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Abstract 

During the past few years efficient tools have been de- 
veloped to robustly stabilize Linear Parameter Varying 
systems. However, a key issue that needs to be ad- 
dressed in order to apply these techniques to practical 
problems is the development of techniques that, starting 
from experimental data, generate and validate suitable 
models. In this paper we propose a new model valida- 
tion framework for LPV systems subject to unstructured 
uncertainty. The main result shows that the problem of 
establishing consistency between the experimental data 
and the a pr ior i  assumptions on the nominal model, 
the uncertainty description and the error bounds can be 
recast as an LMI feasibility problem and be efficiently 
solved. Moreover, the overall computational complexity 
is similar to that of validating LTI models of comparable 
size. 

1 Introduction and Motivation 

During the past few years considerably attention has 
been devoted to  the problem of synthesizing controllers 
for Linear Parameter Varying Systems, where the state- 
space matrices of the plant depend on time-varying pa- 
rameters whose values are not known a priori  but can be 
measured by the controller. Assuming that bounds on 
both the parameter values and their rate of change are 
known then Affine Matrix Inequalities based conditions 
are available guaranteeing exponential stability of the 
system. Moreover, these conditions can be easily used 
to synthesize stabilizing controllers guaranteeing worst 
case performance bounds (for instance in an 3-12 or E ,  
sense, see [l, 7, 4, 23, 221 and references therein). These 
results formalize the intuitively appealing idea of gain 
scheduling, while avoiding its pitfalls [8, 9, 16, 18, 191. 

Clearly, a key issue that needs to be addressed in order 
to apply these techniques to practical problems is the de- 
velopment of identification methods capable of extract- 
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ing the appropriate description from experimental data. 
Control oriented identification of LTI systems is by now 
relatively mature, and efficient algorithms are available 
to obtain both models and worst case bounds on the 
identification error (see for instance [17] and references 
therein). On the other hand, identification tools for LPV 
systems are just starting to appear [12, 10, 11, 3, 211. At 
this point, these tools address the problem of obtaining 
a nominal model of the LPV system as well as bounds 
on the identification error, given a set of measurements 
corrupted by noise and some a priori  information on 
the plant. A complete description, suitable to be used 
by control synthesis algorithms, combines these models 
with an appropriate uncertainty description, obtained 
either from the identification algorithm or from a priori  
information on the plant. 

However, before this description can be used by the con- 
trol engineer, it must be validated, based on experimen- 
tal data. This leads to the following model (in)valida- 
tion problem: given experimental data, corrupted by 
additive noise, find whether or not this data could have 
been produced by the combination of the nominal model 
and some uncertainty in the uncertainty set. If the an- 
swer is negative, then the assumed model does not pro- 
vide a correct description of the physical system. Model 
validation of LTI systems has been extensively stud- 
ied in the past decade (see for instance [20, 15, 6, 241 
and reference therein). The main result shows that in 
the case of unstructured uncertainty entering the plant 
as an LFT, model validation reduces to a convex o p  
timization problem that can be efficiently solved. In 
the case of structured uncertainty and LFT dependence 
the problem leads to bilinear matrix inequalities. How- 
ever, (weaker) necessary conditions for consistency in 
the form of LMIs are available [SI. On the other hand, 
comparable results are not available for the case of LPV 
systems. 

Motivated by our earlier results on control oriented iden- 
tification of LPV [21] and LTI [14] systems, and by the 
related work in [24], in this paper we propose a new 
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model validation framework for LPV systems subject to 
unstructured uncertainty. The main result of the pa- 
per shows that the problem of establishing consistency 
of the experimental data with the a pr ior i  information 
(nominal model, uncertainty description and bounds on 
the measurement error) can be recast as an LMI feasi- 
bility problem that can be efficiently solved. Moreover, 
the overall computational complexity is similar to that 
of validating LTI models of comparable size. 

The paper is organized as follows: in section 2 we in- 
troduce the notation and formally state the LPV model 
validation problem. Section 3 contains the main results. 
Here we show that the problem can be recast into an 
LMI feasibility form. These results are illustrated in 
section 4 with a practical example arising in the con- 
text of active vision. Finally, section 5 contains some 
concluding remarks. 

2 Preliminaries 

2.1 Nota t ion  and preliminary results 
By C, we denote the Lebesgue space of complex valued 
matrix functions essentially bounded on the unit circle, 
equipped with the norm 

llG(z)lloo A ess SUP B ( G ( z ) ) ,  (1) 
Iz (=l  

where a represents the largest singular value. By H ,  we 
denote the subspace of functions in C, with bounded 
analytic continuation inside the unit disk and with norm 

11G(z)11, = ess sup F ( G ( z ) ) .  (2) 
14<1 

I33-1, denotes the unit ball in 3-1,. C2 denotes the space 
of square summable sequences h = {hi} equipped with 
the norm 

(3) 

and e,(€) denotes the space of bounded sequences 
equipped with the norm: 

Consider now the space C(&) of bounded, causal lin- 
ear time invariant operators in &. An element of L(C2) 
can be represented by its convolution kernel {Lk}.  The 
projection operator Pn : C(&) -+ C(&) is defined by 

Pn[L] 2 {Lo, L1,. . . , Ln-I,O,O,. . . } . ( 5 )  

Figure 1: Setup for Model (1n)Validation of LPV Systems 

Given an operator L E C(!2) and its projection Pn[L], 
we define its associated (finite) lower Toeplitz matrix as 
follows: 

T t  = > 

Ln-l L,-2 . . .  Lo 

Similarly, to a given sequence h and its projection in e2 

we associate the matrix: 

i: ho O ... ” ’  0 O l  
(7) 

In the sequel, for notational simplicity, the superscript 
will be omitted when clear from the context. 

Finally given a matrix M ,  M T  denotes its transpose. 
As usual M > 0 ( M  2 0) indicates that M is positive 
definite (positive semi-definite), and M < 0 that M is 
negative definite. 

Lemma 1 (Carath6odory-Fej6r) Given a matrix- 
valued sequence Li, i = 0,. . . , n - 1, there exists a causal - 

LTI operator L(z )  E BEFI, such that 

L ( z )  = L, + LIZ + Lzz2 + . . . Ln-lz”-l+ . . . 

af and only af Mc = I - TZTL 2 0 

Proof: See for instance [2, 241 

2.2 Model Validation of LPV Systems 
Consider the stable discrete time LPV system shown in 
Figure 1. Here Go is a known given system, and the 
signals U and y represent a known test input and the 
corresponding output corrupted by measurement noise 
w. The block T k  = diag(plI,.,,, . . . , p s I T s )  represents 
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a set of time-varying parameters, that are unknown a 
priori, but can be measured in real time. Finally, as 
usual A represents bounded dynamic uncertainty. In 
keeping with the model validation spirit, the goal is to 
determine whether or not the measured values of the 
input U ,  the output y and timevarying parameters Tk 
are consistent with the assumed model Go and the given 
set descriptions for the noise w and uncertainty A. 

In the sequel we consider models G(T), uncertainties A 
and noises w of the form: 

A E A = {A E E,: llAll, 5 6 I l} 
n 

w EN 4 {w E R ~ :  L(W) = L~ +  CL^^^-^ > 0, 
k=l 

L, > 0, given}, 
(8 )  

where F,(e) denotes upper (lower) linear fractional 
transformation (LFT). Moreover, we will assume that 
IIS(T)lle2-+ez < 6-1 for all parameter trajectories T k ,  so 
that the interconnection 3e [G(T), A] is C2 stable for all 
T k .  The noise set N is a generalization of the loo(€) 
noise set usually considered ( [ 5 ,  14]), as defined in (4). 
This more general form allows for taking into consider- 
ation correlated noise (see [13] for details). 

Using these definitions the LPV model (in)validation 
problem can be precisely stated as: 

Problem 1 Given the time-domain experiments U = 
( ~ 1 , .  . . U " ) ,  Y = ( ~ 1 , .  . . , yn)  and Y = (Ti.. . rn), 
the nominal model G and the a priori sets N, A de- 
termine whether or not the a priori and a posteriori 
information are consistent, i.e. whether the consistency 
set 

is nonempty. 

3 Main Results 

which can be expressed in matrix form as follows: 

The following result shows that the validation problem 
can be recast in an LMI feasibility form that can be 
efficiently solved. 

Theorem 1 Given time-domain measurements of the 
input U, the output y and the time-varying parameters 
Y, the LPV model G(T) is  not invalidated by  this exper- 
imental information if and only i f  there exist two vectors 
C = (Cl . . . , Cn) and w = ( ~ 1 . .  . , wn), such that: 

M(C> > 0 

L(w)  > 0, 
and (12) 

where: 

X ( C )  = (TRT,)*TRT~ + ( T ~ T ~ ) * T ~ T ~  + T ~ T , T T ~ T ,  
Y ( C )  = ($1 -a..> -1 

= Y - Pn{P(T)}  * U + Pn{Q(y)} * C ,  
(13) 

and L(w) is  defined as in equation (8). 

Proof: The LPV model G(T) is not invalidated by the 
experimental information {U, y, Y} if there exist 
a A E A and an w E N such that the equations 
(10) and (11) hold. From Lemma 1 it can be easily 
shown that existence of an uncertainty block in A 
is equivalent to: 

T F T ~  < d 2 ~ , T ~ , , .  (14) 

Now, replacing the expression of T, from (11) in 
the right-hand side of (14), and reordering terms 
yields: 

+ ( T ~ T , ) ~ T ~ T ~  + T ~ T , T T ~ T , .  (15) 

Using Schur complements and the fact that 
IlS(T)lle2-ea < 6-1 gives the first LMI of the 
set (12), M ( ( )  > 0. The second LMI of (12), 
L(w)  > 0, is simply obtained by replacing the ex- 
pression of the noise vector w from (13) in the 
definition of N given in the last equation of (8). 
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Figure 2: The experimental setup 

4 Example 

In this section we illustrate the proposed method with 
a practical example that arises in the context of active 
vision. The physical system under consideration, shown 
in Figure 2, consists of a Unisight pan/tilt platform with 
a BiSight stereo head with Hitachi KP-M1 Cameras and 
Fujinon HlOXllEMPX-31 motorized lenses. 

In a previous step we have obtained a model for the sys- 
tem, from the command input (in encoder units) to the 
head to the position of a given target (in pixels), as a 
function of a time varying focal length f ,  and estimated 
an upper bound on the identification error (see [21] for 
details on this step). So our goal is to (in)validate this 
model and refine the error bound, by obtaining a suit- 
able LTI uncertainty following sections 2.2 and 3. 

4.1 The Model 
For identification purposes, commands were given to the 
head and lenses using a 10 channel b - r controller and 
the image processing required to capture the images and 
locate the target was performed using a Datacube MaxS- 
PARC S250 hosted by a Sun Ultra workstation. From 
the identification of the physical system we obtained a 
nominal model -the block P(T) in (8) and (lo)-, which 
has a parametric component that takes into account 
the dependence of the system on the time varying focal 
length, and a non-parametric component that accounts 
for unmodelled dynamics l :  

'Due to lack of space, the model presented in this example is 
a reduced order version of the one obtained in [21] 

where: 
0.3107 0.7388 0.1119 -0.1018 
-0.7388 -0.1570 0.2073 -0.1719 
-0.1119 0.2073 0.4131 0.6569 
-0.1018 0.1719 -0.6569 -0.2362 

B1, = [0 0 0 OIT  

Bz, = [0.7594 0.5076 -0.1358 -0.0983IT 

CiP = [0.1343 -0.0897 0.0240 -0.01741 

Czp = [0.1498 -0.1001 0.0268 -0.01941 
Dllp =O 
Dlz, =0.0356 
Dzlp = - 0.6704 
Dzzp =0.0356 

and: 
-4337 -4186 -0.2364 -0.0240 
4186 6531. -0.2895 -0.0293 

-0.2364 0.2895 -2610 4163 ] 
0.0240 -0.0293 -4163 -2202 

A,, . 

B,, = [0.2524 0.12344 -0.1063. 0.1078. 10-6]T 

C,, = [0.0631 -0.0309 -0.2657. -0.2694. 
D,, =0.0108. 

(18) 

4.2 Validation Step 
For validation purposes, we have assumed that this 
nominal model is subject to two different types of un- 
structured uncertainty A -additive and multiplicative-, 
which leads in the first case to the augmented plant: 

and in the second one to: 

For these particular uncertainty types, the first LMI of 
the set (12) reduces to: 

and therefore it is possible to find the minimum upper 
bound on the norm of the uncertainty A so that the LPV 
model is not invalidated by the available experimental 
information. This is desirable from a control oriented 
perspective, since it leads to less conservative controller 
designs. 

The experimental information considered consists of 
N t  = 35 samples of the time response of the real sys- 
tem Y k  to a step input 'uk while the time varying pa- 
rameter T,+ was allowed to vary between 1.0334 and 
0.6205 during the experiment, as is shown in Figure 3. 
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Figure 3: Validation experiment 

By repeatedly measuring the location of the centroid 
of the target in the absence of input, the experimental 
noise measurement was determined to be bounded by 
et = 4/110pixels/count 2 .  

Using this a priori information and experimental data, 
the minimum value of llAll such that the LMI (12) holds 
was determined using Matlab’s LMI toolbox to solve 
the corresponding LMI optimization problem. The LPV 
model obtained can explain the experimental informa- 
tion, with the sequences of noises plotted in Figure 4 
and with the uncertainty block bounded in 11 . /Im by 
tiadd = 0.0172 in the additive case and timzLlt = 0.3456. 
Note that the identification was performed taking into 
account additive uncertainty, which explains the differ- 
ence between the upper bounds badd  and bmult. 

5 Conclusions and Directions for Further 
Research 

Motivated by the shortcommings of traditional gain- 
scheduling techniques, during the past few years sub- 
stantial advances have been made in the problem of 
synthesizing controllers for Linear Parameter Varying 
systems. However, the related field of identification of 
LPV systems is considerably less developed. While tools 
for robust identification of LPV systems have started to 
emerge, the problem of LPV model validation has not 
been addressed yet. 

such as ambient light. 
*this experimental error is mainly due to fluctuating conditions 

__ VectorW 
A priori noise bound - - _  

0- I 

5 10 15 20 25 30 

7 1 1  
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OL x ‘ I 
10 15 M 25 30 
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Figure 4: Results of the validation step 

In this paper we propose a new LPV model validation 
framework that, given experimental data composed by 
measurements of the output (corrupted by noise) and 
the time varying parameters, determines whether or not 
these measurements are consistent with a given plant 
and uncertainty description. The main result of the pa- 
per shows that this problem reduces to an LMI feasibil- 
ity problem that can be efficiently solved. Thus, it is 
not more computationally demanding that comparable 
techniques available for the case of LTI systems. 

Efforts are currently under way generalizing these tech- 
niques to the cases of structured and time-varying un- 
certainties. 
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