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Abstract-This paper deals with the problem of model 
(in)validation of discrete-time, causal, LTI stable models subject 
to Slowly Linear Time Varying structured uncertainly, using 
freqnency-domain data corrupted by additive noise. It is nell 
known that in the case of structured LTI uncertainty the 
problem is NP hard in the number of uncertainty blocks. The 
main contribution of this paper shows that, on the other hand, if 
one considers arbitrarily slowly time varying uncertainty and 
noise in U;, then tractable, convex necessary and sufficient 
conditions for (in)validation can be obtained. 

I. INTRODUCTION 

This paper deals with the problem of frequency-domain 
(in)vdidation of discrete-time, causal, Linear Time Invariant 
(LTI), stable models subject to Slowly Linear Time Varying 
(SLTV) structured diagonal uncertainty, that enters the model 
in Linear Fractional Transformation (LFT) form. In general 
terms, this problem can be formally stated as follows: Given 
frequency-domain data corrupted by additive noise, find 
whether the candidate model together with some combination 
of admissible uncertainty and noise could have generated this 
data. If the answer is negative, then the model is said to be 
invalidated and should be rejected; otherwise, is said to be 
not invalidated by the available experimental evidence. 

Model ($validation of LTI systems in a Robust Control 
setting has been extensively addressed in the past decade (see 
for instance 1101, 171, [2], [I], [5 ] ,  [9], 1131 and references 
therein). The main result ([2], [I]) shows that in the case of 
L l l  causal unstructured uncertainty and general LFT depen- 
dence, model (in)validation reduces to a convex optimization 
problem that can be efficiently solved, by applying norm 
constrained interpolation theory. 

In the case of structured uncertainty, the problem still can 
be recast as a set of necessary and sufficient conditions, 
but in terms of bilinear matrix inequalities and has been 
shown in [ 121 to be NP-hard in the number of uncertainty 
blocks. However, computable weaker conditions (sufficient 
for the model to be invalidated) in the form of Linear Matrix 
Inequalities (LMIs) are available, by reducing the problem 
to the (in)validation of a scaled model subject to a scaled 
unstructured uncertainty as proposed by 121, [12], [9], or 
alternatively, by stating the invalidation problem as one of vi- 
olation of robust performance by any admissible uncertainty 
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(and solved as a structured singular value problem type) as 
in [IO], [5] .  

This paper seeks to overcome the computational com- 
plexity of model (in)validation in the presence of structured 
uncertainty and in this sense, it is related to the approach 
in [ 5 ] .  In fact, our starting p i n t  is a set of frequency- 
dependent LMI conditions with the same structure as the 
ones developed by [ 5 ] .  However, by considering SLTV 
uncertainty operators with arbitrarily small variation rates 
(at the expense of relaxing the causality requirement, as is 
also the case of [SI), we obtain a necessary and sufficient 
condition for a model to be invalidated by experimental 
data. Note that since currently available analysis and design 
tools, e.g. p-synthesis, provide tight conditions only for 
SLW uncertainty’. from a practical standpoint it is desirable 
also to allow for SLTV uncertainty in the model validation 
process. This avoids obtaining potentially more conservative 
LTI descriptions that, nevertheless, cannot be fully exploited 
for controller synthesis. Moreover, this set-up allows for 
directly dealing with an 3 2  characterization of the noise 
(as in the original formulation in 151). rather than a set of 
pointwise in frequency euclidian norm constraints. 

The paper is organized as follows. Section II presents 
the notation and conventions used through the paper and 
Section III states the model (in)validation problem under 
consideration. Section IV contains the main results; for ease 
of presentation the proof of the driver result of this paper 
is left to the Appendix. Finally, Section V illustrates the 
proposed method with a simulation example and Section VI 
presents some conclusions as well as directions for further 
research. 

11. PRELIMINARIES 
Z, R and C denote the set of integer, real and complex 

numbers respectively. x denotes a complex-valued column 
vector, x* its conjugate transpose row vector and 1x1 its 
euclidean norm fi. A” denotes the conjugate transpose of 
matrix A, Ai,, its ( i , j )  element, A; its i-th column and 8 ( A )  
its maximum singular value. If A = A *  then A > 0 (A  5 0) 

‘These conditions ax also tight in the case of of p-simple LTI uncertainty 
structures, in which case the conditions pmvided in the pm~ent paper are 
also necessary and sufficient. 
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Fig. 1. Model (1n)Validatian Set-up 

means that A is positive definite (negative semidefinite). 
1,0 denote the identity and null matrices of compatible 
dimensions (when omitted). 

Let E? denote the Hilbert space of vector-valued sequences 
x = {x;}iEz, equipped with the norm Ilxll: I &&xi 
and 2 ( & ) ,  the space of discreteAne, LTV, bounded 
operators M in 4, equipped with the norm IIMllr2ind = 
SupujoIIMullz/llullz. Let 9 2  denote the Hilbert space of 
Lebesgue square integrable functions x ( w )  equipped with 
the norm I[x[l: = pt race(x(m)x(m)*)e ;  2, the Lebesgue 
space of complex-valued matrix functions X(z) essentially 
bounded on the unit circle, equipped with the norm liX[I- 
ess  SUP^+^ (r (X(z)); A%, the subspace of functions in 5% 
with hounded analytic continuation inside the unit disk, 
equipped with the norm IlXll- = ess S U P ~ ~ ~ < ~ ~ ( X ( Z ) )  and 
92- (A%), the subspace of 9 (A%) of rational functions. 
Let 933?(y) be the open y-ball in a normed space X, 
%'X(y) = { x  E b: 11x1 < y } ;  Z W ( y ) ,  the closure of 

- 

9 % ( y )  and 93% (1 4 ), the open (closed) unit ball in 
K. 

Finally, given a real-valued sequence x in e?, x(ej")  

denotes its Fourier transform x(e jo)  A &ZxieJ"i and X ( z ) ,  
the 3'-transform of a real-valued matrix sequence {Xi} icz ,  
X ( z )  = ZiGzXi$. We will use the same notation x, I(x(I2 for 
elements in either !? or 9 2 ,  in any case it will be clear 
from context which space we mean. h denotes the unit delay 
operator and M*4 the upper linear fractional transformation 
M*A = M z I A ( ~ - M I I A ) - ' M I ~ + M ~ ~ .  

111. PROBLEM STATEMENT 
Consider the model (in)validation set-up, shown in Fig. I 

on the left, as an upper linear fractional interconnection P*A 
between a discrete-time, causal, stable, LTI candidate model 
P. 

q(ej") =pll (e'")p(ej") +Pl2(ej")u(ej") 
s ( P )  = 9 1  (e'")p(ej") +fiz(ejw)u(eJ") + z ( ~ J " )  (1) 

and a structured uncertainty block A = diag(A1,. . . ,A,,) with 
Ak full square: 

Pk &(sa), k = 1 i . .  . , n (2)  

which is assumed to belong to the set: 

A:Lw(r) = { A E  9 2 ( ! z ) ( y ) :  ( I M - M I I i , i n d  5 V } ,  

with v > 0 but arbitrarily small, i.e. to the set of Linear T h e  
Varying (LTV) operators bounded by y, of arbitrarily slow 
variationZ v. 

The block P consists of a nominal model of the actual 
system 4 2  and some description of how the uncertainty 
affects the model, given by blocks 91,  PI^ and 91. Fur- 
thermore, we assume that model P has a rational transfer 
function P(z) E so that the 
interconnection P*A is robustly e 2  stable. Finally, ( q , p )  are 
panitioned according to the uncertainty smcture as in (2) 
and (u ,s ,z )  are scalar signals. 

Given a known fixed frequency4omain input signal 
u(ej") and its output .s(ej") possibly cormpted by additive 
noise z(eJw) in the set 

and that llPl I I)_ < 

- 
A' A 3 9 2 ( E ) ,  

the goal is to determine whether the candidate model P 
together with some admissible pair of uncertainty A E 
AFw(y) and noise z E A' could have generated this input- 
output pair, i.e. whether: 

s =  (P*A)u+z, for some (A,z) 

If the answer is affirmative, then the model is said to be not 
invalidated by the experimental evidence. On the contrary, if 
no such pair (A.z) exists, the model should be discarded. 

Under the assumptions that both signals ( u , s )  are the 
impulse responses of some discrete-time, causal, stable, LTI, 
rational systems in 9&, equations ( I )  can be rewritten as 
follows: 

q(ej") = M I  1 (e'")p(e'") +M1z(ej")v(eJw) 

z(ej") = ~ 2 1  (e'")p(P") +M22(ej")v(eJo),  

where Y is an impulsive signal, i.e. v(ej") = 1 Vw E [0,2n), 
u(ej") = sU(ej")v(e'"), 

~ l l ( e j " )  = y ~ , j ( B " ) ,  ~ 1 2 ( 2 " )  = Pj2(ejo)S,(eJw), 

(3) 
~ 2 1  (e'") A- -&l(ej"), Y 

E 

and now (z,A) are assumed to be bounded in norm by 1, 
i.e. z E a, A E Apw. In this framework, the model 
(in)validation problem can be precisely stated as follows. 

Pmblem 1; Given the input-output pair {u(ej") ,s(ej")}  
and the admissible sets of noise A' and uncertainty 
AFw(y). determine whether there exists at least one pair 
z E A', A E A p w ( y )  so that equations (1) and (2) hold; or 
equivalently, whether there exists at least one A E A;"" so 
that: 

(4) l lzllz = lI(M*A)~llz 5 1 ,  
with system M defined as in (3) and v an impulsive input. 

'Recall that if operator A E 1y(o is time-invariant, it commutes with 
the delay operator, i.e. AA = M and therefore v = 0. On the Other hand, 
v = 2 corresponds to the arbitrarily fast time-varying case, because 11AA - 
MI/f l  ind 5 211A11r2 ino. 
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IV. MAIN RESULTS 

This section proposes a necessruy and sufficient test that 
solves Problem 1, in terms of frequency-dependent Linear 
Matrix Inequalities. We begin by presenting the driver result 
of the paper. 

Theorem I :  Consider a discrete-time, causal, stable, ratio- 
nal, LTI system M(z) € 9'310, and a structured uncertainty 
A E AtLw, A = diag(A1~. . . ,A,,). Then, there exists some 
v* > 0 such that I\(M*A)vll$ > 1, with v an impulsive 
input, for any A E A$w of variation v 5 v* if and only if 
there exists a hermitian matrix X(o) > 0 and a real transfer 
function y(o) 2 0, such that V o  in [OI27t) the following 
inequalities hold 

X(o) =diag(x.l(o)l~; ..., x,,(w)l,,) and 

(6) 

Direct application of this result leads to the following 
corollary, outlining a necessary and sufficient test for model 
(in)validation subject to structured SLTV uncertainties. 

Cumllaiy I :  Given a candidate model P, the experimental 
data {u(e j" ) ,s (e j" ) }  and candidate noise and unceriainty 
sets {JVIAtLw(y)}: 

Form the system M defined in (3). 
Evaluate at each frequency 

9 ( w )  = sup{y: conditions (5) hold} 

and compute the integral l (9)  A J?~(o)$. 
Then there exists at least one A E ASLw of arbitrarily 
small variation v so that ))(M*A)v~~z 5 1 with v an 
impulsive input (i.e. the model is not invalidated by 
the experimental data available so far) if and only if 

(7) 

I ( ? )  5 1. (8) .. . 
Rentnrk I :  Conditions (5) and (6), and therefore the pro- 

posed model (in)validation test, remain necessary and suf- 
ficient for LTI structures A with at most two different full 
blocks. The proof follows along the lines of that of Theorem 
1. The sufficiency is straightforward for an arbitraq number 
of blocks; pre/postmultiplying (5) by [p' v']' and its 
hermitian conjugate and using the facts that I I A I I L ~ ~ ~ ~  5 1 
and it commutes with D immediately yields Iz(o)l* 2 y(w). 
The desired result follows then from (6). Necessity follows 
from the losslessness of the S-procedure in the case of at 
most three Hermitian quadratic forms in a complex linear 
space (see [3] and [61, Chapter 8, Section 8.1.2); if LMI 
( 5 )  fails, it is always possible to construct a LTI a so that 
I I ( ~ ( e j 0 ) * 8 ( o ) ) ~ ( e j ~ ) 1 1 *  5 I ,  i,(ej") = I ,  VW. 
On the other hand, if conditions ( 5 )  and (6) hold for a 

constant matrix X, then (as a consequence of operator D 

being constant and DA = AD) ~ ~ ( M * A ) v ~ ~ ~  > 1, for any 
A E ALw S {A E 8 2 ' ( ! 2 ) :  ~ ~ X A - M ~ ~ ~ 2 i n d  5 2 )  and an 
inpulsive input v, i.e., model M subject to arbitrarily fast 
LlV uncertainty is invalidated by the experimental evidence. 

Note that in principle applying the test above requires 
having experimental data at all frequencies. However, due to 
the continuity of M(ejo ) ,  which in turns implies continuity 
of X ( w )  and y(o), the integral (6) can be approximated 
with arbitrary precision by a sum and thus the (in)validation 
test requires only a finite (albeit possibly large) number of 
experimental data points. 

V. A SIMPLE EXAMPLE 

In order to illustrate the proposed method, consider the 
following rrue LTI system P*& with: 

Pll(z)= E i !] P n ( i ) =  E] 
3.5(Z+ I )*  

'I(') = 1' -'I "(') = 1X,6Z?-48,8Z+32,6 

and &(z)  =diag(&(z),$(z),&(z)), with: 

0.85(5.1-4.92) 
a'(Z) =(6.375-3.6250~) 

0.65(5.001-4.9990~) 
= (6.15 - 3.852) 

0.95(5.15 -4.85~) 
(6.95- 3.052) ' 

A,(') = 

Assume we are given P22(z) as a candidate model for P* 
i\, together with a description of the uncextainty type3 and 
how it enters the model in terms of the blocks ( P I I , P I ~ , ~ I )  
respectively. Our "experimental" data4, s(ejo), consists of a 
set of N = 1000 samples of the frequency response of P*A, 
cormpted by complex additive noise in JV =%%(E) ,  with' 
E = 0.0894. The plant, the model and the samples are shown 
in Fig. 2. 

The goal is to check whether the given model subject 
to structured SLTV uncertainty is able to reproduce the 
experimental evidence within the assumed noise bound, i.e. 
whether there exist at least one A E AtLw so that the 
equiwlenr closed-loop model as defined in (3) satisfies 
II(M*A)v112 5 1, where v denotes an impulsive input. If the 
answer is affirmative, it is also of interest to quantify the 
minimum size of the uncertainty y, so that the model remains 
not invalidated by the data. 

- 

'Note that l]Alle = 0.95. 
'In this example, we have generated the output noise samples as complex 

numbers with uniformly distributed random phase (between IO,%)) and 
(bounded) magnitude. We assume however that these frequency domain 
sampler belong to Some system in BE- and Olerefore satisfy the conjugate 
symmetry propeny. 

?This noise upper bound represents a 5 6  of the m e  frequency response 
energy. 
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Fig. 2. Model. actual plant and samples. 

To this end, we evaluated condition (7) at a grid of 1000 
frequency points over the interval [0>21r). The second and 
fourth columns of Table I display the results of the proposed 
(in)validation test for increasing values of the uncertainty 
size y in the interval [0.2,0.35]. According to Lemma 1, 
the model remains invalidated by the available evidence, i.e. 
11s- (P*A)vllz > E ,  for y <  0.2333. Starting at y= 0.25 the 
approximate value of I ( j )  t Jpj(o)g does not exceed 1 
and we may conclude that there exists at least one admissible 
uncertainty in Atm(y) so that the interconnection P*A can 
explain the experimental data. 

VI. CONCLUSIONS AND FURTHER RESEARCH 
This paper presents a frequency-domain test for (in jval- 

idation of LTI models subject to SLTV structured diagonal 
uncertainties. By characterizing the noise in terms of its 2 2  
norm and allowing an arbitrarily small variation rate of the 
uncertainty operator, at the expense of relaxing the causality 
requirement, this paper presents a set of frequency-dependent 
LMI based conditions, that are necessary and sufficient to 
solve the model (in)validation problem. 

Efforts are currently under way to remove the noncausal- 
ity limitation of the proposed method, by addressing the 
(in)validation problem in the time domain. 

APPENDIX 
Pmofi [Suficiencyl Assume conditions (5) and (6) hold, 

i.e., for any E > 0 and V o  E [0,2n), there exist X ( w )  = 
X(w)* > 0 and a positive transfer function y(o) so that: 

- E /  < 0 (9) 

and Jpy(o)e > 1. Following a reasoning similar to [SI 
(Lemma 2.3) or [6] (Chapter 6, Lemma 6.7), given X ( w )  
and the fact that M ( z )  is rational, it is possible to construct a 
function D(z )  E %A% that preserves the structure of X, such 
that D-'(z )  E .%'A& and Vo, X(w)  = D(ej')'D(ejo). Since 

TABLE I 
RT.SUI.TS OF THE M O D E L  (IN)VALII>ATlON TEST 

D(z )  E &?A%, it admits the expansion ZLoD;$ where the 
sequence {D;} converges exponentially to zero. Denote by 
D the corresponding (LIT, causal) operator in 2'(&), D = 

Pick x(e jw)  = [p(eJo)' v(eJo)']',  v ( e jo )  = 1. Multiplying 
(9) from the left and from the right by .x(ejo)* and "(do) 
respectively, rearranging terms and integrating over [0,2n] 
yields: 

.zp"=pjai. 

Consider the term between brackets on the left hand 
side of the above equation. Following [6] (Chapter 6, page 
91). we have that ~ I D A L - '  [ I C 2  ind I 1 + VK(D)  with K ( D )  = 

[ID-' indZp"=olB(Dj) < -. Letting U = Dq: 

II(Dm-')ull; = I~DPII: I [ I +  vK(D)l2l1Dqll: * 
0 5 / /Dq// i -  IloP11;+ [V2K(~)2+2VK(D)I(~Dq((: 

5 llDq11;- IlDPll:+ [v2K(D)'+2VK(D)1llDllZ in,illdl:. 
Denote a ( v )  = [V~K(D)~+~VK(D)]~ID~~~,~.~. Clearly a ( V )  
approaches 0 as v tends to 0. On the other hand, 11q112 is uni- 
formly bounded above by p = I I ( / - M I I A ) ~ ' I ~ ~ ~ ~ ~ ~ ~ ~ M ~ ~ I I . .  
over the class A:Lw ([61, Appendix B) and by assumption 
~ ~ B ( o ) ~  = 1 + y, y> 0. Back to the term between brackets 
in (10): 

(11Dq11:- II~Pll:+a(v)llqll%) -4llPll:+ 1) -a(v)llqll: t 
-E(11q11:+l)-a(V)Ilsll:2-E(P2+1)-a(v)p2> -y. 
Choosing E < y/(2(1+p2)) and v* sufficiently small so that 
a(v * )  < y / ( 2 p 2 )  renders the left hand side of (10) always 
greater than 1 and yields the desired result: 

1 < llzll: = I I ( M * A ) v ~ ~ ~ ,  v (e jru)  = I ,  

for any A E A:Lw with v 5 v'. 
Before proceeding with the necessity pan of the proof, we 

Leninia I: Let 
need the following preliminary result. See also [ll]. 

If the following LMI: 
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does not have a positive definite solution X, then there exist 
signals r = (p* I,*]*, v(&) = 1 and s = [q* z*]* supported in 
[ob,wo+h] such that: 

2 2 
s = M r ,  Ilqrlh 2 IIP.CIIZ k =  l , . . . , n ,  IIzIl: 5 [Ivll:. (12) 

Prooft Let Pr and Q k  be matrices of the form 
IO . . ' O / O  ... 01, such that: 

41: k = l ,  . . .  : n  
z k = n + l .  

pt k = l ,  . . . : J I  

v k = n + l  Q ~ s  = Pkr = 

According to [4] (Lemma IILI),  if (11) is not feasible then 
the following dual LMI has always a solution W = W' 2 0, 
w P O :  

+ trace(QkMoWM;Qi - Pk WP;) 2 0,  k = I , .  . . , n ( I  3) 
C+IWC;+I -Qn+lMoWM$Qf+l 2 0. (14) 

Let in =rank( W )  and factor W as RR', where R = [RI . . . R,] 
in C'"+')'"'. Replacing the expression of W, equations (13) 
and (14) become: 

k = l ,  ..., n (15) 
m 

~ K + i R i R ~ P , + l -  ~Q.+iMoR;RfM;Qr+] 2 0. 

Since e,+] WP,:,, # 0 (otherwise robust stability would be 
violated6), we can always scale W so that P,,+lWP,:,] = zzl IR,,+l.;12 = 1 .  Moreover, we can always choose the 
elements Rn+l,; # 0, i = I , .  . . ,m (e.g. by right multiplying 
R by a unitary matrix U). 

Define the signal r over non-overlapping frequency inter- 
vals of length h ~ R z z + ~ . ; ~ 2 :  

;=I ;= I 

D E  [wi-l,q], i =  I ,  ..., ni c 0, otherwise, 
= &+I.; '  

with o, = a-1 +/~lR,,+~.;l~. Now by construction v(ejo) = 1 

6Conrider the inpui signal r over nondverlapping frequency intermis of 
length $: 

0 t lo;., .";I. ; = I.. . . :m 
'('") {% otherwise. 

with U$ = 9-1 + $. If P,,+lWP,+l, then 11).11? = O  while (p.4) are nor zero 
signals, violating robust rlability against the class A;Lw. 

in [a, q + h] and: 

which together with (15) yields (12). w 
Prooft [Necessity] Following [Ill,  define at each fre- 

quency w: 

$ (w)  =sup{)': conditions (5) hold} 
y k =  max j ( w )  

mt[kk.(k+l)h] 

for any partition over [0,2x]. Note that since y 5 M;2M22. 
9 is well defined. Assume that condition (6) fails, i.e. 
JFj(o)g 5 1. Consider first the case $"ji(w)$ < 1 .  
Then, given an arbitrarily small E > 0 there exists a h1 (E) > 0 
so that: 

Pick Y(E) 1 & ( 2 -  2) > 0. 
Using the facts that the interconnection M*A is uniformly 

robustly stable for the class A$Lw (see [61, Appendix B, 
Corollary B.5) and system M continuous on [0,2x), there 
exists a h2 > 0 so that Vh 5 hz: 

where &(ejm)  = M(@) for o E [kh, ( k +  l ) h ] .  
Next, note that if (X(w) , y (w) )  solve LMI (5 ) ,  then so do 

X,(w) =ax(@) and ya(w) = ay(w)  for any a E ( 0 , l )  '. 
Thus, it follows that j ( m )  2 0. Define now the narrow-band 
system: 
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by assumption the following LMI: 

is not feasible. Applying Lemma 1, there exist (piece- 
wise constant) signals supported in [kh, (k  + l)h],  r* = 
[ (pk)* ($ ) * ] * ,  $ = 1 and sk = [($)*($)*I*, so that: 

3 =M(eJkhVk, IIqfII: 2 IIP~II; i =  I ,  ..., n ,  . 

11$11: bk+E)I/SII:. (17) 
Consider the following piecewise constant signals with sup- 
port in [0,2n): 

the system f i ( e j w )  & M(eJkh) for o E [kh, ( k +  l )h]  and the 
perturbation 8 (161, [lll): 

By construction, p k  = 8$ and 2 = (d*8)P. It can also be 
shown that 8 E AtLLN, with v 2sin($). And according to 
Lemma 1 and (17), for an impulsive input v(ej”) = 1: 

Using (16), for this paaicular 8 and this particular input v: 

II(M*8)vl12 5 II(M*b)v- ( f i * A ) V l l 2  + ll(fi*6)vlI2 
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