection fS;�g shown in
Fig. 1 could have generated the experimental evidence y if and
only if there exists an operator � 2 �� and signals e 2 E, w 2 N ,
z, and yS satisfying the following equations:

yS ¼ S � e; z ¼ � � yS; z ¼ y� yS � w ð5Þ

or, equivalently,

Tn
yS ¼ Tn

ST
n
e ; T

n
z ¼ Tn

�T
n
yS ;

Tn
z ¼ Tn

y �Tn
yS �Tn

w:
ð6Þ

From Lemma 2 in the Appendix, there exists � 2 �� mapping
the sequence yS to z if and only if ðTn

z Þ
TTn

z � �2ðTn
yS Þ

TTn
yS .

Substituting back in (6) and reordering yields the desired
result. tu
Unfortunately (4) is not jointly convex on all the variables

involved, due to the cross-terms Tn
w
TTn

ST
n
e . Rather, it can be shown

that it is equivalent to a Bilinear Matrix Inequality (BMI)
optimization. These problems are known to be generically NP-
hard [22] and, thus, computationally expensive to solve. In order to
obtain computationally tractable algorithms, in the sequel we
propose two convex relaxations of Problem 1: one deterministic
and one stochastic.

3.1 A Deterministic Convex Relaxation

Consider the alternative setup shown in Fig. 2, where the
measurement noise is also affected by the unknown error
dynamics �:

y ¼ ðI þ�ÞðS � eþ ~wwÞ: ð7Þ

When compared to the original setup shown in Fig. 1, it can be

easily seen that the only difference is in the measurement noise

level. Specifically, if there exists a triple ðe; ~ww;�Þ satisfying (7) with

k ~wwk2½0;n� � ~�� ¼: �
1þk�k1

, then w ¼ ðI þ�Þ ~ww 2 Nð�Þ and the triple

ðe; w;�Þ satisfies (3). Thus, one can attempt to find a solution to the

original problem by searching for a solution to the model

(in)validation problem shown in Fig. 2, with noise level ~��. As we

show next, this leads to a convex optimization problem. In

addition, one will expect that if k�k1 � 1, then this approxima-

tion is not too conservative. This conjecture will be experimentally

substantiated in Section 4.

Theorem 2. There exists a quadruple ðe; ~ww;�; SÞ 2 E � ~NN ���� S
that satisfies (7) if and only if there exists at least one pair of finite
sequences e ¼ fe0; e1; � � � ; eng 2 E and ~ww ¼ f ~ww0; ~ww1; � � � ; ~wwng 2 ~NN
such that the following LMI holds:

A1ðe; �Þ ¼:
XðeÞ ðTn

~ww þTn
ST

n
e Þ

T

Tn
~ww þTn

ST
n
e ð�2 � 1Þ�1I

� �
� 0; ð8Þ
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1. This is a deterministic, set-membership based equivalent to (1).
2. Using the ‘2 rather than the peak (‘1) norm minimizes the effects of

outliers in the experimental data.

Fig. 1. The gait classification set-up. Fig. 2. Alternative, jointly convex gait-classification setup.



where

XðeÞ ¼: ðTn
y Þ

TTn
y � ðTn

y Þ
T ðTn

ST
n
e þTn

~wwÞ � ðTn
~ww þTn

ST
n
e Þ

TTn
y

and YðeÞ ¼: eT0 eT1 � � � eTn
� �T

.

Proof. From (7) (see also Fig. 2), we have that

Tn
yS ¼ Tn

~ww þTn
ST

n
e ; Tn

z ¼ Tn
�T

n
yS ;

Tn
y ¼ Tn

z þTn
yS :

ð9Þ

As in the proof of Theorem 1, there exists � 2 ��
mapping the input-output sequences ðyS; zÞ if and only if
ðTn

z Þ
TTn

z � �2ðTn
yS Þ

TTn
yS . Substituting in (9) yields:

ðTn
y �Tn

yS Þ
T ðTn

y �Tn
yS Þ � �2ðTn

yS Þ
TTn

yS � 0:

The LMI (8) follows now by reordering terms and using Schur
complements (see [4], Chapter 2). tu

3.2 A Risk-Adjusted Convex Relaxation

As mentioned before, the convex relaxation discussed in Section 3.1
is not too conservative for cases where k�k1 is small. On the other
hand, if this condition does not hold, (3) might be infeasible in
cases where the original problem has a solution. In order to handle
these cases, in this section, we propose a stochastic relaxation of the
original problem that has polynomial, rather than exponential,
computational complexity growth with the problem data [13].

The main idea of the method is to uniformly sample the set of
admissible uncertainties ��, in an attempt to find at least one
element �i so that model ðI þ�iÞS together with an admissible
input e 2 E and output noise w 2 N can explain the experimental
data y. This removes the interpolation constraint that makes the
problem nonconvex in ðe; wÞ since for a fixed �i Problem 1 has an
affirmative answer if and only if there exists at least one feasible
solution e 2 E to the convex problem y� ðI þ T�i

ÞTSe 2 N . This
observation leads to the following gait classification algorithm:

Algorithm 1. Given an experimental sequence y, the nominal
model of a gait type S and a value of �, take Nt samples of ��,
f�iðzÞgNt

i¼1 using Algorithm 2 described in the Appendix.

1. For each �i, solve the following convex feasibility
problem in e:

CPe : Find e 2 E such that y� ðI þ Tn
�i
ÞTn

S e 2 N :

2. If there exists at least one feasible e, stop. Otherwise,
consider next sample �iþ1ðzÞ and go back to Step 1.

The algorithm finishes, either by finding one admissible e or after
Nt steps. In the former case, we assign the given sequence to the
gait represented by model S. In the latter, there exists a (small) risk
of incorrectly concluding that the sequence does not correspond to
the gait represented by S. The next result, adapted from [16] gives
a bound on this risk:

Lemma 1. Let ð�; �Þ be two positive constants in ð0; 1Þ. If

Nt �
lnð1=�Þ

lnð1=ð1� �ÞÞ ; ð10Þ

then

Probð9� : CPe feasiblejCPe infeasible for �i; i ¼ 1 . . . ; NtÞ < �

and this event occurs with probability greater than ð1� �Þ. This
implies that, with confidence greater that 1� � the algorithm above
has a probability smaller than � of not finding �, if one exists.

4 EXPERIMENTAL VALIDATION

In this section, we illustrate the effectiveness of the proposed
algorithms using experimental data. We begin by outlining a
method to compute suitable nominal models for each gait class.

4.1 The Experimental Data

The experimental data, the same used in [2], consists of 30 vector
sequences yk, taken from five different persons, labeled A, B, C, D,
and E. Each sequence contains measurements of the angles of the
shoulder, elbow, hip, and knee joints of a person walking, running,
or walking a staircase, and are assumed to be corrupted by
additive noise of bounded energy. Fig. 3 shows sample frames
from the videos used to generate the data sets. The trajectories of
the joints over time were extracted by using a variant of the
algorithm proposed in [6] where the skeleton of the human is
represented as a kinematic chain supporting ellipsoidal texture
patches. For illustrative sake, the data sequences are numbered
from 1 to 30 so that 1-10 correspond to walking, 11-20 to running
and 21-30 to walking a staircase, as shown in Table 1.

4.2 The Nominal Models

In the sequel, we will use models of the form (1), with ns ¼ 4
states,3 ni ¼ 4 inputs, and no ¼ 4 outputs. In order to use these
models, the experimental sequences should be normalized to have
zero mean, and scaled so that the corresponding input ei has unit
energy. Under the assumption that gaits are second order
stationary, mean ergodic random processes, an unbiased estimate
of the mean of each exemplar is given by the temporal average:
��i ¼ Eðyi

rawÞ 	
Pn�1

k¼0 y
i
k;raw=n. The data used to compute the model

Si associated with the ith gait is given by ySi ¼ yi
raw � ��i. Similarly,

an estimate of �2i ¼
: ðnþ 1ÞEðeTk ekÞ, the energy of an input sequence

e can be estimated by ðnþ 1Þ
Pn��1

k¼0 eTk ek=n
�. A normalized system

having unity-energy input is then given by ŜSi ¼: �iSi.
Finally, to minimize the computational time, rather than

representing each class of activities by all the models fSj
ig
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Fig. 3. Sample frames of four different activities. These images are courtesy of Professor S. Soatto, UCLA.

TABLE 1
Experimental Data

3. This represents a good compromise between model quality and
complexity.



corresponding to different experimental realizations yji of the gaitGj,
we will choose as a single representative for this class the model
Sj 2 fSj

ig that is closest to each other element in the class, in the
sense of minimizing the norm of the (multiplicative) uncertainty
required to map the two models under consideration, i.e.,

Sj ¼ arg min
ŜSj
i
;ŜSj

k
2Sj

kðŜSj
i � ŜSj

kÞŜjSj�1
k k1

n o
: ð11Þ

In order to avoid introducing biases, we will compute the nominal
models using all sequences in a given class while testing a
sequence outside that class; and excluding the test sequence while
matching it with its class (leave-one-outmethod). For instance, when
classifying the sequence y1, the walking, running, and climbing
stairs models where obtained using the sequences y2 � y10,
y11 � y20, and y21 � y30, respectively.

4.3 The Results

4.3.1 Using the Deterministic Convex Relaxation

Table 1 shows the results of applying Theorem 1, using 20 sample
points per sequence and noise level of ~�� ¼ 0:10.,4 i.e. k ~wwk‘2 ½0;19� � ~��.
In all cases, the first column contains the experimental sequences
to be recognized; the second, third, and fourth columns display the
minimum size of the uncertainty block � measured in the H1
norm, so that nominal models Swalk, Srun, and Sstair can reproduce
the given data. Each sequence is assigned to the class correspond-
ing to the smallest uncertainty value. As shown in Table 2a, the
proposed method can successfully recognize 25 out of the
30 sequences under consideration; with the misclassifications
likely due to the relatively short length of the data record used
for classification. Indeed, using 25 sample data points allows for
correctly classifying also the sequence y21 and considering 30 data
points further extends these results to include the sequences y29
and y30. However, these additional successes come at the price of a
computational complexity increase since the computational com-
plexity of conventional LMI solvers grows as the fifth power of the
number of decision variables.

For comparison, we also classified the experimental sequences
by finding the nearest neighbor in the Martin distance sense,
proceeding as in [2]. This approach misclassified eight out of the
30 sequences (y3, y5, y6, y7, y15, y16, y17, and y27).

4.3.2 Using the Risk-Adjusted Relaxation

As indicated before, the main idea of this relaxation is to use a
combination of sampling and convex optimization to determine
the minimum size of the uncertainty, �, required for each of the
nominal models—either Swalk, Srun, or Sstair—to reproduce a given
experimental sequence. This was accomplished by taking an initial
value of � (a good upper bound is the value furnished by the noise
free case) and using Algorithm 1 to check whether there exists at
least one sample �n 2 �� so that Problem CPe has a feasible
solution. If the answer was affirmative, then the value of � was
decreased. For each experimental sequence, we carried out this
procedure for each nominal model Si, until the minimum value of
�i for which the associated problem CPe is feasible was found.
Proceeding as before, we then assigned the given sequence y to the
gait represented by the nominal model corresponding to the
minimum value of �i.

Table 2b shows the results obtained using the procedure
outlined above using Nt ¼ 6; 000 samples over the set �� and an
output noise level of � ¼ 0:06. This value of Nt guarantees,
with confidence 0:9975, a probability smaller than 0:001 of
incorrectly determining �. Compared to the convex relaxation,
this approach has an 86.67 percent success rate, but at the price
of increased computational requirements. Note, however, that
the required samples f�ig can be generated offline and, thus,
not all of this additional computational burden needs to be
carried out in real time.

5 CONCLUSIONS

This paper approaches the problem of human gait classification
from a model (in)validation viewpoint. The main idea is to
associate to each class of activities a nominal model and a class of
bounded energy inputs. In this context, the problem of recognizing
a sequence of frames can be formulated as the problem of
determining whether this sequence could have been generated
by a combination of the given model, some admissible uncertainty
and its associated class of inputs. By exploiting norm constrained
interpolation theory results, this problem can be recast as a finite
dimensional, albeit generically nonconvex, NP-hard, optimization
problem. In order to efficiently solve this problem, in the paper, we
propose two different convex relaxations, one deterministic and
one stochastic. As we illustrate with experimental sequences, the
deterministic relaxation achieves good success rate (in this case,
over 83.33 percent), even in the face of noisy data. Better success
rates, at the price of additional computational complexity, can be
obtained by resorting to a stochastic, risk-adjusted relaxation. This
stochastic relaxation has a computational complexity that grows
polynomially (rather than exponentially as in the original
nonconvex problem) with the number of frames. Moreover, the
computational-time requirements can be reduced by using the
deterministic relaxation as a first step to improve the a priori
available bounds on the uncertainty size. Finally, it is worth
noticing that the sequences misclassified by our algorithm are
different from the ones misclassified by the algorithm proposed in
[2]. This suggests that robustness could potentially be improved by
running both algorithms and then reexamining the sequences
where the answers differ, for instance, by considering longer data
sequences only for these cases.

APPENDIX A

A.1 BACKGROUND RESULTS

In this section, we recall, for ease of reference, the interpolation
theory results used to recast the gait recognition problem into a
tractable convex finite dimensional optimization form.

Lemma 2 ([7], Chapter 2). Given matrix valued sequences Ui 2 Cl�j

and Vi 2 Ck�j, i ¼ 0; 1; . . .n, there exists a matrix interpolant
LðzÞ 2 BHk�l

1 such that

LðzÞ ¼ L0 þ L1zþ L2z
2 þ . . .þ Lnz

n þ . . .

Tn
L UT

o . . .UT
n

� �T¼ VT
o . . .VT

n

� �T
if and only if ðTn

UÞ
TTn

U � ðTn
V Þ

TTn
V � 0.

The following algorithm, described in [16], generates

uniformly distributed finite impulse responses fhigNt

i¼1 with

hi ¼ fHi
0;H

i
1; . . . ;H

i
Ng, Hi

k 2 Rm�s, so that the function

HiðzÞ ¼:
PN

k¼0 H
i
kz

k can be completed to belong to BH1, the unit

ball in BH1.
Algorithm 2. Let k ¼ 0. Generate Nt samples uniformly dis-

tributed over the set fH0 : �ðH0Þ � 1g.

1. Let k :¼ kþ 1. For every generated sample ðHi
0;

Hi
1; . . . ;H

i
k�1Þ, consider the partition

Hi
k � � � Hi

1 Hi
0

Hi
k�1 � � � Hi

0 0

..

. . .
. ..

.

Hi
0 0 � � � 0

2
6664

3
7775 ¼ Hi

k B
C A

� �
ð12Þ

and let the matrices Y and Z be a solution of the linear

equations:

B ¼ YðI�ATAÞ
1
2; C ¼ ðI�AAT Þ

1
2Z:
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4. This value was selected so that, with an actual noise level � ¼ 0:06,
infeasibility of the convex relaxation is a sufficient condition for infeasibility
of the original problem for values of k�k up to 0:4.



2. Let

JðH0;H1; . . . ;Hk�1Þ ¼: jðI�YYT Þ
1
2jmjðI� ZTZÞ

1
2js:

Generate NtJðHi
0;H

i
1; . . . ;H

i
k�1Þ

� �
samples uniformly dis-

tributed over the set fW : �ðWÞ � 1g. For each sampleWi,

compute

Hi
k ¼ �YATZþ ðI�YYT Þ

1
2WiðI� ZTZÞ

1
2: ð13Þ

3. If k � N go to Step 1. Otherwise, stop.

A.2 MODEL IDENTIFICATION AND UNCERTAINTY DESCRIPTIONS

The problem of extracting models from experimental data has been

extensively researched in the control community [23], [7]. In the

past few years, a large portion of the effort has been directed

toward obtaining worst-case identification error bounds, to

account for the fact that any model identified from a finite set of

noisy measurements is likely to be inaccurate. Next, we illustrate

the issues involved and motivate the uncertainty description used

in Section 2.3.
Consider the problem of identifying a LTI system with a

transfer function GoðzÞ ¼ 1 from noisy measurements of its step

1824 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 11, NOVEMBER 2005

TABLE 2
Classification Results

(a) Using the deterministic convex relaxation: success rate 83.33 percent. (b) Using the stochastic relaxation (� � and y denote infeasibility and a misclassified sequence,
respectively). Success rate: 86.67 percent.



response: yk ¼ ðG � uÞk þ dk. Since GoðzÞ ¼ 1, it follows that
yk ¼ 1þ dk. Consider now the following two systems:

G1ðzÞ ¼
z� 0:8578

z� 0:9
; G2ðzÞ ¼

zþ 0:8578

zþ 0:9
:

Simple algebra shows that the corresponding step response
sequences are given by:

y1k ¼ 1; 1:0422; 1:0802; 1:1144; 1:1451; . . .f g;
y2k ¼ 1; 0:9578; 0:996; 0:9616; 0:9924; . . .f g:

Thus, if the measurement noise d can take values above 0:15, all of

these systems are undistinguishable. If the noise level is 0.09, an

experiment of length 4 will establish that G1 is no longer

consistent with the experimental measurements, but still cannot

distinguish between Go and G2. This illustrates the concept of

consistency set T ðyÞ ¼ G: y ¼ G � uþ df g, e.g., the set of all plants

compatible with the experimental outcome. From an identification

standpoint, all plants in T ðyÞ could have generated the observed

experimental data. Thus, its “size” gives an upper bound of the

worst-case error incurred when choosing any one element of T ðyÞ
as the identified systems. For instance, in the simple example

above, assuming a noise level of 0.15, one could choose as the

“identified” system Gid ¼ 0:5 G1ðzÞ þG2ðzÞ½ � ¼ 0:5 z2�0:81
z2�0:1544 . In this

case, every element of the consistency set can be (conservatively)

represented by GðzÞ ¼ Gid½1þ�ðzÞ�, where �ðzÞ accounts for the

mismatch between the dynamics of the systems. For instance, if

�1ðzÞ ¼ z2�1:4656
z2�0:1544 , then the formula above yields GðzÞ ¼ 1. Similarly

� ¼ G1�G2

G1þG2
yields Gidð1þ�Þ ¼ G1. A compact (albeit conservative)

representation of the set of all systems compatible with the

available experimental information is:5

G ¼ Gidð1þ�Þ; � 2 H1; k�k1 � �:

In the example above, k�k1 � k0:5ðG1 �G2Þk1 ¼ 0:22.

ACKNOWLEDGMENTS

The authors are indebted to Professor Stefano Soatto and

Mr. Alessandro Bissacco, Deparment of Computer Science,

University of California at Los Angeles, for providing the

experimental data, the Matlab m-files to compute the

Martin distances, and many discussions and suggestions concern-

ing this manuscript. This work was supported by the US National

Science Foundation, under grants IIS-0117387, ECS-0221562, and

ITR-0312558 and by the US Air Force Office of Scientific Research,

under grant FA 9550-05-1-0437.

REFERENCES

[1] J.K. Aggarwal and Q. Cai, “Human Motion Analysis: A Review,” Computer
Vision and Image Understanding, vol. 73, no. 3, pp. 428-440, 1999.

[2] A. Bissacco, A. Chiuso, Y. Ma, and S. Soatto, “Recognition of Human
Gaits,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, pp. 52-
57, Dec. 2001.

[3] A.F. Bobick and J.W. Davis, “The Recognition of Human Movement Using
Temporal Templates,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 23, no. 3, pp. 257-267, Mar. 2001.

[4] S. Boyd, L. ElGhaoui, E. Feron, and V. Balakrishnan, “Linear Matrix
Inequalities in System and Control Theory,” SIAM Studies in Applied Math.,
vol. 15, 1994.

[5] M. Brand, N. Oliver, and A. Pentland, “Coupled Hidden Markov Models
for Complex Action Recognition,” Proc. IEEE CS Conf. Computer Vision and
Pattern Recognition, pp. 994-999, June 1997.

[6] C. Bregler, “Learning and Recognizing Human Dynamics in Video
Sequences,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition,
pp. 568-574, June 1997.

[7] J. Chen and G. Gu, Control-Oriented System Identification. John Wiley & Sons,
2000.

[8] D. Cunado, M.S. Nixon, and J.N. Carter, “Automatic Extraction and
Description of Human Gait Models for Recognition Purposes,” Computer
Vision and Image Understanding, vol. 90, no. 1, pp. 1-41, 2003.

[9] D.M. Gavrila, “The Visual Analysis of Human Movement: A Survey,”
Computer Vision and Image Understanding, vol. 73, no. 1, pp. 82-98, Jan. 1999.

[10] M.A. Giese and T. Poggio, “Quantification and Classification of Locomo-
tion Patterns by Spatio-Temporal Morphable Models,” Proc. IEEE Int’l
Workshop Visual Surveillance, pp. 27-34, July 2000.

[11] J. Hoey and J.J. Little, “Representation and Recognition of Complex Human
Motion,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition,
pp. 752-759, June 2000.

[12] P.S. Huang, “Automatic Gait Recognition via Statistical Approaches for
Extended Template Features,” IEEE Trans. Systems, Man, and Cybernetics-
Part B: Cybernetics, vol. 31, no. 5, pp. 818-824, Oct. 2001.

[13] P. Khargonekar and A. Tikku, “Randomized Algorithms for Robust
Control Analysis and Synthesis have Polynomial Complexity,” Proc. IEEE
Conf. Decision and Control, pp. 3470-3475, Dec. 1996.

[14] T. Moeslund and E. Granum, “A Survey of Computer Vision-Based Human
Motion Capture,” Computer Vision and Image Understanding, vol. 81, no. 3,
pp. 231-268, 2001.

[15] R. Plankers and P. Fua, “Articulated Soft Objects for Multiview Shape and
Motion Capture,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 25, no. 9, pp. 1182-1187, Sept. 2003.

[16] M. Sznaier, C. Lagoa, and M.C. Mazzaro, “An Algorithm for Sampling
Subsets of H1 with Applications to Risk-Adjusted Performance Analysis
and Model (In)Validation,” IEEE Trans. Automatic Control, pp. 410-416, Mar.
2005.

[17] A. Madabhushi and J.K. Aggarwal, “A Bayesian Approach to Human
Activity Recognition,” Proc. IEEE Workshop Visual Surveillance, pp. 25-32,
June 1999.

[18] R.J. Martin, “A Metric for Arma Processes,” IEEE Trans. Signal Processing,
vol. 48, no. 4, pp. 1164-1170, Apr. 2000.

[19] I.E.D. Minnen and T. Starner, “Expectation Grammars: Leveraging High-
Level Expectations for Activity Recognition,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. 626-632, June 2003.

[20] B. North, A. Blake, M. Isard, and J. Rittscher, “Learning and Classification
of Complex Dynamics,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 9, pp. 1016-1034, Sept. 2000.

[21] N.M. Oliver, B. Rosario, and A.P. Pentland, “A Bayesian Computer Vision
System for Modeling Human Interactions,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 22, no. 8, pp. 831-843, Aug. 2000.

[22] H.D. Tuan and P. Apkarian, “Low Nonconvex Rank Bilinear Matrix
Inequalities: Algorithms and Applications,” Proc. Conf. Decision and Control,
pp. 1001-1006, Dec. 1999.

[23] P. VanOverschee and B. DeMoor, “Subspace Algorithms for the Stochastic
Identification Problem,” Automatica, vol. 29, no. 3, pp. 649-660, May 1993.

[24] Y. Yacoob and M.J. Black, “Parameterized Modeling and Recognition of
Activities,” Proc. Int’l Conf. Computer Vision, pp. 120-127, Jan. 1998.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 11, NOVEMBER 2005 1825

5. Roughly speaking, this amounts to covering this set with a disk
centered at Gid, with radius � in the H1 topology.


