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Abstract 

This paper presents a risk-adjusted approach to the prob- 
lem of model (in)validation of LTI systems subject to struc- 
tured dynamic uncertainty entering the model in LET form. 
The proposed method proceeds by sampling the set of ad- 
missible uncertainties, with the aim of finding at least one 
element that together with the candidate model can repro- 
duce the experimental data. If so, the model is not invali- 
dated by the experimental evidence. Otherwise, if no such 
element exists, the model is invalidated by the data with a 
certain probability. As we show in the paper, given E > 0, 
it is possible to determine a priori the number of samples 
so that the probability of invalidating a valid model is below 
E .  Thus, by introducing a relaxation in terms of this risk 
E ,  we can overcome the computational complexity associ- 
ated with model invalidation in the presence of structured 
uncertainties. 

1 Introduction 

This paper presents a risk-adjusted approach for time- 
domain based model (in)validation of Linear Time Invari- 
ant (LTI) systems subject to structured dynamic uncertainty. 
entering the model as a Linear Fractional Transformation 
(LIT). Formally, this problem can be stated as follows: 
Given experimental data corrupted by noise, find whether 
or not this data could have been produced by a combination 
of the candidate model and some uncertainty in a given un- 
certainty set. If the answer is negative, then the model is 
said to be invalidated by the data and is rejected; otherwise 
is said to be not invalidated by the experimental evidence 
available so far. 

Model (in)validation of LTI systems has been extensively 
studied in the past decade (see for instance [2,  4, 5, 81 and 
references therein). The main result shows that in the case 
of unstructured uncertainty and LFT dependence, model 
(in)validation reduces to a convex optimization problem that 
can be efficiently solved. In the case of structured uncer- 
tainty, the problem leads to bilinear matrix inequalities, and 
has been shown to be NI-hard in the number of uncertainty 
blocks in [7]. However, (weaker) necessary conditions in 
the form of LMls are available, by reducing the problem 
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to the (in)validation of a scaled model subject to a scaled 
unstructured uncertainty ([2,7]). 

Motivated by earlier results for sampling LTI causal 
bounded operators in B H ~ ([31), in this paper we seek to 
overcome the computational complexity of the problem by 
pursuing a risk-adjusred approach. The proposed technique 
proceeds by uniformly sampling the set of admissible un- 
certainties, with the aim of finding at least one that together 
with the candidate model ,can reproduce the experimental 
data. If no such uncertainty can be found, then we can con- 
clude that, with a certain probability, the model is invalid. 
As shown in the sequel, given any E > 0, we can compute 
U priori the number of samples so that the probability of 
rejecting a valid model is below E .  Thus, by introducing a 
(small) risk of rejecting a possibly good candidate model, 
we can substantially alleviate the computational complex- 
ity entailed in validating models subject to structured un- 
certainty. 

The paper is organized as follows. Section 2 introduces the 
notation used through the paper as well as some required 
results, and states the model (in)validation problem. Sec- 
tion 3 presents the proposed method. Section 4 illustrates 
the results of the paper with a simulated example. Finally, 
Section 5 contains some concluding remarks and directions 
for future research. 

2 Preliminaries 

2.1 Notation 
In the sequel;R represents the set of real numbers, x E Rm 
denotes a real-valued column vector, X' a real-valued row 
vector, x(k)  its k-tk element and llxllp its p-norm: 

Given one-sided, finite vector sequences x = {xi}Eo with 
xi E Rm, !;t[O,N] denotes the space of bounded sequences 
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in the !,[O,N]-norm: 

and e;: denotes the extended Banach space of infinite se- 
quences bounded in the !,-norm: 

llxll- A ~UPIIXilI- 

As  usual, !,[O,N] and e,  stand for the case of scalar se- 
quences. 

L denotes the Lebesgue space of complex-valued ma- 
trix functions essentially bounded on the unit circle /zI = l ,  
equipped with the norm: 

11G11- =esssupT(G(z)) 
IzI=I 

Similarly H denotes the subspace of functions in L - with 
a bounded analytic continuation inside the unit disk 121 < 1, 
with norm: 

11G11- esssupB(G(z)). 

Also of interest is the' Banach space H -,p of functions in 
H ~ which have analytic continuation inside the disk of ra- 
dius p > 1, with norm: 

IzI<I 

IlGll-,~ SUP a(G(z) ) .  
IM<P 

Given a normed space {X ,I1 . / I x  }, B X ( y )  denotes the 
open y-ball in x : 

B X (U) = { x  E X : llxllx < U )  

and B X  ( y )  its closure. In the sequel, H and I / .  I \_  stand 
for the case p = 1, and B X for the unit ball in X . 

This paper considers finite-dimensional, causal, discrete- 
time, LTI systems bounded in !? or exponentially stable, 

where * stands for convolution. Any such system will be 
represented by its convolution kernel {S,,S, ,S, , . . .} ,  i.e.: 

& 

j=O 
Y,, = s&-juj, 

or by its z -transform evaluated at l /z :  

381 0 

where S ( z )  E H w,p,  for some p > 1. It is a well known fact 
that in this case IISllp2+2 = S U ~ ~ ~ , = ~  B ( S ( z ) ) .  

Finally, for a real-valued matrix A E RmXn,  AT denotes its 
transpose and A: its square root. 

2.2 Some Required Results 
The following algorithm, developed by [3], generates N, 
uniformly distributed samples over the set C , consisting of 
all finite impulse responses h = [Ho, H I ,  , . . , HN} so that 
the function H ( z )  = ~ ~ = o H , z k  can be completed to belong 
to B H ~. It will used to sample the uncertainty set A,,(y). 

Algorithm 1 

Let k = 0. Generate N, samples uniformly distributed over 
the set 

{& : W O )  5 1). 

I .  Let k := k + 1. For every generated sample 
(Hi, HI,. . . , Hi-,), consider the partition 

and let the matrices Y and Z be a solution for the 
linear equations 

B = Y(I -ATA):; 

c = (I -AAT):Z, 

u(Y) 5 l,B(Z) 5 1 
- 

with I the identity matrix. k t  J(Hb,H:, . . . ,Hi-l)  be 
the Jacobian matrix of the linear transformation that 
maps the set [W: a ( W )  5 1) to the set {Hk: h E 
C }. Generate 

[N,J(Hb,H{, ... , H ~ - I ) ]  I 

samples uniformly over the set {W : O(W) 5 I } ,  
where 1x1 denotes the largest integer smaller than or 
equal to x. For each of those samples Wi, take 

H: =-YA*z+(I-YYT):w~(I-zTz): .  

2. I fk  < N go to step 1. Otherwise, stop. 

2.3 Problem Statement 
Consider Figure 1, which depicts the model (in)validation 
set-up, as a lower LFT interconnection F , ( M , A )  between 
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Figure 1: The model (in)validation set-up 

and an uncertainty block A in some set As,, i.e. 

y = P * u + Q * C + W  
q = R * u + S * C  
C = A . * q  

or in closed-loop form F l ( M , A )  = P + QA(/ - SA)- 'R, 
where I is the identity system of appropriate dimensions. 

The  block M consists of a nominal model P of the actual 
system and some description of how uncertainty affects the 
model (e.g. additive or multiplicative dynamic uncertainty), 
represented by the blocks Q, R and S. The block A rep- 
resents structured diagonal dynamic uncertainty. Finally, 
the signals U and y represent an arbitrary but known test in- 
put and its corresponding output respectively, corrupted by 
measurement noise 0 in a given set N . 
This paper considers the following admissible sets of uncer- 
tainties and noise: 

A , ( y )  ={A: A = diag(Al, . ..,A!), (1) 

A; E %H -(y),Vi = 1,. . . , I }  
N =B ~ ~ [ O , N ] ( E ~ ) .  

Finally, block S is assumed to be hounded by IlSll- < y-'. 
so that the interconnection F [[M,A) is well-posed. 

In keeping with the model (in)validation spirit, the goal is to 
determine whether or not the measured values of the input 
U and the output y are consistent with the assumed model 
M and the given set descriptions for the noise o E N and 
uncertainty A E As,. Using these definitions, the model 
(in)validation problem can be precisely stated as: 

Problem 1 Given the time-domain experiments: 

U {Ua, U] ,  . . . ,UN) 
Y A {Y0>YI,. .. ,YN} 

the model M and the a priori sets (N , As,) determine 
whether or not ihe assumed model together with the a priori 
assumpiions could have generated the given experimental 

data, i.e. whether the consistency set 

T ( y ) = { ( A , o ) : A E A , , , o E N  and 

yk  = (F , ( M , A )  * ~ + w ) ~ , k  = 0,. . . ,h'} 

is nonempty. 

3 MainResults 

As mentioned before, in this paper we will pursue a risk- 
adjusted approach, where we (approximately) solve h o b -  
lem 1 by uniformly sampling the uncertainty set As, in an 
attempt to find an element that, together with an admissible 
noise, explains the observed experimental data. A poten- 
tial problem here is that the set A ,  is infinite dimensional. 
Note however that given a finite set of N + I input/output 
measurements, since A is causal, only thefirst N+ 1 Markov 
parameters affect the output y. Thus, rather than having to 
sample transfer matrices in As,, we only need to generate 
samples of thefirst N + I Markov parameters of elements 
of the set A,,. This is the key observation that allows to 
reduce the problem to that of sampling a finitedimensional 
set. More precisely, combining this observation with Algo- 
rithm l ,  leads to the following model (in)validation algo- 
rithm: 

Algorithm2 Given y,,. take Ns samples of AA,("fs,), 
{An(z)}tLl, according to the procedure described in Sec- 
tion 2.2. 

1. At step n. le1 

N on= {(Y--F ! (M,A")*~O~J~=O.  ( 2 )  

2. Find whether on E N . If so, stop. Otherwise, con- 
sider next sample A"+' (2) and go back to step 1. 

Clearly, the existence of at least one 0" E N is equivalent 
to T (y) # 0. The algorithm finishes, either by finding one 
admissible uncertainty A"(z) that makes the model not in- 
validated by the data or after N, steps. As shown next, if N, 
is large enough and VA"(z), 0" # N , then there is a high 
probability that the model is invalidated by the available ex- 
perimental evidence. 

Lemma 1 Lei ( E ,  6) be hvo positive constants in (0,l). If 

(3) 

then the probability of rejecting a model which is noi inval- 
idated by the data is smaller than E ,  and this event occurs 
with probability greater tkan (1 - 6). 
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Proof: Define the function f(A"(z)) = Er - lIOnl/pIO,N], 

with w" given by (2). Note that the model is not invalidated 
by the data whenever one finds at least one A"(z) so that 
f(A"(z)) > 0. Equivalently, if VA", f(An(z)) 5 0, we might 
be rejecting a model which is indeed not invalidated by the 
data. Following [6] ,  if the number of samples is at least of 
Ns then 

Prob{Prob{f(A(z)) b 0} 5 E }  2 (1 - 6), 

which yields the desired result. w 

4 Example 

In order to illustrate the proposed method, consider the fol- 
lowing true system: 

e(,) = F , (M,8),  (4) 

with block M given by: 

Q ( z )  = [ I  0 -11 
0.2(2+ 1 ) Z  

P(2) = 
1 8 . 6 ~ ~  -48.8z+32.6 

0 1 0  

0 0 0  
R(z )  = E] S ( z )  = [. 0 01 

and 8(z)': 

0 0 

0 0.1 (5.001 -4.99904 
(6.15-3.851) 

0.05(5.15-4.85~) 
0 (6.95-3.05~) 

Assume we are given P ( z )  as a candidate model for (41, 
together with a description of the uncertainty type and 
how it enters the model in terms of the set A,, and the 
blocks (Q,R,S) respectively. Our "experimental" data con- 
sists of a set of N = 20 samples of the impulse response 
of G ( z )  = F ! (P ,8 ) ,  corrupted by additive noise in N = 
B e,[O,N](0.0041). The noise bound E, represents a 10% 
of the peak value of the true impulse response. The plant, 
the model and the samples are shown in Figure 2. 

The goal is to check whether the given model subject to 
structured uncertainty is able to reproduce the experimental 
evidence (u,y), i.e. whether there exist at least one A E Asr 
a n d o = l y k - ( F  r ( M , A ) * u ) k ] f = o E N  ,byuniformlysam- 
~pling the set Afr(ys,). If so, it is also of interest to quantify 
the minimum size of the uncertainty ys,, so that the model 
remains not invalidated by the data. If instead no pair (A, 0) 
can be found, then we can reject the model with an a priori 
specified confidence. 

Begin by recalling that a lower bound on y,, can be obtained 
by performing an invalidation test on the assumed model but 
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Figure 2: Model, actual plant and samples. 

subject to unstructured uncertainty A(s) E Au while mini- 
mizing over its size, since A,(y) 3 A,,(y). As shown in 
121, the problem can be recast as a LMI feasibility one and 
efficiently solved. More precisely, if y' is such that Vy < 
the model subject to unstructured uncertainty is invalidated 
by the data, then it will remain so subject to structured un- 
certainty, and therefore y' 5 ysr. This is the rationale behind 
the method proposed in [2] for model (in)validation with 
structured uncertainties. 

Using the available experimental samples and the a priori 
assumptions, led to a value of y' of 0.0158, i.e. 0.0158 5 
ysl. On the other hand, since in this particular example h E 
A,,(0.125), y,, 50.125. 

To apply the proposed method, we generated 3 sets of 
Ns = 6000 samples over B H _, one for each of the scalar 
blocks Ai(z). i = 1,2,3, which yields one single set of sam- 
ples { A " ( z ) } ~ ~ ,  over A$>. Following Section 3, at each 
given value of ysr. we evaluated the function 

N f(An) =E~-II{(Y-F , ( ~ , A " ) * K ) ~ } ~ = ~ I I - l o , ~ ,  

for all A" E Asr(ys,). 

According to Section 3, Ns = 6000 samples guarantee a 
probability of at least 0.9975 that Prob{f(A) > 0 )  5 0.001. 
Thus, if VA", f(A") < 0 the model is invalidated by the data 
with high probability; it is then necessary to increase the 
value of y,, and continue the (in)validation test. Starting 
from ySr = 0.0158, we repeated this test over a grid of loo0 
points over the interval [O.OlSS,O. 1251 until we obtained the 
minimum value of yst of 0.0775 for which the model is not 
invalidated by the given experimental evidence. 

The proposed approach differs from the one in [2] in that 
here the invalidation test is performed by searching over As, 

2The corresponding samples over ule set Ab',,) were obtained by ap- 
propriate scaling of the impulse response of each given sample by y,,. 

Proceedings Of the American COnlrol Conference 
Denver, Colorado June 46,2003 



with the hope of finding one admissible A E As, that makes 
the model not invalid; while there it is done by searching 
over A, and by introducing, at each step, diagonal similar- 
ity scaling matrices with the aim of invalidating the model. 
More precisely, if at step k the model subject to unsttuc- 
tured uncertainty remains not invalidated (which is equiva- 
lent to the existence of at least one feasible pair (C,D,) so 
that a given matrix H([,Dn) is negative semidefinite, i.e. 
H(C,D,) p 0), one possible strategy is to select the scaling 
Dk+l so as to maximize the trace of H. See [I], Chapter 9, 
pp. 301-306 for details. However, for this particular exam- 
ple D, = diag(d,,,d,,,d,,) and this last condition becomes: 

I 1 
sup +"I+ -) (dIk +d3t) + N ( I  - - )d lk> 

d l  k.*Z& ' 4 k  Y2 YZ 
d,, 2 0, dzfi 2 0% d3k 2 0. 

For 0 < y < 1 ,  clearly the supremum is achieved at d,, = 0, 
dza = 0 and d3, = 0. AS an alternative searching strategy, 
one may attempt to randomly check condition H(C, D,) I O  
by sampling appropriately the scaling matrices, following 
[71. Using 6000 samples, this led to a value of y3, of 0.03 105 
for which the model is invalidated by the data. For larger 
values of xt in [0.03105,0.125] nothing can be concluded 
regarding the validity of the model. 

On the other hand, our method leads to an interval 
[0.0158,0.0775] where, even though we are not completely 
certain, we can reject the model with a very low risk of ac- 
tually discarding a valid model3. These results suggest that 
both approaches, rather than competing, can be combined 
to further reduce these gaps, leading to better informed de- 
cisions on whether to reject candidate models. 

As a final remark, note that it seems possible to reduce the 
number of samples required by the proposed method, at the 
expense of requiring additional a priori information on the 
actual system. This situation may arise for example when it 
is known that the uncertainty affecting the candidate model 
is exponentially stable or even real, if the system has un- 
certain parameters. The former case amounts to sampling 
B H ..,p C B H -, p > I, while the latter involves samples 
of constant matrices. 

5 Conclusions and Further Research 

This paper proposes a method for model (in)validation sub- 
ject to structured uncertainties, by sampling the set of all 
admissible uncertainties. The approach is risk-adjusted in 
the sense that if no pair (A, w )  can be found, then the model 
is invalidated by the data with a certain probability, i.e. we 
might be rejecting a possibly good candidate model. By in- 
troducing this relaxation, we overcome the computational 

3Fr0m a robust control stand-paint is always preferrable to discard a 
valid model than to accept an invalid one. 

complexity associated to the model invalidation problem 
with structured uncertainties. 

Efforts are under way to reduce the computational load of 
the proposed method, determined mainly by the required 
number of samples Ns, by adding more information into the 
problem e.g. in terms of a priori assumptions on the admis- 
sible set of uncertainties and the probability distribution of 
the samples 
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